/[MITgcm]/manual/s_examples/baroclinic_gyre/fourlayer.tex
ViewVC logotype

Diff of /manual/s_examples/baroclinic_gyre/fourlayer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Wed Aug 8 16:15:41 2001 UTC revision 1.7 by cnh, Thu Oct 25 01:15:16 2001 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}  \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}
5    \label{sec:eg-fourlayer}
6    
7  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
8    
# Line 15  Line 16 
16  %{\large May 2001}  %{\large May 2001}
17  %\end{center}  %\end{center}
18    
19  \subsection{Introduction}  This document describes an example experiment using MITgcm
20    to simulate a baroclinic ocean gyre in spherical
21  This document describes the second example MITgcm experiment. The first  polar coordinates. The barotropic
22  example experiment ilustrated how to configure the code for a single layer  example experiment in section \ref{sec:eg-baro}
23    ilustrated how to configure the code for a single layer
24  simulation in a cartesian grid. In this example a similar physical problem  simulation in a cartesian grid. In this example a similar physical problem
25  is simulated, but the code is now configured  is simulated, but the code is now configured
26  for four layers and in a spherical polar coordinate system.  for four layers and in a spherical polar coordinate system.
# Line 35  to the problems described analytically b Line 37  to the problems described analytically b
37  In this experiment the model is configured to represent a mid-latitude  In this experiment the model is configured to represent a mid-latitude
38  enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in  enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in
39  lateral extent. The fluid is $2$~km deep and is forced  lateral extent. The fluid is $2$~km deep and is forced
40  by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally  by a constant in time zonal wind stress, $\tau_{\lambda}$, that varies
41  in the north-south direction. Topologically the simulated  sinusoidally in the north-south direction. Topologically the simulated
42  domain is a sector on a sphere and the coriolis parameter, $f$, is defined  domain is a sector on a sphere and the coriolis parameter, $f$, is defined
43  according to latitude, $\phi$  according to latitude, $\varphi$
44    
45  \begin{equation}  \begin{equation}
46  \label{EQ:fcori}  \label{EQ:fcori}
47  f(\phi) = 2 \Omega \sin( \phi )  f(\varphi) = 2 \Omega \sin( \varphi )
48  \end{equation}  \end{equation}
49    
50  \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$.  \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$.
# Line 52  f(\phi) = 2 \Omega \sin( \phi ) Line 54  f(\phi) = 2 \Omega \sin( \phi )
54    
55  \begin{equation}  \begin{equation}
56  \label{EQ:taux}  \label{EQ:taux}
57  \tau_x(\phi) = \tau_{0}\sin(\pi \frac{\phi}{L_{\phi}})  \tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}})
58  \end{equation}  \end{equation}
59    
60  \noindent where $L_{\phi}$ is the lateral domain extent ($60^{\circ}$) and  \noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and
61  $\tau_0$ is set to $0.1N m^{-2}$.  $\tau_0$ is set to $0.1N m^{-2}$.
62  \\  \\
63    
64  Figure \ref{FIG:simulation_config}  Figure \ref{FIG:simulation_config}
65  summarises the configuration simulated.  summarises the configuration simulated.
66  In contrast to example (1) \cite{baro_gyre_case_study}, the current  In contrast to the example in section \ref{sec:eg-baro}, the
67  experiment simulates a spherical polar domain. However, as indicated  current experiment simulates a spherical polar domain. As indicated
68  by the axes in the lower left of the figure the model code works internally  by the axes in the lower left of the figure the model code works internally
69  in a locally orthoganal coordinate $(x,y,z)$. In the remainder of this  in a locally orthoganal coordinate $(x,y,z)$. For this experiment description
70  document the local coordinate $(x,y,z)$ will be adopted.  of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous
71    with the spherical polar coordinate shown in figure
72    \ref{fig:spherical-polar-coord}
73  \\  \\
74    
75  The experiment has four levels in the vertical, each of equal thickness,  The experiment has four levels in the vertical, each of equal thickness,
# Line 91  linear Line 95  linear
95    
96  \noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and  \noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and
97  $\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in  $\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in
98  this configuration the model state variable {\bf theta} is synonomous with  this configuration the model state variable {\bf theta} is equivalent to
99  either in-situ temperature, $T$, or potential temperature, $\theta$. For  either in-situ temperature, $T$, or potential temperature, $\theta$. For
100  consistency with later examples, in which the equation of state is  consistency with later examples, in which the equation of state is
101  non-linear, we use $\theta$ to represent temperature here. This is  non-linear, we use $\theta$ to represent temperature here. This is
102  the quantity that is carried in the model core equations.  the quantity that is carried in the model core equations.
