1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
\label{sec:eg-fourlayer} |
\label{sect:eg-fourlayer} |
6 |
|
|
7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
8 |
|
|
19 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
20 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre in spherical |
21 |
polar coordinates. The barotropic |
polar coordinates. The barotropic |
22 |
example experiment in section \ref{sec:eg-baro} |
example experiment in section \ref{sect:eg-baro} |
23 |
illustrated how to configure the code for a single layer |
illustrated how to configure the code for a single layer |
24 |
simulation in a Cartesian grid. In this example a similar physical problem |
simulation in a Cartesian grid. In this example a similar physical problem |
25 |
is simulated, but the code is now configured |
is simulated, but the code is now configured |
43 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
44 |
|
|
45 |
\begin{equation} |
\begin{equation} |
46 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
47 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
48 |
\end{equation} |
\end{equation} |
49 |
|
|
61 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
62 |
\\ |
\\ |
63 |
|
|
64 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
65 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
66 |
In contrast to the example in section \ref{sec:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
67 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
68 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
69 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
82 |
linear |
linear |
83 |
|
|
84 |
\begin{equation} |
\begin{equation} |
85 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
86 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
87 |
\end{equation} |
\end{equation} |
88 |
|
|
89 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
90 |
|
|
91 |
\begin{equation} |
\begin{equation} |
92 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
93 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
94 |
\end{equation} |
\end{equation} |
95 |
|
|
114 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
115 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
116 |
} |
} |
117 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
118 |
\end{figure} |
\end{figure} |
119 |
|
|
120 |
\subsection{Equations solved} |
\subsection{Equations solved} |
121 |
For this problem |
For this problem |
122 |
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
123 |
equations described in Marshall et. al \cite{marshall:97a} are |
equations described in Marshall et. al \cite{marshall:97a} are |
124 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
125 |
an active tracer. The equation of state is linear. |
an active tracer. The equation of state is linear. |
133 |
follows |
follows |
134 |
|
|
135 |
\begin{eqnarray} |
\begin{eqnarray} |
136 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
137 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
138 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
139 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
221 |
|
|
222 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
223 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
224 |
\ref{sec:spatial_discrete_horizontal_grid}. |
\ref{sect:spatial_discrete_horizontal_grid}. |
225 |
|
|
226 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
227 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
242 |
|
|
243 |
|
|
244 |
|
|
245 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
246 |
temperature, |
temperature, |
247 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
248 |
is evaluated prognostically. The centered second-order scheme with |
is evaluated prognostically. The centered second-order scheme with |
249 |
Adams-Bashforth time stepping described in section |
Adams-Bashforth time stepping described in section |
250 |
\ref{sec:tracer_equations_abII} is used to step forward the temperature |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
251 |
equation. Prognostic terms in |
equation. Prognostic terms in |
252 |
the momentum equations are solved using flux form as |
the momentum equations are solved using flux form as |
253 |
described in section \ref{sec:flux-form_momentum_eqautions}. |
described in section \ref{sect:flux-form_momentum_eqautions}. |
254 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
255 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
256 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
258 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
259 |
field solution method is described in sections |
field solution method is described in sections |
260 |
\ref{sect:pressure-method-linear-backward} and |
\ref{sect:pressure-method-linear-backward} and |
261 |
\ref{sec:finding_the_pressure_field}. |
\ref{sect:finding_the_pressure_field}. |
262 |
|
|
263 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
264 |
|
|
266 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
267 |
|
|
268 |
\begin{eqnarray} |
\begin{eqnarray} |
269 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
270 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
271 |
\end{eqnarray} |
\end{eqnarray} |
272 |
|
|
282 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
283 |
|
|
284 |
\begin{eqnarray} |
\begin{eqnarray} |
285 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
286 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
287 |
\end{eqnarray} |
\end{eqnarray} |
288 |
|
|
294 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
295 |
|
|
296 |
\begin{eqnarray} |
\begin{eqnarray} |
297 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
298 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
299 |
\end{eqnarray} |
\end{eqnarray} |
300 |
|
|
307 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
308 |
|
|
309 |
\begin{eqnarray} |
\begin{eqnarray} |
310 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
311 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
312 |
\end{eqnarray} |
\end{eqnarray} |
313 |
|
|
320 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
321 |
|
|
322 |
\begin{eqnarray} |
\begin{eqnarray} |
323 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
324 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
325 |
\end{eqnarray} |
\end{eqnarray} |
326 |
|
|
332 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
333 |
|
|
334 |
\begin{eqnarray} |
\begin{eqnarray} |
335 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
336 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
337 |
\end{eqnarray} |
\end{eqnarray} |
338 |
|
|