1 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part3/case_studies/fourlayer_gyre/fourlayer.tex,v 1.2 2001/09/27 00:58:17 cnh Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
\label{sec:eg-fourlayer} |
6 |
|
7 |
\bodytext{bgcolor="#FFFFFFFF"} |
8 |
|
9 |
%\begin{center} |
10 |
%{\Large \bf Using MITgcm to Simulate a Baroclinic Ocean Gyre In Spherical |
11 |
%Polar Coordinates} |
12 |
% |
13 |
%\vspace*{4mm} |
14 |
% |
15 |
%\vspace*{3mm} |
16 |
%{\large May 2001} |
17 |
%\end{center} |
18 |
|
19 |
This document describes an example experiment using MITgcm |
20 |
to simulate a baroclinic ocean gyre in spherical |
21 |
polar coordinates. The barotropic |
22 |
example experiment in section \ref{sec:eg-baro} |
23 |
ilustrated how to configure the code for a single layer |
24 |
simulation in a cartesian grid. In this example a similar physical problem |
25 |
is simulated, but the code is now configured |
26 |
for four layers and in a spherical polar coordinate system. |
27 |
|
28 |
\subsection{Overview} |
29 |
|
30 |
This example experiment demonstrates using the MITgcm to simulate |
31 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
32 |
is a numerical rendition of the gyre circulation problem simliar |
33 |
to the problems described analytically by Stommel in 1966 |
34 |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
35 |
\\ |
36 |
|
37 |
In this experiment the model is configured to represent a mid-latitude |
38 |
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
39 |
lateral extent. The fluid is $2$~km deep and is forced |
40 |
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
41 |
in the north-south direction. Topologically the simulated |
42 |
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
43 |
according to latitude, $\varphi$ |
44 |
|
45 |
\begin{equation} |
46 |
\label{EQ:fcori} |
47 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
48 |
\end{equation} |
49 |
|
50 |
\noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. |
51 |
\\ |
52 |
|
53 |
The sinusoidal wind-stress variations are defined according to |
54 |
|
55 |
\begin{equation} |
56 |
\label{EQ:taux} |
57 |
\tau_x(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
58 |
\end{equation} |
59 |
|
60 |
\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and |
61 |
$\tau_0$ is set to $0.1N m^{-2}$. |
62 |
\\ |
63 |
|
64 |
Figure \ref{FIG:simulation_config} |
65 |
summarises the configuration simulated. |
66 |
In contrast to the example in section \ref{sec:eg-baro}, the |
67 |
current experiment simulates a spherical polar domain. However, as indicated |
68 |
by the axes in the lower left of the figure the model code works internally |
69 |
in a locally orthoganal coordinate $(x,y,z)$. For this experiment description |
70 |
of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous |
71 |
with the spherical polar coordinate shown in figure |
72 |
\ref{fig:spherical-polar-coord} |
73 |
\\ |
74 |
|
75 |
The experiment has four levels in the vertical, each of equal thickness, |
76 |
$\Delta z = 500$~m. Initially the fluid is stratified with a reference |
77 |
potential temperature profile, |
78 |
$\theta_{250}=20^{\circ}$~C, |
79 |
$\theta_{750}=10^{\circ}$~C, |
80 |
$\theta_{1250}=8^{\circ}$~C, |
81 |
$\theta_{1750}=6^{\circ}$~C. The equation of state used in this experiment is |
82 |
linear |
83 |
|
84 |
\begin{equation} |
85 |
\label{EQ:linear1_eos} |
86 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
87 |
\end{equation} |
88 |
|
89 |
\noindent which is implemented in the model as a density anomaly equation |
90 |
|
91 |
\begin{equation} |
92 |
\label{EQ:linear1_eos_pert} |
93 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
94 |
\end{equation} |
95 |
|
96 |
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
97 |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
98 |
this configuration the model state variable {\bf theta} is synonomous with |
99 |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
100 |
consistency with later examples, in which the equation of state is |
101 |
non-linear, we use $\theta$ to represent temperature here. This is |
102 |
the quantity that is carried in the model core equations. |
103 |
|
104 |
\begin{figure} |
105 |
\begin{center} |
106 |
\resizebox{7.5in}{5.5in}{ |
107 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
108 |
{part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
109 |
\end{center} |
110 |
\caption{Schematic of simulation domain and wind-stress forcing function |
111 |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
112 |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
