| 2 | 
 % $Name$ | 
 % $Name$ | 
| 3 | 
  | 
  | 
| 4 | 
 \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} | 
 \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} | 
| 5 | 
  | 
 \label{sec:eg-fourlayer} | 
| 6 | 
  | 
  | 
| 7 | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
| 8 | 
  | 
  | 
| 16 | 
 %{\large May 2001} | 
 %{\large May 2001} | 
| 17 | 
 %\end{center} | 
 %\end{center} | 
| 18 | 
  | 
  | 
| 19 | 
 \subsection{Introduction} | 
 This document describes an example experiment using MITgcm | 
| 20 | 
  | 
 to simulate a baroclinic ocean gyre in spherical | 
| 21 | 
 This document describes the second example MITgcm experiment. The first | 
 polar coordinates. The barotropic | 
| 22 | 
 example experiment ilustrated how to configure the code for a single layer  | 
 example experiment in section \ref{sec:eg-baro} | 
| 23 | 
  | 
 ilustrated how to configure the code for a single layer  | 
| 24 | 
 simulation in a cartesian grid. In this example a similar physical problem | 
 simulation in a cartesian grid. In this example a similar physical problem | 
| 25 | 
 is simulated, but the code is now configured | 
 is simulated, but the code is now configured | 
| 26 | 
 for four layers and in a spherical polar coordinate system. | 
 for four layers and in a spherical polar coordinate system. | 
| 40 | 
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | 
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally | 
| 41 | 
 in the north-south direction. Topologically the simulated  | 
 in the north-south direction. Topologically the simulated  | 
| 42 | 
 domain is a sector on a sphere and the coriolis parameter, $f$, is defined  | 
 domain is a sector on a sphere and the coriolis parameter, $f$, is defined  | 
| 43 | 
 according to latitude, $\phi$ | 
 according to latitude, $\varphi$ | 
| 44 | 
  | 
  | 
| 45 | 
 \begin{equation} | 
 \begin{equation} | 
| 46 | 
 \label{EQ:fcori} | 
 \label{EQ:fcori} | 
| 47 | 
 f(\phi) = 2 \Omega \sin( \phi ) | 
 f(\varphi) = 2 \Omega \sin( \varphi ) | 
| 48 | 
 \end{equation} | 
 \end{equation} | 
| 49 | 
   | 
   | 
| 50 | 
 \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. | 
 \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. | 
| 54 | 
  | 
  | 
| 55 | 
 \begin{equation} | 
 \begin{equation} | 
| 56 | 
 \label{EQ:taux} | 
 \label{EQ:taux} | 
| 57 | 
 \tau_x(\phi) = \tau_{0}\sin(\pi \frac{\phi}{L_{\phi}}) | 
 \tau_x(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) | 
| 58 | 
 \end{equation} | 
 \end{equation} | 
| 59 | 
   | 
   | 
| 60 | 
 \noindent where $L_{\phi}$ is the lateral domain extent ($60^{\circ}$) and  | 
 \noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and  | 
| 61 | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
| 62 | 
 \\ | 
 \\ | 
| 63 | 
  | 
  | 
| 64 | 
 Figure \ref{FIG:simulation_config} | 
 Figure \ref{FIG:simulation_config} | 
| 65 | 
 summarises the configuration simulated. | 
 summarises the configuration simulated. | 
| 66 | 
 In contrast to example (1) \cite{baro_gyre_case_study}, the current  | 
 In contrast to the example in section \ref{sec:eg-baro}, the  | 
| 67 | 
 experiment simulates a spherical polar domain. However, as indicated | 
 current experiment simulates a spherical polar domain. However, as indicated | 
| 68 | 
 by the axes in the lower left of the figure the model code works internally | 
 by the axes in the lower left of the figure the model code works internally | 
| 69 | 
 in a locally orthoganal coordinate $(x,y,z)$. In the remainder of this | 
 in a locally orthoganal coordinate $(x,y,z)$. For this experiment description  | 
| 70 | 
 document the local coordinate $(x,y,z)$ will be adopted. | 
 of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous  | 
| 71 | 
  | 
 with the spherical polar coordinate shown in figure  | 
| 72 | 
  | 
