1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
\label{sect:eg-fourlayer} |
\label{sect:eg-fourlayer} |
6 |
|
|
7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
43 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
44 |
|
|
45 |
\begin{equation} |
\begin{equation} |
46 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
47 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
48 |
\end{equation} |
\end{equation} |
49 |
|
|
61 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
62 |
\\ |
\\ |
63 |
|
|
64 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
65 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
66 |
In contrast to the example in section \ref{sect:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
67 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
82 |
linear |
linear |
83 |
|
|
84 |
\begin{equation} |
\begin{equation} |
85 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
86 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
87 |
\end{equation} |
\end{equation} |
88 |
|
|
89 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
90 |
|
|
91 |
\begin{equation} |
\begin{equation} |
92 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
93 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
94 |
\end{equation} |
\end{equation} |
95 |
|
|
114 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
115 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
116 |
} |
} |
117 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
118 |
\end{figure} |
\end{figure} |
119 |
|
|
120 |
\subsection{Equations solved} |
\subsection{Equations solved} |
133 |
follows |
follows |
134 |
|
|
135 |
\begin{eqnarray} |
\begin{eqnarray} |
136 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
137 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
138 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
139 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
266 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
267 |
|
|
268 |
\begin{eqnarray} |
\begin{eqnarray} |
269 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
270 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
271 |
\end{eqnarray} |
\end{eqnarray} |
272 |
|
|
282 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
283 |
|
|
284 |
\begin{eqnarray} |
\begin{eqnarray} |
285 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
286 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
287 |
\end{eqnarray} |
\end{eqnarray} |
288 |
|
|
294 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
295 |
|
|
296 |
\begin{eqnarray} |
\begin{eqnarray} |
297 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
298 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
299 |
\end{eqnarray} |
\end{eqnarray} |
300 |
|
|
307 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
308 |
|
|
309 |
\begin{eqnarray} |
\begin{eqnarray} |
310 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
311 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
312 |
\end{eqnarray} |
\end{eqnarray} |
313 |
|
|
320 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
321 |
|
|
322 |
\begin{eqnarray} |
\begin{eqnarray} |
323 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
324 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
325 |
\end{eqnarray} |
\end{eqnarray} |
326 |
|
|
332 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
333 |
|
|
334 |
\begin{eqnarray} |
\begin{eqnarray} |
335 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
336 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
337 |
\end{eqnarray} |
\end{eqnarray} |
338 |
|
|