1 |
adcroft |
1.1 |
% $Header: $ |
2 |
|
|
% $Name: $ |
3 |
|
|
|
4 |
|
|
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
|
|
|
6 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
7 |
|
|
|
8 |
|
|
%\begin{center} |
9 |
|
|
%{\Large \bf Using MITgcm to Simulate a Baroclinic Ocean Gyre In Spherical |
10 |
|
|
%Polar Coordinates} |
11 |
|
|
% |
12 |
|
|
%\vspace*{4mm} |
13 |
|
|
% |
14 |
|
|
%\vspace*{3mm} |
15 |
|
|
%{\large May 2001} |
16 |
|
|
%\end{center} |
17 |
|
|
|
18 |
|
|
\subsection{Introduction} |
19 |
|
|
|
20 |
|
|
This document describes the second example MITgcm experiment. The first |
21 |
|
|
example experiment ilustrated how to configure the code for a single layer |
22 |
|
|
simulation in a cartesian grid. In this example a similar physical problem |
23 |
|
|
is simulated, but the code is now configured |
24 |
|
|
for four layers and in a spherical polar coordinate system. |
25 |
|
|
|
26 |
|
|
\subsection{Overview} |
27 |
|
|
|
28 |
|
|
This example experiment demonstrates using the MITgcm to simulate |
29 |
|
|
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
30 |
|
|
is a numerical rendition of the gyre circulation problem simliar |
31 |
|
|
to the problems described analytically by Stommel in 1966 |
32 |
|
|
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
33 |
|
|
\\ |
34 |
|
|
|
35 |
|
|
In this experiment the model is configured to represent a mid-latitude |
36 |
|
|
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
37 |
|
|
lateral extent. The fluid is $2$~km deep and is forced |
38 |
|
|
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
39 |
|
|
in the north-south direction. Topologically the simulated |
40 |
|
|
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
41 |
|
|
according to latitude, $\phi$ |
42 |
|
|
|
43 |
|
|
\begin{equation} |
44 |
|
|
\label{EQ:fcori} |
45 |
|
|
f(\phi) = 2 \Omega \sin( \phi ) |
46 |
|
|
\end{equation} |
47 |
|
|
|
48 |
|
|
\noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. |
49 |
|
|
\\ |
50 |
|
|
|
51 |
|
|
The sinusoidal wind-stress variations are defined according to |
52 |
|
|
|
53 |
|
|
\begin{equation} |
54 |
|
|
\label{EQ:taux} |
55 |
|
|
\tau_x(\phi) = \tau_{0}\sin(\pi \frac{\phi}{L_{\phi}}) |
56 |
|
|
\end{equation} |
57 |
|
|
|
58 |
|
|
\noindent where $L_{\phi}$ is the lateral domain extent ($60^{\circ}$) and |
59 |
|
|
$\tau_0$ is set to $0.1N m^{-2}$. |
60 |
|
|
\\ |
61 |
|
|
|
62 |
|
|
Figure \ref{FIG:simulation_config} |
63 |
|
|
summarises the configuration simulated. |
64 |
|
|
In contrast to example (1) \cite{baro_gyre_case_study}, the current |
65 |
|
|
experiment simulates a spherical polar domain. However, as indicated |
66 |
|
|
by the axes in the lower left of the figure the model code works internally |
67 |
|
|
in a locally orthoganal coordinate $(x,y,z)$. In the remainder of this |
68 |
|
|
document the local coordinate $(x,y,z)$ will be adopted. |
69 |
|
|
\\ |
70 |
|
|
|
71 |
|
|
The experiment has four levels in the vertical, each of equal thickness, |
72 |
|
|
$\Delta z = 500$~m. Initially the fluid is stratified with a reference |
73 |
|
|
potential temperature profile, |
74 |
|
|
$\theta_{250}=20^{\circ}$~C, |
75 |
|
|
$\theta_{750}=10^{\circ}$~C, |
76 |
|
|
$\theta_{1250}=8^{\circ}$~C, |
77 |
|
|
$\theta_{1750}=6^{\circ}$~C. The equation of state used in this experiment is |
78 |
|
|
linear |
79 |
|
|
|
80 |
|
|
\begin{equation} |
81 |
|
|
\label{EQ:linear1_eos} |
82 |
|
|
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
83 |
|
|
\end{equation} |
84 |
|
|
|
85 |
|
|
\noindent which is implemented in the model as a density anomaly equation |
86 |
|
|
|
87 |
|
|
\begin{equation} |
88 |
|
|
\label{EQ:linear1_eos_pert} |
89 |
|
|
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
90 |
|
|
\end{equation} |
91 |
|
|
|
92 |
|
|
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
93 |
|
|
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
94 |
|
|
this configuration the model state variable {\bf theta} is synonomous with |
95 |
|
|
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
96 |
|
|
consistency with later examples, in which the equation of state is |
97 |
|
|
non-linear, we use $\theta$ to represent temperature here. This is |
98 |
|
|
the quantity that is carried in the model core equations. |
99 |
|
|
|
100 |
|
|
\begin{figure} |
101 |
|
|
\centerline{ |
102 |
|
|
\resizebox{7.5in}{5.5in}{ |
103 |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
104 |
|
|
{part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
105 |
|
|
} |
106 |
|
|
\caption{Schematic of simulation domain and wind-stress forcing function |
107 |
|
|