 \ref{fig:spherical-polar-coord} | 
| 73 | 
 \\ | 
 \\ | 
| 74 | 
  | 
  | 
| 75 | 
 The experiment has four levels in the vertical, each of equal thickness, | 
 The experiment has four levels in the vertical, each of equal thickness, | 
| 117 | 
 \label{FIG:simulation_config} | 
 \label{FIG:simulation_config} | 
| 118 | 
 \end{figure} | 
 \end{figure} | 
| 119 | 
  | 
  | 
| 120 | 
 \subsection{Discrete Numerical Configuration} | 
 \subsection{Equations solved} | 
| 121 | 
  | 
  | 
 | 
  The model is configured in hydrostatic form.  The domain is discretised with  | 
  | 
 | 
 a uniform grid spacing in latitude and longitude | 
  | 
 | 
  $\Delta x=\Delta y=1^{\circ}$, so  | 
  | 
 | 
 that there are sixty grid cells in the $x$ and $y$ directions. Vertically the  | 
  | 
 | 
 model is configured with a four layers with constant depth,  | 
  | 
 | 
 $\Delta z$, of $500$~m.  | 
  | 
| 122 | 
 The implicit free surface form of the  | 
 The implicit free surface form of the  | 
| 123 | 
 pressure equation described in Marshall et. al \cite{Marshall97a} is  | 
 pressure equation described in Marshall et. al \cite{Marshall97a} is  | 
| 124 | 
 employed.  | 
 employed.  | 
| 126 | 
 dissipation. The wind-stress momentum input is added to the momentum equation | 
 dissipation. The wind-stress momentum input is added to the momentum equation | 
| 127 | 
 for the ``zonal flow'', $u$. Other terms in the model | 
 for the ``zonal flow'', $u$. Other terms in the model | 
| 128 | 
 are explicitly switched off for this experiement configuration (see section | 
 are explicitly switched off for this experiement configuration (see section | 
| 129 | 
 \ref{SEC:code_config} ), yielding an active set of equations solved in this  | 
 \ref{SEC:code_config} ). This yields an active set of equations in  | 
| 130 | 
 configuration as follows | 
 solved in this configuration, written in spherical polar coordinates as  | 
| 131 | 
  | 
 follows | 
| 132 | 
  | 
  | 
| 133 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 134 | 
 \label{EQ:model_equations} | 
 \label{EQ:model_equations} | 
| 135 | 
 \frac{Du}{Dt} - fv +  | 
 \frac{Du}{Dt} - fv +  | 
| 136 | 
   \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -  | 
   \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -  | 
| 137 | 
   A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}  | 
   A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}  | 
| 138 | 
 & = & | 
 & = & | 
| 139 | 
 \cal{F} | 
 \cal{F} | 
| 140 | 
 \\ | 
 \\ | 
| 141 | 
 \frac{Dv}{Dt} + fu +  | 
 \frac{Dv}{Dt} + fu +  | 
| 142 | 
   \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -  | 
   \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} -  | 
| 143 | 
   A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}  | 
   A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}  | 
| 144 | 
 & = & | 
 & = & | 
| 145 | 
 0 | 
 0 | 
| 146 | 
 \\ | 
 \\ | 
| 147 | 
 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} | 
 \frac{\partial \eta}{\partial t} + \frac{\partial H \hat{u}}{\partial \lambda} + | 
| 148 | 
  | 
 \frac{\partial H \hat{v}}{\partial \varphi} | 
| 149 | 
 &=& | 
 &=& | 
| 150 | 
 0 | 
 0 | 
| 151 | 
 \\ | 
 \\ | 
| 154 | 
 & = & | 
 & = & | 
| 155 | 
 0 | 
 0 | 
| 156 | 
 \\ | 
 \\ | 
| 157 | 
 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} | 
 p^{\prime} & = & | 
| 158 | 
  | 
 g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz | 
| 159 | 
  | 
 \\ | 
| 160 | 
  | 
 \rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} | 
| 161 | 
 \\ | 
 \\ | 
| 162 | 
 {\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} | 
 {\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} | 
| 163 | 
 \\ | 
 \\ | 
| 164 | 
 {\cal F} |_{i} & = & 0 | 
 {\cal F} |_{i} & = & 0 | 
| 165 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 166 | 
  | 
  | 