103    
104  \begin{figure}  \begin{figure}
105  \centerline{  \begin{center}
106   \resizebox{7.5in}{5.5in}{   \resizebox{7.5in}{5.5in}{
107     \includegraphics*[0.2in,0.7in][10.5in,10.5in]     \includegraphics*[0.2in,0.7in][10.5in,10.5in]
108     {part3/case_studies/fourlayer_gyre/simulation_config.eps} }     {part3/case_studies/fourlayer_gyre/simulation_config.eps} }
109  }  \end{center}
110  \caption{Schematic of simulation domain and wind-stress forcing function  \caption{Schematic of simulation domain and wind-stress forcing function
111  for the four-layer gyre numerical experiment. The domain is enclosed by solid  for the four-layer gyre numerical experiment. The domain is enclosed by solid
112  walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N.  walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N.
113  In the four-layer case an initial temperature stratification is  An initial stratification is
114  imposed by setting the potential temperature, $\theta$, in each layer.  imposed by setting the potential temperature, $\theta$, in each layer.
115  The vertical spacing, $\Delta z$, is constant and equal to $500$m.  The vertical spacing, $\Delta z$, is constant and equal to $500$m.
116  }  }
117  \label{FIG:simulation_config}  \label{FIG:simulation_config}
118  \end{figure}  \end{figure}
119    
120  \subsection{Discrete Numerical Configuration}  \subsection{Equations solved}
121    
122   The model is configured in hydrostatic form.  The domain is discretised with  The implicit free surface {\bf HPE} form of the
123  a uniform grid spacing in latitude and longitude  equations described in Marshall et. al \cite{Marshall97a} is
124   $\Delta x=\Delta y=1^{\circ}$, so  employed. The flow is three-dimensional with just temperature, $\theta$, as
125  that there are sixty grid cells in the $x$ and $y$ directions. Vertically the  an active tracer.  The equation of state is linear.
 model is configured with a four layers with constant depth,  
 $\Delta z$, of $500$~m.  
 The implicit free surface form of the  
 pressure equation described in Marshall et. al \cite{Marshall97a} is  
 employed.  
126  A horizontal laplacian operator $\nabla_{h}^2$ provides viscous  A horizontal laplacian operator $\nabla_{h}^2$ provides viscous
127  dissipation. The wind-stress momentum input is added to the momentum equation  dissipation and provides a diffusive sub-grid scale closure for the
128  for the ``zonal flow'', $u$. Other terms in the model  temperature equation. A wind-stress momentum forcing is added to the momentum
129    equation for the zonal flow, $u$. Other terms in the model
130  are explicitly switched off for this experiement configuration (see section  are explicitly switched off for this experiement configuration (see section
131  \ref{SEC:code_config} ), yielding an active set of equations solved in this  \ref{SEC:eg_fourl_code_config} ). This yields an active set of equations
132  configuration as follows  solved in this configuration, written in spherical polar coordinates as
133    follows
134    
135  \begin{eqnarray}  \begin{eqnarray}
136  \label{EQ:model_equations}  \label{EQ:model_equations}
137  \frac{Du}{Dt} - fv +  \frac{Du}{Dt} - fv +
138    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -    \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -
139    A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}    A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}
140  & = &  & = &
141  \cal{F}  \cal{F}_{\lambda}
142  \\  \\
143  \frac{Dv}{Dt} + fu +  \frac{Dv}{Dt} + fu +
144    \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -    \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} -
145    A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}    A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}
146  & = &  & = &
147  0  0
148  \\  \\
149  \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}  \frac{\partial \eta}{\partial t} + \frac{\partial H \widehat{u}}{\partial \lambda} +
150    \frac{\partial H \widehat{v}}{\partial \varphi}
151  &=&  &=&
152  0  0
153    \label{eq:fourl_example_continuity}
154  \\  \\
155  \frac{D\theta}{Dt} -  \frac{D\theta}{Dt} -
156   K_{h}\nabla_{h}^2\theta  - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}}   K_{h}\nabla_{h}^2\theta  - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}}
157  & = &  & = &
158  0  0
159    \label{eq:eg_fourl_theta}
160  \\  \\
161  g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}  p^{\prime} & = &
162    g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz
163  \\  \\
164  {\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}}  \rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime}
165  \\  \\
166  {\cal F} |_{i} & = & 0  {\cal F}_{\lambda} |_{s} & = & \frac{\tau_{\lambda}}{\rho_{0}\Delta z_{s}}
167    \\
168    {\cal F}_{\lambda} |_{i} & = & 0
169  \end{eqnarray}  \end{eqnarray}
170    
171  \noindent where $u$ and $v$ are the $x$ and $y$ components of the  \noindent where $u$ and $v$ are the components of the horizontal
172  flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and  flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$).