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
108 |
|
|
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
109 |
|
|
In the four-layer case an initial temperature stratification is |
110 |
|
|
imposed by setting the potential temperature, $\theta$, in each layer. |
111 |
|
|
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
112 |
|
|
} |
113 |
|
|
\label{FIG:simulation_config} |
114 |
|
|
\end{figure} |
115 |
|
|
|
116 |
|
|
\subsection{Discrete Numerical Configuration} |
117 |
|
|
|
118 |
|
|
The model is configured in hydrostatic form. The domain is discretised with |
119 |
|
|
a uniform grid spacing in latitude and longitude |
120 |
|
|
$\Delta x=\Delta y=1^{\circ}$, so |
121 |
|
|
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the |
122 |
|
|
model is configured with a four layers with constant depth, |
123 |
|
|
$\Delta z$, of $500$~m. |
124 |
|
|
The implicit free surface form of the |
125 |
|
|
pressure equation described in Marshall et. al \cite{Marshall97a} is |
126 |
|
|
employed. |
127 |
|
|
A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |
128 |
|
|
dissipation. The wind-stress momentum input is added to the momentum equation |
129 |
|
|
for the ``zonal flow'', $u$. Other terms in the model |
130 |
|
|
are explicitly switched off for this experiement configuration (see section |
131 |
|
|
\ref{SEC:code_config} ), yielding an active set of equations solved in this |
132 |
|
|
configuration as follows |
133 |
|
|
|
134 |
|
|
\begin{eqnarray} |
135 |
|
|
\label{EQ:model_equations} |
136 |
|
|
\frac{Du}{Dt} - fv + |
137 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
138 |
|
|
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
139 |
|
|
& = & |
140 |
|
|
\cal{F} |
141 |
|
|
\\ |
142 |
|
|
\frac{Dv}{Dt} + fu + |
143 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
144 |
|
|
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
145 |
|
|
& = & |
146 |
|
|
0 |
147 |
|
|
\\ |
148 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
149 |
|
|
&=& |
150 |
|
|
0 |
151 |
|
|
\\ |
152 |
|
|
\frac{D\theta}{Dt} - |
153 |
|
|
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
154 |
|
|
& = & |
155 |
|
|
0 |
156 |
|
|
\\ |
157 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
158 |
|
|
\\ |
159 |
|
|
{\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} |
160 |
|
|
\\ |
161 |
|
|
{\cal F} |_{i} & = & 0 |
162 |
|
|
\end{eqnarray} |
163 |
|
|
|
164 |
|
|
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
165 |
|
|
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
166 |
|
|
interior model levels respectively. As described in |
167 |
|
|
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
168 |
|
|
evolution of potential temperature, $\theta$, equation is solved prognostically. |
169 |
|
|
The total pressure, $p$, is diagnosed by summing pressure due to surface |
170 |
|
|
elevation $\eta$ and the hydrostatic pressure. |
171 |
|
|
\\ |
172 |
|
|
|
173 |
|
|
\subsubsection{Numerical Stability Criteria} |
174 |
|
|
|
175 |
|
|
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
176 |
|
|
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
177 |
|
|
|
178 |
|
|
\begin{eqnarray} |
179 |
|
|
\label{EQ:munk_layer} |
180 |
|
|
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
181 |
|
|
\end{eqnarray} |
182 |
|
|
|
183 |
|
|
\noindent of $\approx 100$km. This is greater than the model |
184 |
|
|
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
185 |
|
|
boundary layer is well resolved. |
186 |
|
|
\\ |
187 |
|
|
|
188 |
|
|
\noindent The model is stepped forward with a |
189 |
|
|
time step $\delta t=1200$secs. With this time step the stability |
190 |
|
|
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
191 |
|
|
|
192 |
|
|
\begin{eqnarray} |
193 |
|
|
\label{EQ:laplacian_stability} |
194 |
|
|
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
195 |
|
|
\end{eqnarray} |
196 |
|
|
|
197 |
|
|
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
198 |
|
|
for stability. |
199 |
|
|
\\ |
200 |
|
|
|
201 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
202 |
|
|
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
203 |
|
|
|
204 |
|
|
\begin{eqnarray} |
205 |
|
|
\label{EQ:laplacian_stability_z} |
206 |
|
|
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
207 |
|
|
\end{eqnarray} |
208 |
|
|
|
209 |
|
|
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
210 |
|
|
the upper limit. |
211 |
|
|
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
212 |
|
|
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
213 |
|
|
\\ |
214 |
|
|
|
215 |
|
|
\noindent The numerical stability for inertial oscillations |
