--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/09/27 00:58:17 1.2 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/24 15:21:27 1.3 @@ -1,7 +1,8 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.2 2001/09/27 00:58:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.3 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} +\label{sec:eg-fourlayer} \bodytext{bgcolor="#FFFFFFFF"} @@ -15,10 +16,11 @@ %{\large May 2001} %\end{center} -\subsection{Introduction} - -This document describes the second example MITgcm experiment. The first -example experiment ilustrated how to configure the code for a single layer +This document describes an example experiment using MITgcm +to simulate a baroclinic ocean gyre in spherical +polar coordinates. The barotropic +example experiment in section \ref{sec:eg-baro} +ilustrated how to configure the code for a single layer simulation in a cartesian grid. In this example a similar physical problem is simulated, but the code is now configured for four layers and in a spherical polar coordinate system. @@ -38,11 +40,11 @@ by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally in the north-south direction. Topologically the simulated domain is a sector on a sphere and the coriolis parameter, $f$, is defined -according to latitude, $\phi$ +according to latitude, $\varphi$ \begin{equation} \label{EQ:fcori} -f(\phi) = 2 \Omega \sin( \phi ) +f(\varphi) = 2 \Omega \sin( \varphi ) \end{equation} \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. @@ -52,20 +54,22 @@ \begin{equation} \label{EQ:taux} -\tau_x(\phi) = \tau_{0}\sin(\pi \frac{\phi}{L_{\phi}}) +\tau_x(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) \end{equation} -\noindent where $L_{\phi}$ is the lateral domain extent ($60^{\circ}$) and +\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and $\tau_0$ is set to $0.1N m^{-2}$. \\ Figure \ref{FIG:simulation_config} summarises the configuration simulated. -In contrast to example (1) \cite{baro_gyre_case_study}, the current -experiment simulates a spherical polar domain. However, as indicated +In contrast to the example in section \ref{sec:eg-baro}, the +current experiment simulates a spherical polar domain. However, as indicated by the axes in the lower left of the figure the model code works internally -in a locally orthoganal coordinate $(x,y,z)$. In the remainder of this -document the local coordinate $(x,y,z)$ will be adopted. +in a locally orthoganal coordinate $(x,y,z)$. For this experiment description +of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous +with the spherical polar coordinate shown in figure +\ref{fig:spherical-polar-coord} \\ The experiment has four levels in the vertical, each of equal thickness, @@ -113,14 +117,8 @@ \label{FIG:simulation_config} \end{figure} -\subsection{Discrete Numerical Configuration} +\subsection{Equations solved} - The model is configured in hydrostatic form. The domain is discretised with -a uniform grid spacing in latitude and longitude - $\Delta x=\Delta y=1^{\circ}$, so -that there are sixty grid cells in the $x$ and $y$ directions. Vertically the -model is configured with a four layers with constant depth, -$\Delta z$, of $500$~m. The implicit free surface form of the pressure equation described in Marshall et. al \cite{Marshall97a} is employed. @@ -128,24 +126,26 @@ dissipation. The wind-stress momentum input is added to the momentum equation for the ``zonal flow'', $u$. Other terms in the model are explicitly switched off for this experiement configuration (see section -\ref{SEC:code_config} ), yielding an active set of equations solved in this -configuration as follows +\ref{SEC:code_config} ). This yields an active set of equations in +solved in this configuration, written in spherical polar coordinates as +follows \begin{eqnarray} \label{EQ:model_equations} \frac{Du}{Dt} - fv + - \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - + \frac{1}{\rho}\frac{\partial p^{'}}{\partial \lambda} - A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} & = & \cal{F} \\ \frac{Dv}{Dt} + fu + - \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - + \frac{1}{\rho}\frac{\partial p^{'}}{\partial \varphi} - A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} & = & 0 \\ -\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} +\frac{\partial \eta}{\partial t} + \frac{\partial H \hat{u}}{\partial \lambda} + +\frac{\partial H \hat{v}}{\partial \varphi} &=& 0 \\ @@ -154,21 +154,71 @@ & = & 0 \\ -g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} +p^{'} & = & +g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz +\\ +\rho^{'} & = &- \alpha_{\theta}\rho_{0}\theta^{'} \\ {\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} \\ {\cal F} |_{i} & = & 0 \end{eqnarray} -\noindent where $u$ and $v$ are the $x$ and $y$ components of the -flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and -interior model levels respectively. As described in -MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time -evolution of potential temperature, $\theta$, equation is solved prognostically. -The total pressure, $p$, is diagnosed by summing pressure due to surface +\noindent where $u$ and $v$ are the components of the horizontal +flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). +The suffices ${s},{i}$ indicate surface and interior of the domain. +The forcing $\cal F$ is only applied at the surface. +The pressure field $p^{'}$ is separated into a barotropic part +due to variations in sea-surface height, $\eta$, and a hydrostatic +part due to variations in density, $\rho^{'}$, over the water column. + +\subsection{Discrete Numerical Configuration} + + The model is configured in hydrostatic form. The domain is discretised with +a uniform grid spacing in latitude and longitude + $\Delta \lambda=\Delta \varphi=1^{\circ}$, so +that there are sixty grid cells in the zonal and meridional directions. +Vertically the +model is configured with a four layers with constant depth, +$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate +variables $x$ and $y$ are initialised from the values of +$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in +radians according to + +\begin{eqnarray} +x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ +y=r\varphi,~\Delta y &= &r\Delta \varphi +\end{eqnarray} + +The procedure for generating a set of internal grid variables from a +spherical polar grid specification is discussed in section +\ref{sec:spatial_discrete_horizontal_grid}. + +\noindent\fbox{ \begin{minipage}{5.5in} +{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em +model/src/ini\_spherical\_polar\_grid.F}) + +$A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} +({\em GRID.h}) + +$\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) + +$\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) + +$\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) + +$\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) + +\end{minipage} }\\ + + + +As described in \ref{sec:tracer_equations}, the time evolution of potential +temperature, +$\theta$, equation is solved prognostically. +The pressure forces that drive the fluid motions, ( +$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface elevation $\eta$ and the hydrostatic pressure. -\\ \subsubsection{Numerical Stability Criteria}