113 |
In the four-layer case an initial temperature stratification is |
114 |
imposed by setting the potential temperature, $\theta$, in each layer. |
115 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
116 |
} |
117 |
\label{FIG:simulation_config} |
118 |
\end{figure} |
119 |
|
120 |
\subsection{Equations solved} |
121 |
|
122 |
The implicit free surface form of the |
123 |
pressure equation described in Marshall et. al \cite{Marshall97a} is |
124 |
employed. |
125 |
A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |
126 |
dissipation. The wind-stress momentum input is added to the momentum equation |
127 |
for the ``zonal flow'', $u$. Other terms in the model |
128 |
are explicitly switched off for this experiement configuration (see section |
129 |
\ref{SEC:code_config} ). This yields an active set of equations in |
130 |
solved in this configuration, written in spherical polar coordinates as |
131 |
follows |
132 |
|
133 |
\begin{eqnarray} |
134 |
\label{EQ:model_equations} |
135 |
\frac{Du}{Dt} - fv + |
136 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial \lambda} - |
137 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
138 |
& = & |
139 |
\cal{F} |
140 |
\\ |
141 |
\frac{Dv}{Dt} + fu + |
142 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial \varphi} - |
143 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
144 |
& = & |
145 |
0 |
146 |
\\ |
147 |
\frac{\partial \eta}{\partial t} + \frac{\partial H \hat{u}}{\partial \lambda} + |
148 |
\frac{\partial H \hat{v}}{\partial \varphi} |
149 |
&=& |
150 |
0 |
151 |
\\ |
152 |
\frac{D\theta}{Dt} - |
153 |
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
154 |
& = & |
155 |
0 |
156 |
\\ |
157 |
p^{'} & = & |
158 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz |
159 |
\\ |
160 |
\rho^{'} & = &- \alpha_{\theta}\rho_{0}\theta^{'} |
161 |
\\ |
162 |
{\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} |
163 |
\\ |
164 |
{\cal F} |_{i} & = & 0 |
165 |
\end{eqnarray} |
166 |
|
167 |
\noindent where $u$ and $v$ are the components of the horizontal |
168 |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
169 |
The suffices ${s},{i}$ indicate surface and interior of the domain. |
170 |
The forcing $\cal F$ is only applied at the surface. |
171 |
The pressure field $p^{'}$ is separated into a barotropic part |
172 |
due to variations in sea-surface height, $\eta$, and a hydrostatic |
173 |
part due to variations in density, $\rho^{'}$, over the water column. |
174 |
|
175 |
\subsection{Discrete Numerical Configuration} |
176 |
|
177 |
The model is configured in hydrostatic form. The domain is discretised with |
178 |
a uniform grid spacing in latitude and longitude |
179 |
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so |
180 |
that there are sixty grid cells in the zonal and meridional directions. |
181 |
Vertically the |
182 |
model is configured with a four layers with constant depth, |
183 |
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate |
184 |
variables $x$ and $y$ are initialised from the values of |
185 |
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in |
186 |
radians according to |
187 |
|
188 |
\begin{eqnarray} |
189 |
x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ |
190 |
y=r\varphi,~\Delta y &= &r\Delta \varphi |
191 |
\end{eqnarray} |
192 |
|
193 |
The procedure for generating a set of internal grid variables from a |
194 |
spherical polar grid specification is discussed in section |
195 |
\ref{sec:spatial_discrete_horizontal_grid}. |
196 |
|
197 |
\noindent\fbox{ \begin{minipage}{5.5in} |
198 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
199 |
model/src/ini\_spherical\_polar\_grid.F}) |
200 |
|
201 |
$A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} |
202 |
({\em GRID.h}) |
203 |
|
204 |
$\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) |
205 |
|
206 |
$\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) |
207 |
|
208 |
$\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) |
209 |
|
210 |
$\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) |
211 |
|
212 |
\end{minipage} }\\ |
213 |
|
214 |
|
215 |
|
216 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
217 |
temperature, |
218 |
$\theta$, equation is solved prognostically. |
219 |
The pressure forces that drive the fluid motions, ( |
220 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
221 |
elevation $\eta$ and the hydrostatic pressure. |
222 |
|
223 |
\subsubsection{Numerical Stability Criteria} |
224 |
|
225 |
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