216 |
|
|
\cite{Adcroft_thesis} |
217 |
|
|
|
218 |
|
|
\begin{eqnarray} |
219 |
|
|
\label{EQ:inertial_stability} |
220 |
|
|
S_{i} = f^{2} {\delta t}^2 |
221 |
|
|
\end{eqnarray} |
222 |
|
|
|
223 |
|
|
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
224 |
|
|
limit for stability. |
225 |
|
|
\\ |
226 |
|
|
|
227 |
|
|
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
228 |
|
|
horizontal flow |
229 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
230 |
|
|
|
231 |
|
|
\begin{eqnarray} |
232 |
|
|
\label{EQ:cfl_stability} |
233 |
|
|
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
234 |
|
|
\end{eqnarray} |
235 |
|
|
|
236 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
237 |
|
|
limit of 0.5. |
238 |
|
|
\\ |
239 |
|
|
|
240 |
|
|
\noindent The stability parameter for internal gravity waves |
241 |
|
|
\cite{Adcroft_thesis} |
242 |
|
|
|
243 |
|
|
\begin{eqnarray} |
244 |
|
|
\label{EQ:igw_stability} |
245 |
|
|
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
246 |
|
|
\end{eqnarray} |
247 |
|
|
|
248 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
249 |
|
|
stability limit of 0.25. |
250 |
|
|
|
251 |
|
|
\subsection{Code Configuration} |
252 |
|
|
\label{SEC:code_config} |
253 |
|
|
|
254 |
|
|
The model configuration for this experiment resides under the |
255 |
|
|
directory {\it verification/exp1/}. The experiment files |
256 |
|
|
\begin{itemize} |
257 |
|
|
\item {\it input/data} |
258 |
|
|
\item {\it input/data.pkg} |
259 |
|
|
\item {\it input/eedata}, |
260 |
|
|
\item {\it input/windx.sin\_y}, |
261 |
|
|
\item {\it input/topog.box}, |
262 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
263 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
264 |
|
|
\item {\it code/SIZE.h}. |
265 |
|
|
\end{itemize} |
266 |
|
|
contain the code customisations and parameter settings for this |
267 |
|
|
experiements. Below we describe the customisations |
268 |
|
|
to these files associated with this experiment. |
269 |
|
|
|
270 |
|
|
\subsubsection{File {\it input/data}} |
271 |
|
|
|
272 |
|
|
This file, reproduced completely below, specifies the main parameters |
273 |
|
|
for the experiment. The parameters that are significant for this configuration |
274 |
|
|
are |
275 |
|
|
|
276 |
|
|
\begin{itemize} |
277 |
|
|
|
278 |
|
|
\item Line 4, |
279 |
|
|
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
280 |
|
|
this line sets |
281 |
|
|
the initial and reference values of potential temperature at each model |
282 |
|
|
level in units of $^{\circ}$C. |
283 |
|
|
The entries are ordered from surface to depth. For each |
284 |
|
|
depth level the inital and reference profiles will be uniform in |
285 |
|
|
$x$ and $y$. The values specified here are read into the |
286 |
|
|
variable |
287 |
|
|
{\bf |
288 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
289 |
|
|
tRef |
290 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
291 |
|
|
} |
292 |
|
|
in the model code, by procedure |
293 |
|
|
{\it |
294 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
295 |
|
|
INI\_PARMS |
296 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
297 |
|
|
}. |
298 |
|
|
|
299 |
|
|
%% \codelink{var:tref} tRef \endlink |
300 |
|
|
%% \codelink{file:ini_parms} {\it INI\_PARMS } \endlink |
301 |
|
|
%% \codelink{proc:ini_parms} {\it INI\_PARMS } \endlink |
302 |
|
|
%% \var{tref} |
303 |
|
|
%% \proc{ini_parms} |
304 |
|
|
%% \file{ini_parms} |
305 |
|
|
\newcommand{\VARtref}{ |
306 |
|
|
{\bf |
307 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
308 |
|
|
tRef |
309 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
310 |
|
|
} |
311 |
|
|
} |
312 |
|
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
\fbox{ |
316 |
|
|
\begin{minipage}{5.0in} |
317 |
|
|
{\it S/R INI\_THETA} |
318 |
|
|
({\it ini\_theta.F}) |
319 |
|
|
\end{minipage} |
320 |
|
|
} |
321 |
|
|
{\bf |
322 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/98.htm> \end{rawhtml} |
323 |
|
|
goto code |
324 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
|
328 |
|
|
\item Line 6, |
329 |
|
|
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
330 |
|
|
this line sets the vertical laplacian dissipation coefficient to |
331 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
332 |
|
|
for this operator are specified later. |
333 |
|
|
The variable |
334 |
|
|
{\bf |
335 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
336 |
|
|
viscAz |
337 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
338 |
|
|
} |
339 |
|
|
is read in the routine |
340 |
|
|
{\it |
341 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
342 |
|
|
INI\_PARMS |
