| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{sec:eg-fourlayer} |
\label{www:tutorials} |
| 6 |
|
\label{sect:eg-fourlayer} |
| 7 |
|
|
| 8 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 9 |
|
|
| 20 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
| 21 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre in spherical |
| 22 |
polar coordinates. The barotropic |
polar coordinates. The barotropic |
| 23 |
example experiment in section \ref{sec:eg-baro} |
example experiment in section \ref{sect:eg-baro} |
| 24 |
illustrated how to configure the code for a single layer |
illustrated how to configure the code for a single layer |
| 25 |
simulation in a Cartesian grid. In this example a similar physical problem |
simulation in a Cartesian grid. In this example a similar physical problem |
| 26 |
is simulated, but the code is now configured |
is simulated, but the code is now configured |
| 27 |
for four layers and in a spherical polar coordinate system. |
for four layers and in a spherical polar coordinate system. |
| 28 |
|
|
| 29 |
\subsection{Overview} |
\subsection{Overview} |
| 30 |
|
\label{www:tutorials} |
| 31 |
|
|
| 32 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
| 33 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
| 45 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
| 46 |
|
|
| 47 |
\begin{equation} |
\begin{equation} |
| 48 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
| 49 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
| 50 |
\end{equation} |
\end{equation} |
| 51 |
|
|
| 63 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 64 |
\\ |
\\ |
| 65 |
|
|
| 66 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
| 67 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
| 68 |
In contrast to the example in section \ref{sec:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
| 69 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
| 70 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
| 71 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
| 84 |
linear |
linear |
| 85 |
|
|
| 86 |
\begin{equation} |
\begin{equation} |
| 87 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
| 88 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 89 |
\end{equation} |
\end{equation} |
| 90 |
|
|
| 91 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
| 92 |
|
|
| 93 |
\begin{equation} |
\begin{equation} |
| 94 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
| 95 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 96 |
\end{equation} |
\end{equation} |
| 97 |
|
|
| 116 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
| 117 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
| 118 |
} |
} |
| 119 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
| 120 |
\end{figure} |
\end{figure} |
| 121 |
|
|
| 122 |
\subsection{Equations solved} |
\subsection{Equations solved} |
| 123 |
|
\label{www:tutorials} |
| 124 |
For this problem |
For this problem |
| 125 |
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
| 126 |
equations described in Marshall et. al \cite{marshall:97a} are |
equations described in Marshall et. al \cite{marshall:97a} are |
| 127 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
| 128 |
an active tracer. The equation of state is linear. |
an active tracer. The equation of state is linear. |
| 136 |
follows |
follows |
| 137 |
|
|
| 138 |
\begin{eqnarray} |
\begin{eqnarray} |
| 139 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
| 140 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
| 141 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
| 142 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 205 |
|
|
| 206 |
|
|
| 207 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
| 208 |
|
\label{www:tutorials} |
| 209 |
|
|
| 210 |
The domain is discretised with |
The domain is discretised with |
| 211 |
a uniform grid spacing in latitude and longitude |
a uniform grid spacing in latitude and longitude |
| 225 |
|
|
| 226 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
| 227 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
| 228 |
\ref{sec:spatial_discrete_horizontal_grid}. |
\ref{sect:spatial_discrete_horizontal_grid}. |
| 229 |
|
|
| 230 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
| 231 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
| 246 |
|
|
| 247 |
|
|
| 248 |
|
|
| 249 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
| 250 |
temperature, |
temperature, |
| 251 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
| 252 |
is evaluated prognostically. The centered second-order scheme with |
is evaluated prognostically. The centered second-order scheme with |
| 253 |
Adams-Bashforth time stepping described in section |
Adams-Bashforth time stepping described in section |
| 254 |
\ref{sec:tracer_equations_abII} is used to step forward the temperature |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
| 255 |
equation. Prognostic terms in |
equation. Prognostic terms in |
| 256 |
the momentum equations are solved using flux form as |
the momentum equations are solved using flux form as |
| 257 |
described in section \ref{sec:flux-form_momentum_eqautions}. |
described in section \ref{sect:flux-form_momentum_eqautions}. |
| 258 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
| 259 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
| 260 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
| 262 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
| 263 |
field solution method is described in sections |
field solution method is described in sections |
| 264 |
\ref{sect:pressure-method-linear-backward} and |
\ref{sect:pressure-method-linear-backward} and |
| 265 |
\ref{sec:finding_the_pressure_field}. |
\ref{sect:finding_the_pressure_field}. |
| 266 |
|
|
| 267 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
| 268 |
|
\label{www:tutorials} |
| 269 |
|
|
