/[MITgcm]/manual/s_examples/baroclinic_gyre/fourlayer.tex
ViewVC logotype

Diff of /manual/s_examples/baroclinic_gyre/fourlayer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by edhill, Thu Jan 29 17:36:26 2004 UTC revision 1.26 by jmc, Tue Jan 27 16:26:43 2009 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates}  \section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates}
5  \label{www:tutorials}  \label{www:tutorials}
6  \label{sect:eg-fourlayer}  \label{sect:eg-fourlayer}
7    \begin{rawhtml}
8    <!-- CMIREDIR:eg-fourlayer: -->
9    \end{rawhtml}
10    \begin{center}
11    (in directory: {\it verification/tutorial\_baroclinic\_gyre/})
12    \end{center}
13    
14  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
15    
# Line 18  Line 24 
24  %\end{center}  %\end{center}
25    
26  This document describes an example experiment using MITgcm  This document describes an example experiment using MITgcm
27  to simulate a baroclinic ocean gyre in spherical  to simulate a baroclinic ocean gyre for four layers in spherical
28  polar coordinates. The barotropic  polar coordinates.  The files for this experiment can be found
29  example experiment in section \ref{sect:eg-baro}  in the verification directory under tutorial\_baroclinic\_gyre.
 illustrated how to configure the code for a single layer  
 simulation in a Cartesian grid. In this example a similar physical problem  
 is simulated, but the code is now configured  
 for four layers and in a spherical polar coordinate system.  
30    
31  \subsection{Overview}  \subsection{Overview}
32  \label{www:tutorials}  \label{www:tutorials}
# Line 353  stability limit of 0.25. Line 355  stability limit of 0.25.
355  \label{SEC:eg_fourl_code_config}  \label{SEC:eg_fourl_code_config}
356    
357  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
358  directory {\it verification/exp2/}.  The experiment files  directory {\it verification/tutorial\_barotropic\_gyre/}.
359    The experiment files
360  \begin{itemize}  \begin{itemize}
361  \item {\it input/data}  \item {\it input/data}
362  \item {\it input/data.pkg}  \item {\it input/data.pkg}
# Line 380  are Line 383  are
383  \item Line 4,  \item Line 4,
384  \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}  \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}
385  this line sets the initial and reference values of potential  this line sets the initial and reference values of potential
386  temperature at each model level in units of $^{\circ}$C.  The entries  temperature at each model level in units of $^{\circ}\mathrm{C}$.  The entries
387  are ordered from surface to depth. For each depth level the initial  are ordered from surface to depth. For each depth level the initial
388  and reference profiles will be uniform in $x$ and $y$. The values  and reference profiles will be uniform in $x$ and $y$. The values
389  specified here are read into the variable \varlink{tRef}{tRef} in the  specified here are read into the variable \varlink{tRef}{tRef} in the
# Line 418  viscAh=4.E2, Line 421  viscAh=4.E2,
421    coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary    coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary
422    conditions for this operator are specified later.  The variable    conditions for this operator are specified later.  The variable
423    \varlink{viscAh}{viscAh} is read in the routine    \varlink{viscAh}{viscAh} is read in the routine
424    \varlink{INI\_PARMS}{INI_PARMS} and applied in routines    \varlink{INI\_PARMS}{INI_PARMS} and applied in routine
425    \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS} and    \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}.
   \varlink{CALC\_GW}{CALC_GW}.  
426    
427  \fbox{  \fbox{
428    \begin{minipage}{5.0in}    \begin{minipage}{5.0in}
429      {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})      {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
   \end{minipage}  
 }  
 \fbox{  
   \begin{minipage}{5.0in}  
     {\it S/R CALC\_GW}({\it calc\_gw.F})  
430    \end{minipage}    \end{minipage}
431  }  }
432    
# Line 447  no_slip_sides=.FALSE. Line 444  no_slip_sides=.FALSE.
444    
445    \fbox{    \fbox{
446      \begin{minipage}{5.0in}      \begin{minipage}{5.0in}
447        {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})        {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
448      \end{minipage}      \end{minipage}
449    }    }
450    \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F}    \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F}
451        
452  \item Lines 9,  \item Lines 9,
453  \begin{verbatim}  \begin{verbatim}
# Line 461  no_slip_bottom=.TRUE. Line 458  no_slip_bottom=.TRUE.
458    at $z=-H$, where $H$ is the local depth of the domain.  The variable    at $z=-H$, where $H$ is the local depth of the domain.  The variable
459    \varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine    \varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine
460    \filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the    \filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the
461    routine \varlink{CALC\_MOM\_RHS}{CALC_MOM_RHS}.    routine \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}.
462    
463    \fbox{    \fbox{
464      \begin{minipage}{5.0in}      \begin{minipage}{5.0in}
465        {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})        {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
466      \end{minipage}      \end{minipage}
467    }    }
468    \filelink{calc\_mom\_rhs.F}{calc_mom_rhs.F}    \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F}
469    
470  \item Line 10,  \item Line 10,
471  \begin{verbatim}  \begin{verbatim}
# Line 562  usingSphericalPolarGrid=.TRUE., Line 559  usingSphericalPolarGrid=.TRUE.,
559    
560  \item Line 41,  \item Line 41,
561  \begin{verbatim}  \begin{verbatim}
562  phiMin=0.,  ygOrigin=0.,
563  \end{verbatim}  \end{verbatim}
564    This line sets the southern boundary of the modeled domain to    This line sets the southern boundary of the modeled domain to
565    $0^{\circ}$ latitude. This value affects both the generation of the    $0^{\circ}$ latitude. This value affects both the generation of the
# Line 570  phiMin=0., Line 567  phiMin=0.,
567    the initialization of the coriolis force.  Note - it is not required    the initialization of the coriolis force.  Note - it is not required
568    to set a longitude boundary, since the absolute longitude does not    to set a longitude boundary, since the absolute longitude does not
569    alter the kernel equation discretisation.  The variable    alter the kernel equation discretisation.  The variable
570    \varlink{phiMin}{phiMin} is read in the    \varlink{ygOrigin}{ygOrigin} is read in the
571    routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine    routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine
572    
573    \fbox{    \fbox{

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22