343 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
344 |
|
|
} |
345 |
|
|
and is copied into model general vertical coordinate variable |
346 |
|
|
{\bf |
347 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} |
348 |
|
|
viscAr |
349 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
350 |
|
|
}. |
351 |
|
|
|
352 |
|
|
\fbox{ |
353 |
|
|
\begin{minipage}{5.0in} |
354 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
355 |
|
|
\end{minipage} |
356 |
|
|
} |
357 |
|
|
{\bf |
358 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
359 |
|
|
goto code |
360 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
361 |
|
|
} |
362 |
|
|
|
363 |
|
|
\item Line 7, |
364 |
|
|
\begin{verbatim} |
365 |
|
|
viscAh=4.E2, |
366 |
|
|
\end{verbatim} |
367 |
|
|
this line sets the horizontal laplacian frictional dissipation coefficient to |
368 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
369 |
|
|
for this operator are specified later. |
370 |
|
|
The variable |
371 |
|
|
{\bf |
372 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} |
373 |
|
|
viscAh |
374 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
375 |
|
|
} |
376 |
|
|
is read in the routine |
377 |
|
|
{\it |
378 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
379 |
|
|
INI\_PARMS |
380 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
381 |
|
|
}. |
382 |
|
|
|
383 |
|
|
\fbox{ |
384 |
|
|
\begin{minipage}{5.0in} |
385 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
386 |
|
|
\end{minipage} |
387 |
|
|
} |
388 |
|
|
{\bf |
389 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
390 |
|
|
goto code |
391 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
392 |
|
|
} |
393 |
|
|
|
394 |
|
|
\fbox{ |
395 |
|
|
\begin{minipage}{5.0in} |
396 |
|
|
{\it S/R CALC\_GW}({\it calc\_gw.F}) |
397 |
|
|
\end{minipage} |
398 |
|
|
} |
399 |
|
|
{\bf |
400 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/58.htm> \end{rawhtml} |
401 |
|
|
goto code |
402 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
403 |
|
|
} |
404 |
|
|
|
405 |
|
|
\item Lines 8, |
406 |
|
|
\begin{verbatim} |
407 |
|
|
no_slip_sides=.FALSE. |
408 |
|
|
\end{verbatim} |
409 |
|
|
this line selects a free-slip lateral boundary condition for |
410 |
|
|
the horizontal laplacian friction operator |
411 |
|
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
412 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
413 |
|
|
The variable |
414 |
|
|
{\bf |
415 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} |
416 |
|
|
no\_slip\_sides |
417 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
418 |
|
|
} |
419 |
|
|
is read in the routine |
420 |
|
|
{\it |
421 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
422 |
|
|
INI\_PARMS |
423 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
424 |
|
|
}. |
425 |
|
|
|
426 |
|
|
|
427 |
|
|
\fbox{ |
428 |
|
|
\begin{minipage}{5.0in} |
429 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
430 |
|
|
\end{minipage} |
431 |
|
|
} |
432 |
|
|
{\bf |
433 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
434 |
|
|
goto code |
435 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
436 |
|
|
} |
437 |
|
|
|
438 |
|
|
\item Lines 9, |
439 |
|
|
\begin{verbatim} |
440 |
|
|
no_slip_bottom=.TRUE. |
441 |
|
|
\end{verbatim} |
442 |
|
|
this line selects a no-slip boundary condition for bottom |
443 |
|
|
boundary condition in the vertical laplacian friction operator |
444 |
|
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
445 |
|
|
The variable |
446 |
|
|
{\bf |
447 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} |
448 |
|
|
no\_slip\_bottom |
449 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
450 |
|
|
} |
451 |
|
|
is read in the routine |
452 |
|
|
{\it |
453 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
454 |
|
|
INI\_PARMS |
455 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
456 |
|
|
}. |
457 |
|
|
|
458 |
|
|
\fbox{ |
459 |
|
|
\begin{minipage}{5.0in} |
460 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
461 |
|
|
\end{minipage} |
462 |
|
|
} |
463 |
|
|
{\bf |
464 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
465 |
|
|
goto code |
466 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
467 |
|
|
} |
468 |
|
|
|
469 |
|
|
\item Line 10, |
470 |
|
|
\begin{verbatim} |
471 |
|
|
diffKhT=4.E2, |
472 |
|
|
\end{verbatim} |
473 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
474 |
|
|
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
475 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
476 |
|
|
all boundaries. |
477 |
|
|
The variable |
478 |
|
|
{\bf |