| 270 |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
| 271 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
| 272 |
|
|
| 273 |
\begin{eqnarray} |
\begin{eqnarray} |
| 274 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
| 275 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 276 |
\end{eqnarray} |
\end{eqnarray} |
| 277 |
|
|
| 287 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
| 288 |
|
|
| 289 |
\begin{eqnarray} |
\begin{eqnarray} |
| 290 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
| 291 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 292 |
\end{eqnarray} |
\end{eqnarray} |
| 293 |
|
|
| 299 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 300 |
|
|
| 301 |
\begin{eqnarray} |
\begin{eqnarray} |
| 302 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
| 303 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 304 |
\end{eqnarray} |
\end{eqnarray} |
| 305 |
|
|
| 312 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
| 313 |
|
|
| 314 |
\begin{eqnarray} |
\begin{eqnarray} |
| 315 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
| 316 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
| 317 |
\end{eqnarray} |
\end{eqnarray} |
| 318 |
|
|
| 325 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 326 |
|
|
| 327 |
\begin{eqnarray} |
\begin{eqnarray} |
| 328 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
| 329 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 330 |
\end{eqnarray} |
\end{eqnarray} |
| 331 |
|
|
| 337 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
| 338 |
|
|
| 339 |
\begin{eqnarray} |
\begin{eqnarray} |
| 340 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
| 341 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 342 |
\end{eqnarray} |
\end{eqnarray} |
| 343 |
|
|
| 345 |
stability limit of 0.25. |
stability limit of 0.25. |
| 346 |
|
|
| 347 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
| 348 |
|
\label{www:tutorials} |
| 349 |
\label{SEC:eg_fourl_code_config} |
\label{SEC:eg_fourl_code_config} |
| 350 |
|
|
| 351 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
| 365 |
to these files associated with this experiment. |
to these files associated with this experiment. |
| 366 |
|
|
| 367 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
| 368 |
|
\label{www:tutorials} |
| 369 |
|
|
| 370 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
| 371 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
| 953 |
\begin{rawhtml}</PRE>\end{rawhtml} |
\begin{rawhtml}</PRE>\end{rawhtml} |
| 954 |
|
|
| 955 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
| 956 |
|
\label{www:tutorials} |
| 957 |
|
|
| 958 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 959 |
customisations for this experiment. |
customisations for this experiment. |
| 960 |
|
|
| 961 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
| 962 |
|
\label{www:tutorials} |
| 963 |
|
|
| 964 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 965 |
customisations for this experiment. |
customisations for this experiment. |
| 966 |
|
|
| 967 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
| 968 |
|
\label{www:tutorials} |
| 969 |
|
|
| 970 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
| 971 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the |
| 979 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
| 980 |
|
|
| 981 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
| 982 |
|
\label{www:tutorials} |
| 983 |
|
|
| 984 |
|
|
| 985 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
| 991 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
| 992 |
|
|
| 993 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
| 994 |
|
\label{www:tutorials} |
| 995 |
|
|
| 996 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
| 997 |
|
|
| 1018 |
\end{small} |
\end{small} |
| 1019 |
|
|
| 1020 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 1021 |
|
\label{www:tutorials} |
| 1022 |
|
|
| 1023 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 1024 |
customisations for this experiment. |
customisations for this experiment. |
| 1025 |
|
|
| 1026 |
|
|
| 1027 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 1028 |
|
\label{www:tutorials} |
| 1029 |
|
|
| 1030 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 1031 |
customisations for this experiment. |
customisations for this experiment. |
| 1032 |
|
|
| 1033 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
| 1034 |
|
\label{www:tutorials} |
| 1035 |
|
|
| 1036 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
| 1037 |
\begin{itemize} |
\begin{itemize} |
| 1044 |
\end{itemize} |
\end{itemize} |
| 1045 |
|
|
| 1046 |
\subsection{Running The Example} |
\subsection{Running The Example} |
| 1047 |
|
\label{www:tutorials} |
| 1048 |
\label{SEC:running_the_example} |
\label{SEC:running_the_example} |
| 1049 |
|
|
| 1050 |
\subsubsection{Code Download} |
\subsubsection{Code Download} |
| 1051 |
|
\label{www:tutorials} |
| 1052 |
|
|
| 1053 |
In order to run the examples you must first download the code distribution. |
In order to run the examples you must first download the code distribution. |
| 1054 |
Instructions for downloading the code can be found in section |
Instructions for downloading the code can be found in section |
| 1055 |
\ref{sect:obtainingCode}. |
\ref{sect:obtainingCode}. |
| 1056 |
|
|
| 1057 |
\subsubsection{Experiment Location} |
\subsubsection{Experiment Location} |
| 1058 |
|
\label{www:tutorials} |
| 1059 |
|
|
| 1060 |
This example experiments is located under the release sub-directory |
This example experiments is located under the release sub-directory |
| 1061 |
|
|
| 1063 |
{\it verification/exp2/ } |
{\it verification/exp2/ } |
| 1064 |
|
|
| 1065 |
\subsubsection{Running the Experiment} |
\subsubsection{Running the Experiment} |
| 1066 |
|
\label{www:tutorials} |
| 1067 |
|
|
| 1068 |
To run the experiment |
To run the experiment |
| 1069 |
|
|