1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
\label{sec:eg-fourlayer} |
\label{www:tutorials} |
6 |
|
\label{sect:eg-fourlayer} |
7 |
|
|
8 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
9 |
|
|
20 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
21 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre in spherical |
22 |
polar coordinates. The barotropic |
polar coordinates. The barotropic |
23 |
example experiment in section \ref{sec:eg-baro} |
example experiment in section \ref{sect:eg-baro} |
24 |
illustrated how to configure the code for a single layer |
illustrated how to configure the code for a single layer |
25 |
simulation in a Cartesian grid. In this example a similar physical problem |
simulation in a Cartesian grid. In this example a similar physical problem |
26 |
is simulated, but the code is now configured |
is simulated, but the code is now configured |
27 |
for four layers and in a spherical polar coordinate system. |
for four layers and in a spherical polar coordinate system. |
28 |
|
|
29 |
\subsection{Overview} |
\subsection{Overview} |
30 |
|
\label{www:tutorials} |
31 |
|
|
32 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
33 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
45 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
46 |
|
|
47 |
\begin{equation} |
\begin{equation} |
48 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
49 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
50 |
\end{equation} |
\end{equation} |
51 |
|
|
63 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
64 |
\\ |
\\ |
65 |
|
|
66 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
67 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
68 |
In contrast to the example in section \ref{sec:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
69 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
70 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
71 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
84 |
linear |
linear |
85 |
|
|
86 |
\begin{equation} |
\begin{equation} |
87 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
88 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
89 |
\end{equation} |
\end{equation} |
90 |
|
|
91 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
92 |
|
|
93 |
\begin{equation} |
\begin{equation} |
94 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
95 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
96 |
\end{equation} |
\end{equation} |
97 |
|
|
116 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
117 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
118 |
} |
} |
119 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
120 |
\end{figure} |
\end{figure} |
121 |
|
|
122 |
\subsection{Equations solved} |
\subsection{Equations solved} |
123 |
|
\label{www:tutorials} |
124 |
For this problem |
For this problem |
125 |
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
126 |
equations described in Marshall et. al \cite{Marshall97a} are |
equations described in Marshall et. al \cite{marshall:97a} are |
127 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
128 |
an active tracer. The equation of state is linear. |
an active tracer. The equation of state is linear. |
129 |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
136 |
follows |
follows |
137 |
|
|
138 |
\begin{eqnarray} |
\begin{eqnarray} |
139 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
140 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
141 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
142 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
205 |
|
|
206 |
|
|
207 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
208 |
|
\label{www:tutorials} |
209 |
|
|
210 |
The domain is discretised with |
The domain is discretised with |
211 |
a uniform grid spacing in latitude and longitude |
a uniform grid spacing in latitude and longitude |
225 |
|
|
226 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
227 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
228 |
\ref{sec:spatial_discrete_horizontal_grid}. |
\ref{sect:spatial_discrete_horizontal_grid}. |
229 |
|
|
230 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
231 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
246 |
|
|
247 |
|
|
248 |
|
|
249 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
250 |
temperature, |
temperature, |
251 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
252 |
is evaluated prognostically. The centered second-order scheme with |
is evaluated prognostically. The centered second-order scheme with |
253 |
Adams-Bashforth time stepping described in section |
Adams-Bashforth time stepping described in section |
254 |
\ref{sec:tracer_equations_abII} is used to step forward the temperature |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
255 |
equation. Prognostic terms in |
equation. Prognostic terms in |
256 |
the momentum equations are solved using flux form as |
the momentum equations are solved using flux form as |
257 |
described in section \ref{sec:flux-form_momentum_eqautions}. |
described in section \ref{sect:flux-form_momentum_eqautions}. |
258 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
259 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
260 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
262 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
263 |
field solution method is described in sections |
field solution method is described in sections |
264 |
\ref{sect:pressure-method-linear-backward} and |
\ref{sect:pressure-method-linear-backward} and |
265 |
\ref{sec:finding_the_pressure_field}. |
\ref{sect:finding_the_pressure_field}. |
266 |
|
|
267 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