479 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} |
480 |
|
|
diffKhT |
481 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
482 |
|
|
} |
483 |
|
|
is read in the routine |
484 |
|
|
{\it |
485 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
486 |
|
|
INI\_PARMS |
487 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
488 |
|
|
}. |
489 |
|
|
|
490 |
|
|
\fbox{ \begin{minipage}{5.0in} |
491 |
|
|
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
492 |
|
|
\end{minipage} |
493 |
|
|
} |
494 |
|
|
{\bf |
495 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/57.htm> \end{rawhtml} |
496 |
|
|
goto code |
497 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
498 |
|
|
} |
499 |
|
|
|
500 |
|
|
\item Line 11, |
501 |
|
|
\begin{verbatim} |
502 |
|
|
diffKzT=1.E-2, |
503 |
|
|
\end{verbatim} |
504 |
|
|
this line sets the vertical diffusion coefficient for temperature |
505 |
|
|
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
506 |
|
|
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
507 |
|
|
The variable |
508 |
|
|
{\bf |
509 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
510 |
|
|
diffKzT |
511 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
512 |
|
|
} |
513 |
|
|
is read in the routine |
514 |
|
|
{\it |
515 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
516 |
|
|
INI\_PARMS |
517 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
518 |
|
|
}. |
519 |
|
|
It is copied into model general vertical coordinate variable |
520 |
|
|
{\bf |
521 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} |
522 |
|
|
diffKrT |
523 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
524 |
|
|
}. |
525 |
|
|
|
526 |
|
|
\fbox{ \begin{minipage}{5.0in} |
527 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
528 |
|
|
\end{minipage} |
529 |
|
|
} |
530 |
|
|
{\bf |
531 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
532 |
|
|
goto code |
533 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
534 |
|
|
} |
535 |
|
|
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
\item Line 13, |
539 |
|
|
\begin{verbatim} |
540 |
|
|
tAlpha=2.E-4, |
541 |
|
|
\end{verbatim} |
542 |
|
|
This line sets the thermal expansion coefficient for the fluid |
543 |
|
|
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
544 |
|
|
The variable |
545 |
|
|
{\bf |
546 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
547 |
|
|
tAlpha |
548 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
549 |
|
|
} |
550 |
|
|
is read in the routine |
551 |
|
|
{\it |
552 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
553 |
|
|
INI\_PARMS |
554 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
555 |
|
|
}. |
556 |
|
|
|
557 |
|
|
\fbox{ |
558 |
|
|
\begin{minipage}{5.0in} |
559 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
560 |
|
|
\end{minipage} |
561 |
|
|
} |
562 |
|
|
{\bf |
563 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
564 |
|
|
goto code |
565 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
566 |
|
|
} |
567 |
|
|
|
568 |
|
|
\item Line 18, |
569 |
|
|
\begin{verbatim} |
570 |
|
|
eosType='LINEAR' |
571 |
|
|
\end{verbatim} |
572 |
|
|
This line selects the linear form of the equation of state. |
573 |
|
|
The variable |
574 |
|
|
{\bf |
575 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/WV.htm> \end{rawhtml} |
576 |
|
|
eosType |
577 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
578 |
|
|
} |
579 |
|
|
is read in the routine |
580 |
|
|
{\it |
581 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
582 |
|
|
INI\_PARMS |
583 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
584 |
|
|
}. |
585 |
|
|
|
586 |
|
|
\fbox{ |
587 |
|
|
\begin{minipage}{5.0in} |
588 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
589 |
|
|
\end{minipage} |
590 |
|
|
} |
591 |
|
|
{\bf |
592 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
593 |
|
|
goto code |
594 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
595 |
|
|
} |
596 |
|
|
|
597 |
|
|
|
598 |
|
|
|
599 |
|
|
\item Line 40, |
600 |
|
|
\begin{verbatim} |
601 |
|
|
usingSphericalPolarGrid=.TRUE., |
602 |
|
|
\end{verbatim} |
603 |
|
|
This line requests that the simulation be performed in a |
604 |
|
|
spherical polar coordinate system. It affects the interpretation of |
605 |
|
|
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
606 |
|
|
causes the grid generation routines to initialise an internal grid based |
607 |
|
|
on spherical polar geometry. |
608 |
|
|
The variable |
609 |
|
|
{\bf |
610 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10T.htm> \end{rawhtml} |
611 |
|
|
usingSphericalPolarGrid |
612 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
