| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{sec:eg-fourlayer} |
\label{sect:eg-fourlayer} |
| 6 |
|
|
| 7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 8 |
|
|
| 19 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
| 20 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre in spherical |
| 21 |
polar coordinates. The barotropic |
polar coordinates. The barotropic |
| 22 |
example experiment in section \ref{sec:eg-baro} |
example experiment in section \ref{sect:eg-baro} |
| 23 |
illustrated how to configure the code for a single layer |
illustrated how to configure the code for a single layer |
| 24 |
simulation in a Cartesian grid. In this example a similar physical problem |
simulation in a Cartesian grid. In this example a similar physical problem |
| 25 |
is simulated, but the code is now configured |
is simulated, but the code is now configured |
| 43 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
| 44 |
|
|
| 45 |
\begin{equation} |
\begin{equation} |
| 46 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
| 47 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
| 48 |
\end{equation} |
\end{equation} |
| 49 |
|
|
| 61 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 62 |
\\ |
\\ |
| 63 |
|
|
| 64 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
| 65 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
| 66 |
In contrast to the example in section \ref{sec:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
| 67 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
| 68 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
| 69 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
| 82 |
linear |
linear |
| 83 |
|
|
| 84 |
\begin{equation} |
\begin{equation} |
| 85 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
| 86 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 87 |
\end{equation} |
\end{equation} |
| 88 |
|
|
| 89 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
| 90 |
|
|
| 91 |
\begin{equation} |
\begin{equation} |
| 92 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
| 93 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 94 |
\end{equation} |
\end{equation} |
| 95 |
|
|
| 114 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
| 115 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
| 116 |
} |
} |
| 117 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
| 118 |
\end{figure} |
\end{figure} |
| 119 |
|
|
| 120 |
\subsection{Equations solved} |
\subsection{Equations solved} |
| 121 |
For this problem |
For this problem |
| 122 |
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
| 123 |
equations described in Marshall et. al \cite{Marshall97a} are |
equations described in Marshall et. al \cite{marshall:97a} are |
| 124 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
| 125 |
an active tracer. The equation of state is linear. |
an active tracer. The equation of state is linear. |
| 126 |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
| 133 |
follows |
follows |
| 134 |
|
|
| 135 |
\begin{eqnarray} |
\begin{eqnarray} |
| 136 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
| 137 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
| 138 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
| 139 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 221 |
|
|
| 222 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
| 223 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
| 224 |
\ref{sec:spatial_discrete_horizontal_grid}. |
\ref{sect:spatial_discrete_horizontal_grid}. |
| 225 |
|
|
| 226 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
| 227 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
| 242 |
|
|
| 243 |
|
|
| 244 |
|
|
| 245 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
| 246 |
temperature, |
temperature, |
| 247 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
| 248 |
is evaluated prognostically. The centered second-order scheme with |
is evaluated prognostically. The centered second-order scheme with |
| 249 |
Adams-Bashforth time stepping described in section |
Adams-Bashforth time stepping described in section |
| 250 |
\ref{sec:tracer_equations_abII} is used to step forward the temperature |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
| 251 |
equation. Prognostic terms in |
equation. Prognostic terms in |
| 252 |
the momentum equations are solved using flux form as |
the momentum equations are solved using flux form as |
| 253 |
described in section \ref{sec:flux-form_momentum_eqautions}. |
described in section \ref{sect:flux-form_momentum_eqautions}. |
| 254 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
| 255 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
| 256 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
| 258 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
| 259 |
field solution method is described in sections |
field solution method is described in sections |
| 260 |
\ref{sect:pressure-method-linear-backward} and |
\ref{sect:pressure-method-linear-backward} and |
| 261 |
\ref{sec:finding_the_pressure_field}. |
\ref{sect:finding_the_pressure_field}. |
| 262 |
|
|
| 263 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
| 264 |
|
|
| 266 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
| 267 |
|
|
| 268 |
\begin{eqnarray} |
\begin{eqnarray} |
| 269 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
| 270 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 271 |
\end{eqnarray} |
\end{eqnarray} |
| 272 |
|
|
| 282 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
| 283 |
|
|
| 284 |
\begin{eqnarray} |
\begin{eqnarray} |
| 285 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
| 286 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 287 |
\end{eqnarray} |
\end{eqnarray} |
| 288 |
|
|
| 294 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 295 |
|
|
| 296 |
\begin{eqnarray} |
\begin{eqnarray} |
| 297 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
| 298 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 299 |
\end{eqnarray} |
\end{eqnarray} |
| 300 |
|
|
| 307 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
| 308 |
|
|
| 309 |
\begin{eqnarray} |
\begin{eqnarray} |
| 310 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
| 311 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
| 312 |
\end{eqnarray} |
\end{eqnarray} |
| 313 |
|
|
| 320 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 321 |
|
|
| 322 |
\begin{eqnarray} |
\begin{eqnarray} |
| 323 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
| 324 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 325 |
\end{eqnarray} |
\end{eqnarray} |
| 326 |
|
|
| 332 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
| 333 |
|
|
| 334 |
\begin{eqnarray} |
\begin{eqnarray} |
| 335 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
| 336 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 337 |
\end{eqnarray} |
\end{eqnarray} |
| 338 |
|
|