--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 19:01:42 1.10 +++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 20:13:54 1.11 @@ -1,8 +1,8 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.10 2001/11/13 19:01:42 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.11 2001/11/13 20:13:54 adcroft Exp $ % $Name: $ \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} -\label{sec:eg-fourlayer} +\label{sect:eg-fourlayer} \bodytext{bgcolor="#FFFFFFFF"} @@ -19,7 +19,7 @@ This document describes an example experiment using MITgcm to simulate a baroclinic ocean gyre in spherical polar coordinates. The barotropic -example experiment in section \ref{sec:eg-baro} +example experiment in section \ref{sect:eg-baro} illustrated how to configure the code for a single layer simulation in a Cartesian grid. In this example a similar physical problem is simulated, but the code is now configured @@ -63,7 +63,7 @@ Figure \ref{FIG:simulation_config} summarizes the configuration simulated. -In contrast to the example in section \ref{sec:eg-baro}, the +In contrast to the example in section \ref{sect:eg-baro}, the current experiment simulates a spherical polar domain. As indicated by the axes in the lower left of the figure the model code works internally in a locally orthogonal coordinate $(x,y,z)$. For this experiment description @@ -119,7 +119,7 @@ \subsection{Equations solved} For this problem -the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the +the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the equations described in Marshall et. al \cite{marshall:97a} are employed. The flow is three-dimensional with just temperature, $\theta$, as an active tracer. The equation of state is linear. @@ -221,7 +221,7 @@ The procedure for generating a set of internal grid variables from a spherical polar grid specification is discussed in section -\ref{sec:spatial_discrete_horizontal_grid}. +\ref{sect:spatial_discrete_horizontal_grid}. \noindent\fbox{ \begin{minipage}{5.5in} {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em @@ -242,15 +242,15 @@ -As described in \ref{sec:tracer_equations}, the time evolution of potential +As described in \ref{sect:tracer_equations}, the time evolution of potential temperature, $\theta$, (equation \ref{eq:eg_fourl_theta}) is evaluated prognostically. The centered second-order scheme with Adams-Bashforth time stepping described in section -\ref{sec:tracer_equations_abII} is used to step forward the temperature +\ref{sect:tracer_equations_abII} is used to step forward the temperature equation. Prognostic terms in the momentum equations are solved using flux form as -described in section \ref{sec:flux-form_momentum_eqautions}. +described in section \ref{sect:flux-form_momentum_eqautions}. The pressure forces that drive the fluid motions, ( $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the @@ -258,7 +258,7 @@ height, $\eta$, is diagnosed using an implicit scheme. The pressure field solution method is described in sections \ref{sect:pressure-method-linear-backward} and -\ref{sec:finding_the_pressure_field}. +\ref{sect:finding_the_pressure_field}. \subsubsection{Numerical Stability Criteria}