613 |
|
|
} |
614 |
|
|
is read in the routine |
615 |
|
|
{\it |
616 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
617 |
|
|
INI\_PARMS |
618 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
619 |
|
|
}. |
620 |
|
|
|
621 |
|
|
\fbox{ |
622 |
|
|
\begin{minipage}{5.0in} |
623 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
624 |
|
|
\end{minipage} |
625 |
|
|
} |
626 |
|
|
{\bf |
627 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
628 |
|
|
goto code |
629 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
630 |
|
|
} |
631 |
|
|
|
632 |
|
|
\item Line 41, |
633 |
|
|
\begin{verbatim} |
634 |
|
|
phiMin=0., |
635 |
|
|
\end{verbatim} |
636 |
|
|
This line sets the southern boundary of the modeled |
637 |
|
|
domain to $0^{\circ}$ latitude. This value affects both the |
638 |
|
|
generation of the locally orthogonal grid that the model |
639 |
|
|
uses internally and affects the initialisation of the coriolis force. |
640 |
|
|
Note - it is not required to set |
641 |
|
|
a longitude boundary, since the absolute longitude does |
642 |
|
|
not alter the kernel equation discretisation. |
643 |
|
|
The variable |
644 |
|
|
{\bf |
645 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/110.htm> \end{rawhtml} |
646 |
|
|
phiMin |
647 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
648 |
|
|
} |
649 |
|
|
is read in the routine |
650 |
|
|
{\it |
651 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
652 |
|
|
INI\_PARMS |
653 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
654 |
|
|
}. |
655 |
|
|
|
656 |
|
|
\fbox{ |
657 |
|
|
\begin{minipage}{5.0in} |
658 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
659 |
|
|
\end{minipage} |
660 |
|
|
} |
661 |
|
|
{\bf |
662 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
663 |
|
|
goto code |
664 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
665 |
|
|
} |
666 |
|
|
|
667 |
|
|
\item Line 42, |
668 |
|
|
\begin{verbatim} |
669 |
|
|
delX=60*1., |
670 |
|
|
\end{verbatim} |
671 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
672 |
|
|
in the discrete grid to $1^{\circ}$ in longitude. |
673 |
|
|
The variable |
674 |
|
|
{\bf |
675 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Z.htm> \end{rawhtml} |
676 |
|
|
delX |
677 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
678 |
|
|
} |
679 |
|
|
is read in the routine |
680 |
|
|
{\it |
681 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
682 |
|
|
INI\_PARMS |
683 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
684 |
|
|
}. |
685 |
|
|
|
686 |
|
|
\fbox{ |
687 |
|
|
\begin{minipage}{5.0in} |
688 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
689 |
|
|
\end{minipage} |
690 |
|
|
} |
691 |
|
|
{\bf |
692 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
693 |
|
|
goto code |
694 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
695 |
|
|
} |
696 |
|
|
|
697 |
|
|
\item Line 43, |
698 |
|
|
\begin{verbatim} |
699 |
|
|
delY=60*1., |
700 |
|
|
\end{verbatim} |
701 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
702 |
|
|
in the discrete grid to $1^{\circ}$ in latitude. |
703 |
|
|
The variable |
704 |
|
|
{\bf |
705 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UB.htm> \end{rawhtml} |
706 |
|
|
delY |
707 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
708 |
|
|
} |
709 |
|
|
is read in the routine |
710 |
|
|
{\it |
711 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
712 |
|
|
INI\_PARMS |
713 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
714 |
|
|
}. |
715 |
|
|
|
716 |
|
|
\fbox{ |
717 |
|
|
\begin{minipage}{5.0in} |
718 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
719 |
|
|
\end{minipage} |
720 |
|
|
} |
721 |
|
|
{\bf |
722 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
723 |
|
|
goto code |
724 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
725 |
|
|
} |
726 |
|
|
|
727 |
|
|
\item Line 44, |
728 |
|
|
\begin{verbatim} |
729 |
|
|
delZ=500.,500.,500.,500., |
730 |
|
|
\end{verbatim} |
731 |
|
|
This line sets the vertical grid spacing between each z-coordinate line |
732 |
|
|
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
733 |
|
|
is $2\,{\rm km}$. |
734 |
|
|
The variable |
735 |
|
|
{\bf |
736 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10W.htm> \end{rawhtml} |
737 |
|
|
delZ |
738 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
739 |
|
|
} |
740 |
|
|
is read in the routine |
741 |
|
|
{\it |
742 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
743 |
|
|
INI\_PARMS |
744 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
745 |
|
|
}. |
746 |
|
|
It is copied into the internal |