268 |
|
\label{www:tutorials} |
269 |
|
|
270 |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
271 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
272 |
|
|
273 |
\begin{eqnarray} |
\begin{eqnarray} |
274 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
275 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
276 |
\end{eqnarray} |
\end{eqnarray} |
277 |
|
|
287 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
288 |
|
|
289 |
\begin{eqnarray} |
\begin{eqnarray} |
290 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
291 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
292 |
\end{eqnarray} |
\end{eqnarray} |
293 |
|
|
299 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
300 |
|
|
301 |
\begin{eqnarray} |
\begin{eqnarray} |
302 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
303 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
304 |
\end{eqnarray} |
\end{eqnarray} |
305 |
|
|
312 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
313 |
|
|
314 |
\begin{eqnarray} |
\begin{eqnarray} |
315 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
316 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
317 |
\end{eqnarray} |
\end{eqnarray} |
318 |
|
|
325 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
326 |
|
|
327 |
\begin{eqnarray} |
\begin{eqnarray} |
328 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
329 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
330 |
\end{eqnarray} |
\end{eqnarray} |
331 |
|
|
337 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
338 |
|
|
339 |
\begin{eqnarray} |
\begin{eqnarray} |
340 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
341 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
342 |
\end{eqnarray} |
\end{eqnarray} |
343 |
|
|
345 |
stability limit of 0.25. |
stability limit of 0.25. |
346 |
|
|
347 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
348 |
|
\label{www:tutorials} |
349 |
\label{SEC:eg_fourl_code_config} |
\label{SEC:eg_fourl_code_config} |
350 |
|
|
351 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
365 |
to these files associated with this experiment. |
to these files associated with this experiment. |
366 |
|
|
367 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
368 |
|
\label{www:tutorials} |
369 |
|
|
370 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
371 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
953 |
\begin{rawhtml}</PRE>\end{rawhtml} |
\begin{rawhtml}</PRE>\end{rawhtml} |
954 |
|
|
955 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
956 |
|
\label{www:tutorials} |
957 |
|
|
958 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
959 |
customisations for this experiment. |
customisations for this experiment. |
960 |
|
|
961 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
962 |
|
\label{www:tutorials} |
963 |
|
|
964 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
965 |
customisations for this experiment. |
customisations for this experiment. |
966 |
|
|
967 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
968 |
|
\label{www:tutorials} |
969 |
|
|
970 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
971 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the |
979 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
980 |
|
|
981 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
982 |
|
\label{www:tutorials} |
983 |
|
|
984 |
|
|
985 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
991 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
992 |
|
|
993 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
994 |
|
\label{www:tutorials} |
995 |
|
|
996 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
997 |
|
|
1018 |
\end{small} |
\end{small} |
1019 |
|
|
1020 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
1021 |
|
\label{www:tutorials} |
1022 |
|
|
1023 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
1024 |
customisations for this experiment. |
customisations for this experiment. |
1025 |
|
|
1026 |
|
|
1027 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
1028 |
|
\label{www:tutorials} |
1029 |
|
|
1030 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
1031 |
customisations for this experiment. |
customisations for this experiment. |
1032 |
|
|
1033 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
1034 |
|
\label{www:tutorials} |
1035 |
|
|
1036 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
1037 |
\begin{itemize} |
\begin{itemize} |
1044 |
\end{itemize} |
\end{itemize} |
1045 |
|
|
1046 |
\subsection{Running The Example} |
\subsection{Running The Example} |
1047 |
|
\label{www:tutorials} |
1048 |
\label{SEC:running_the_example} |
\label{SEC:running_the_example} |
1049 |
|
|
1050 |
\subsubsection{Code Download} |
\subsubsection{Code Download} |
1051 |
|
\label{www:tutorials} |
1052 |
|
|
1053 |
In order to run the examples you must first download the code distribution. |
In order to run the examples you must first download the code distribution. |
1054 |
Instructions for downloading the code can be found in section |
Instructions for downloading the code can be found in section |
1055 |
\ref{sect:obtainingCode}. |
\ref{sect:obtainingCode}. |
1056 |
|
|
1057 |
\subsubsection{Experiment Location} |
\subsubsection{Experiment Location} |
1058 |
|
\label{www:tutorials} |
1059 |
|
|
1060 |
This example experiments is located under the release sub-directory |
This example experiments is located under the release sub-directory |
1061 |
|
|
1063 |
{\it verification/exp2/ } |
{\it verification/exp2/ } |
1064 |
|
|
1065 |
\subsubsection{Running the Experiment} |
\subsubsection{Running the Experiment} |
1066 |
|
\label{www:tutorials} |
1067 |
|
|
1068 |
To run the experiment |
To run the experiment |
1069 |
|
|