| 167 | 
 \noindent where $u$ and $v$ are the $x$ and $y$ components of the | 
 \noindent where $u$ and $v$ are the components of the horizontal | 
| 168 | 
 flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and | 
 flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). | 
| 169 | 
 interior model levels respectively. As described in | 
 The terms $H\hat{u}$ and $H\hat{v}$ are the components of the term | 
| 170 | 
 MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time  | 
 integrated in eqaution \ref{eq:free-surface}, as descirbed in section | 
| 171 | 
 evolution of potential temperature, $\theta$, equation is solved prognostically. | 
  | 
| 172 | 
 The total pressure, $p$, is diagnosed by summing pressure due to surface  | 
 The suffices ${s},{i}$ indicate surface and interior of the domain. | 
| 173 | 
  | 
 The forcing $\cal F$ is only applied at the surface. | 
| 174 | 
  | 
 The pressure field, $p^{\prime}$, is separated into a barotropic part | 
| 175 | 
  | 
 due to variations in sea-surface height, $\eta$, and a hydrostatic | 
| 176 | 
  | 
 part due to variations in density, $\rho^{\prime}$, over the water column. | 
| 177 | 
  | 
  | 
| 178 | 
  | 
 \subsection{Discrete Numerical Configuration} | 
| 179 | 
  | 
  | 
| 180 | 
  | 
  The model is configured in hydrostatic form.  The domain is discretised with  | 
| 181 | 
  | 
 a uniform grid spacing in latitude and longitude | 
| 182 | 
  | 
  $\Delta \lambda=\Delta \varphi=1^{\circ}$, so  | 
| 183 | 
  | 
 that there are sixty grid cells in the zonal and meridional directions.  | 
| 184 | 
  | 
 Vertically the  | 
| 185 | 
  | 
 model is configured with four layers with constant depth,  | 
| 186 | 
  | 
 $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate  | 
| 187 | 
  | 
 variables $x$ and $y$ are initialised from the values of | 
| 188 | 
  | 
 $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in | 
| 189 | 
  | 
 radians according to | 
| 190 | 
  | 
  | 
| 191 | 
  | 
 \begin{eqnarray} | 
| 192 | 
  | 
 x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ | 
| 193 | 
  | 
 y=r\varphi,~\Delta y &= &r\Delta \varphi | 
| 194 | 
  | 
 \end{eqnarray} | 
| 195 | 
  | 
  | 
| 196 | 
  | 
 The procedure for generating a set of internal grid variables from a | 
| 197 | 
  | 
 spherical polar grid specification is discussed in section  | 
| 198 | 
  | 
 \ref{sec:spatial_discrete_horizontal_grid}. | 
| 199 | 
  | 
  | 
| 200 | 
  | 
 \noindent\fbox{ \begin{minipage}{5.5in} | 
| 201 | 
  | 
 {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em | 
| 202 | 
  | 
 model/src/ini\_spherical\_polar\_grid.F}) | 
| 203 | 
  | 
  | 
| 204 | 
  | 
 $A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} | 
| 205 | 
  | 
 ({\em GRID.h}) | 
| 206 | 
  | 
  | 
| 207 | 
  | 
 $\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) | 
| 208 | 
  | 
  | 
| 209 | 
  | 
 $\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) | 
| 210 | 
  | 
  | 
| 211 | 
  | 
 $\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) | 
| 212 | 
  | 
  | 
| 213 | 
  | 
 $\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) | 
| 214 | 
  | 
  | 
| 215 | 
  | 
 \end{minipage} }\\ | 
| 216 | 
  | 
  | 
| 217 | 
  | 
  | 
| 218 | 
  | 
  | 
| 219 | 
  | 
 As described in \ref{sec:tracer_equations}, the time evolution of potential  | 
| 220 | 
  | 
 temperature,  | 
| 221 | 
  | 
 $\theta$, equation is solved prognostically. | 
| 222 | 
  | 
 The pressure forces that drive the fluid motions, ( | 
| 223 | 
  | 
 $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface  | 
| 224 | 
 elevation $\eta$ and the hydrostatic pressure. | 
 elevation $\eta$ and the hydrostatic pressure. | 
 | 
 \\ | 
  | 
| 225 | 
  | 
  | 
| 226 | 
 \subsubsection{Numerical Stability Criteria} | 
 \subsubsection{Numerical Stability Criteria} | 
| 227 | 
  | 
  |