747 |
|
|
model coordinate variable |
748 |
|
|
{\bf |
749 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} |
750 |
|
|
delR |
751 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
752 |
|
|
}. |
753 |
|
|
|
754 |
|
|
\fbox{ |
755 |
|
|
\begin{minipage}{5.0in} |
756 |
|
|
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
757 |
|
|
\end{minipage} |
758 |
|
|
} |
759 |
|
|
{\bf |
760 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/100.htm> \end{rawhtml} |
761 |
|
|
goto code |
762 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
763 |
|
|
} |
764 |
|
|
|
765 |
|
|
\item Line 47, |
766 |
|
|
\begin{verbatim} |
767 |
|
|
bathyFile='topog.box' |
768 |
|
|
\end{verbatim} |
769 |
|
|
This line specifies the name of the file from which the domain |
770 |
|
|
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
771 |
|
|
depths. This file is assumed to contain 64-bit binary numbers |
772 |
|
|
giving the depth of the model at each grid cell, ordered with the x |
773 |
|
|
coordinate varying fastest. The points are ordered from low coordinate |
774 |
|
|
to high coordinate for both axes. The units and orientation of the |
775 |
|
|
depths in this file are the same as used in the MITgcm code. In this |
776 |
|
|
experiment, a depth of $0m$ indicates a solid wall and a depth |
777 |
|
|
of $-2000m$ indicates open ocean. The matlab program |
778 |
|
|
{\it input/gendata.m} shows an example of how to generate a |
779 |
|
|
bathymetry file. |
780 |
|
|
The variable |
781 |
|
|
{\bf |
782 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} |
783 |
|
|
bathyFile |
784 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
785 |
|
|
} |
786 |
|
|
is read in the routine |
787 |
|
|
{\it |
788 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
789 |
|
|
INI\_PARMS |
790 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
791 |
|
|
}. |
792 |
|
|
|
793 |
|
|
\fbox{ |
794 |
|
|
\begin{minipage}{5.0in} |
795 |
|
|
{\it S/R INI\_DEPTHS}({\it ini\_depths.F}) |
796 |
|
|
\end{minipage} |
797 |
|
|
} |
798 |
|
|
{\bf |
799 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/88.htm> \end{rawhtml} |
800 |
|
|
goto code |
801 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
802 |
|
|
} |
803 |
|
|
|
804 |
|
|
|
805 |
|
|
\item Line 50, |
806 |
|
|
\begin{verbatim} |
807 |
|
|
zonalWindFile='windx.sin_y' |
808 |
|
|
\end{verbatim} |
809 |
|
|
This line specifies the name of the file from which the x-direction |
810 |
|
|
surface wind stress is read. This file is also a two-dimensional |
811 |
|
|
($x,y$) map and is enumerated and formatted in the same manner as the |
812 |
|
|
bathymetry file. The matlab program {\it input/gendata.m} includes example |
813 |
|
|
code to generate a valid |
814 |
|
|
{\bf zonalWindFile} |
815 |
|
|
file. |
816 |
|
|
The variable |
817 |
|
|
{\bf |
818 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/13W.htm> \end{rawhtml} |
819 |
|
|
zonalWindFile |
820 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
821 |
|
|
} |
822 |
|
|
is read in the routine |
823 |
|
|
{\it |
824 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
825 |
|
|
INI\_PARMS |
826 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
827 |
|
|
}. |
828 |
|
|
|
829 |
|
|
\fbox{ |
830 |
|
|
\begin{minipage}{5.0in} |
831 |
|
|
{\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) |
832 |
|
|
\end{minipage} |
833 |
|
|
} |
834 |
|
|
{\bf |
835 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/75.htm> \end{rawhtml} |
836 |
|
|
goto code |
837 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
838 |
|
|
} |
839 |
|
|
|
840 |
|
|
\end{itemize} |
841 |
|
|
|
842 |
|
|
\noindent other lines in the file {\it input/data} are standard values |
843 |
|
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
844 |
|
|
notes. |
845 |
|
|
|
846 |
|
|
\begin{rawhtml}<PRE>\end{rawhtml} |
847 |
|
|
\begin{small} |
848 |
|
|
\input{part3/case_studies/fourlayer_gyre/input/data} |
849 |
|
|
\end{small} |
850 |
|
|
\begin{rawhtml}</PRE>\end{rawhtml} |
851 |
|
|
|
852 |
|
|
\subsubsection{File {\it input/data.pkg}} |
853 |
|
|
|
854 |
|
|
This file uses standard default values and does not contain |
855 |
|
|
customisations for this experiment. |
856 |
|
|
|
857 |
|
|
\subsubsection{File {\it input/eedata}} |
858 |
|
|
|
859 |
|
|
This file uses standard default values and does not contain |
860 |
|
|
customisations for this experiment. |
861 |
|
|
|
862 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
863 |
|
|
|
864 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
865 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
866 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