173  interior model levels respectively. As described in  The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical
174  MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time  integral term given in equation \ref{eq:free-surface} and
175  evolution of potential temperature, $\theta$, equation is solved prognostically.  explained in more detail in section \ref{sect:pressure-method-linear-backward}.
176  The total pressure, $p$, is diagnosed by summing pressure due to surface  However, for the problem presented here, the continuity relation (equation
177  elevation $\eta$ and the hydrostatic pressure.  \ref{eq:fourl_example_continuity}) differs from the general form given
178  \\  in section \ref{sect:pressure-method-linear-backward},
179    equation \ref{eq:linear-free-surface=P-E+R}, because the source terms
180    ${\cal P}-{\cal E}+{\cal R}$
181    are all $0$.
182    
183    The pressure field, $p^{\prime}$, is separated into a barotropic part
184    due to variations in sea-surface height, $\eta$, and a hydrostatic
185    part due to variations in density, $\rho^{\prime}$, integrated
186    through the water column.
187    
188    The suffices ${s},{i}$ indicate surface and interior of the domain.
189    The windstress forcing, ${\cal F}_{\lambda}$, is applied in the surface layer
190    by a source term in the zonal momentum equation. In the ocean interior
191    this term is zero.
192    
193    In the momentum equations
194    lateral and vertical boundary conditions for the $\nabla_{h}^{2}$
195    and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified
196    when the numerical simulation is run - see section
197    \ref{SEC:eg_fourl_code_config}. For temperature
198    the boundary condition is ``zero-flux''
199    e.g. $\frac{\partial \theta}{\partial \varphi}=
200    \frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$.
201    
202    
203    
204    \subsection{Discrete Numerical Configuration}
205    
206     The domain is discretised with
207    a uniform grid spacing in latitude and longitude
208     $\Delta \lambda=\Delta \varphi=1^{\circ}$, so
209    that there are sixty grid cells in the zonal and meridional directions.
210    Vertically the
211    model is configured with four layers with constant depth,
212    $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate
213    variables $x$ and $y$ are initialised from the values of
214    $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in
215    radians according to
216    
217    \begin{eqnarray}
218    x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\
219    y=r\varphi,~\Delta y &= &r\Delta \varphi
220    \end{eqnarray}
221    
222    The procedure for generating a set of internal grid variables from a
223    spherical polar grid specification is discussed in section
224    \ref{sec:spatial_discrete_horizontal_grid}.
225    
226    \noindent\fbox{ \begin{minipage}{5.5in}
227    {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em
228    model/src/ini\_spherical\_polar\_grid.F})
229    
230    $A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs}
231    ({\em GRID.h})
232    
233    $\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h})
234    
235    $\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h})
236    
237    $\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h})
238    
239    $\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h})
240    
241    \end{minipage} }\\
242    
243    
244    
245    As described in \ref{sec:tracer_equations}, the time evolution of potential
246    temperature,
247    $\theta$, (equation \ref{eq:eg_fourl_theta})
248    is evaluated prognostically. The centered second-order scheme with
249    Adams-Bashforth time stepping described in section
250    \ref{sec:tracer_equations_abII} is used to step forward the temperature
251    equation. The pressure forces that drive the fluid motions, (
252    $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface
253    elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the
254    pressure is evaluated explicitly by integrating density. The sea-surface
255    height, $\eta$, is solved for implicitly as described in section
256    \ref{sect:pressure-method-linear-backward}.
257    
258  \subsubsection{Numerical Stability Criteria}  \subsubsection{Numerical Stability Criteria}
259    
# Line 249  S_{c} = \frac{c_{g} \delta t}{ \Delta x} Line 334  S_{c} = \frac{c_{g} \delta t}{ \Delta x}
334  stability limit of 0.25.  stability limit of 0.25.
335        
336  \subsection{Code Configuration}  \subsection{Code Configuration}
337  \label{SEC:code_config}  \label{SEC:eg_fourl_code_config}
338    
339  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
340  directory {\it verification/exp1/}.  The experiment files  directory {\it verification/exp1/}.  The experiment files

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.7

  ViewVC Help
Powered by ViewVC 1.1.22