867 |
|
|
this file must still define a complete two-dimensional map in order |
868 |
|
|
to be compatible with the standard code for loading forcing fields |
869 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
870 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
871 |
|
|
|
872 |
|
|
\subsubsection{File {\it input/topog.box}} |
873 |
|
|
|
874 |
|
|
|
875 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
876 |
|
|
map of depth values. For this experiment values are either |
877 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
878 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
879 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
880 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
881 |
|
|
code for creating the {\it input/topog.box} file. |
882 |
|
|
|
883 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
884 |
|
|
|
885 |
|
|
Two lines are customized in this file for the current experiment |
886 |
|
|
|
887 |
|
|
\begin{itemize} |
888 |
|
|
|
889 |
|
|
\item Line 39, |
890 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
891 |
|
|
the lateral domain extent in grid points for the |
892 |
|
|
axis aligned with the x-coordinate. |
893 |
|
|
|
894 |
|
|
\item Line 40, |
895 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
896 |
|
|
the lateral domain extent in grid points for the |
897 |
|
|
axis aligned with the y-coordinate. |
898 |
|
|
|
899 |
|
|
\item Line 49, |
900 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
901 |
|
|
the vertical domain extent in grid points. |
902 |
|
|
|
903 |
|
|
\end{itemize} |
904 |
|
|
|
905 |
|
|
\begin{small} |
906 |
|
|
\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} |
907 |
|
|
\end{small} |
908 |
|
|
|
909 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
910 |
|
|
|
911 |
|
|
This file uses standard default values and does not contain |
912 |
|
|
customisations for this experiment. |
913 |
|
|
|
914 |
|
|
|
915 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
916 |
|
|
|
917 |
|
|
This file uses standard default values and does not contain |
918 |
|
|
customisations for this experiment. |
919 |
|
|
|
920 |
|
|
\subsubsection{Other Files } |
921 |
|
|
|
922 |
|
|
Other files relevant to this experiment are |
923 |
|
|
\begin{itemize} |
924 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
925 |
|
|
coriolis variables {\bf fCorU} and {\bf fCorV}. |
926 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} This file |
927 |
|
|
initializes the model grid discretisation variables {\bf |
928 |
|
|
dxF, dyF, dxG, dyG, dxC, dyC}. |
929 |
|
|
\item {\it model/src/ini\_parms.F}. |
930 |
|
|
\end{itemize} |
931 |
|
|
|
932 |
|
|
\subsection{Running The Example} |
933 |
|
|
\label{SEC:running_the_example} |
934 |
|
|
|
935 |
|
|
\subsubsection{Code Download} |
936 |
|
|
|
937 |
|
|
In order to run the examples you must first download the code distribution. |
938 |
|
|
Instructions for downloading the code can be found in the Getting Started |
939 |
|
|
Guide \cite{MITgcm_Getting_Started}. |
940 |
|
|
|
941 |
|
|
\subsubsection{Experiment Location} |
942 |
|
|
|
943 |
|
|
This example experiments is located under the release sub-directory |
944 |
|
|
|
945 |
|
|
\vspace{5mm} |
946 |
|
|
{\it verification/exp1/ } |
947 |
|
|
|
948 |
|
|
\subsubsection{Running the Experiment} |
949 |
|
|
|
950 |
|
|
To run the experiment |
951 |
|
|
|
952 |
|
|
\begin{enumerate} |
953 |
|
|
\item Set the current directory to {\it input/ } |
954 |
|
|
|
955 |
|
|
\begin{verbatim} |
956 |
|
|
% cd input |
957 |
|
|
\end{verbatim} |
958 |
|
|
|
959 |
|
|
\item Verify that current directory is now correct |
960 |
|
|
|
961 |
|
|
\begin{verbatim} |
962 |
|
|
% pwd |
963 |
|
|
\end{verbatim} |
964 |
|
|
|
965 |
|
|
You shold see a response on the screen ending in |
966 |
|
|
|
967 |
|
|
{\it verification/exp1/input } |
968 |
|
|
|
969 |
|
|
|
970 |
|
|
\item Run the genmake script to create the experiment {\it Makefile} |
971 |
|
|
|
972 |
|
|
\begin{verbatim} |
973 |
|
|
% ../../../tools/genmake -mods=../code |
974 |
|
|
\end{verbatim} |
975 |
|
|
|
976 |
|
|
\item Create a list of header file dependencies in {\it Makefile} |
977 |
|
|
|
978 |
|
|
\begin{verbatim} |
979 |
|
|
% make depend |
980 |
|
|
\end{verbatim} |
981 |
|
|
|
982 |
|
|
\item Build the executable file. |
983 |
|
|
|
984 |
|
|
\begin{verbatim} |
985 |
|
|
% make |
986 |
|
|
\end{verbatim} |
987 |
|
|
|
988 |
|
|
\item Run the {\it mitgcmuv} executable |
989 |
|
|
|
990 |
|
|
\begin{verbatim} |
991 |
|
|
% ./mitgcmuv |
992 |
|
|
\end{verbatim} |
993 |
|
|
|
994 |
|
|
\end{enumerate} |
995 |
|
|
|
996 |
|
|
|