226 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
227 |
|
228 |
\begin{eqnarray} |
229 |
\label{EQ:munk_layer} |
230 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
231 |
\end{eqnarray} |
232 |
|
233 |
\noindent of $\approx 100$km. This is greater than the model |
234 |
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
235 |
boundary layer is well resolved. |
236 |
\\ |
237 |
|
238 |
\noindent The model is stepped forward with a |
239 |
time step $\delta t=1200$secs. With this time step the stability |
240 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
241 |
|
242 |
\begin{eqnarray} |
243 |
\label{EQ:laplacian_stability} |
244 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
245 |
\end{eqnarray} |
246 |
|
247 |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
248 |
for stability. |
249 |
\\ |
250 |
|
251 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
252 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
253 |
|
254 |
\begin{eqnarray} |
255 |
\label{EQ:laplacian_stability_z} |
256 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
257 |
\end{eqnarray} |
258 |
|
259 |
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
260 |
the upper limit. |
261 |
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
262 |
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
263 |
\\ |
264 |
|
265 |
\noindent The numerical stability for inertial oscillations |
266 |
\cite{Adcroft_thesis} |
267 |
|
268 |
\begin{eqnarray} |
269 |
\label{EQ:inertial_stability} |
270 |
S_{i} = f^{2} {\delta t}^2 |
271 |
\end{eqnarray} |
272 |
|
273 |
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
274 |
limit for stability. |
275 |
\\ |
276 |
|
277 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
278 |
horizontal flow |
279 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
280 |
|
281 |
\begin{eqnarray} |
282 |
\label{EQ:cfl_stability} |
283 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
284 |
\end{eqnarray} |
285 |
|
286 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
287 |
limit of 0.5. |
288 |
\\ |
289 |
|
290 |
\noindent The stability parameter for internal gravity waves |
291 |
\cite{Adcroft_thesis} |
292 |
|
293 |
\begin{eqnarray} |
294 |
\label{EQ:igw_stability} |
295 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
296 |
\end{eqnarray} |
297 |
|
298 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
299 |
stability limit of 0.25. |
300 |
|
301 |
\subsection{Code Configuration} |
302 |
\label{SEC:code_config} |
303 |
|
304 |
The model configuration for this experiment resides under the |
305 |
directory {\it verification/exp1/}. The experiment files |
306 |
\begin{itemize} |
307 |
\item {\it input/data} |
308 |
\item {\it input/data.pkg} |
309 |
\item {\it input/eedata}, |
310 |
\item {\it input/windx.sin\_y}, |
311 |
\item {\it input/topog.box}, |
312 |
\item {\it code/CPP\_EEOPTIONS.h} |
313 |
\item {\it code/CPP\_OPTIONS.h}, |
314 |
\item {\it code/SIZE.h}. |
315 |
\end{itemize} |
316 |
contain the code customisations and parameter settings for this |
317 |
experiements. Below we describe the customisations |
318 |
to these files associated with this experiment. |
319 |
|
320 |
\subsubsection{File {\it input/data}} |
321 |
|
322 |
This file, reproduced completely below, specifies the main parameters |
323 |
for the experiment. The parameters that are significant for this configuration |
324 |
are |
325 |
|
326 |
\begin{itemize} |
327 |
|
328 |
\item Line 4, |
329 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
330 |
this line sets |
331 |
the initial and reference values of potential temperature at each model |
332 |
level in units of $^{\circ}$C. |
333 |
The entries are ordered from surface to depth. For each |
334 |
depth level the inital and reference profiles will be uniform in |
335 |
$x$ and $y$. The values specified here are read into the |
336 |
variable |
337 |
{\bf |
338 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
339 |
tRef |
340 |
\begin{rawhtml} </A>\end{rawhtml} |
341 |
} |
342 |
in the model code, by procedure |
343 |
{\it |
344 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
345 |
INI\_PARMS |
346 |
\begin{rawhtml} </A>\end{rawhtml} |
347 |
}. |
348 |
|
349 |
%% \codelink{var:tref} tRef \endlink |
350 |
%% \codelink{file:ini_parms} {\it INI\_PARMS } \endlink |
351 |
%% \codelink{proc:ini_parms} {\it INI\_PARMS } \endlink |
352 |
%% \var{tref} |
353 |
%% \proc{ini_parms} |
354 |
%% \file{ini_parms} |
355 |
\newcommand{\VARtref}{ |
356 |
{\bf |
357 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
358 |
tRef |
359 |
\begin{rawhtml} </A>\end{rawhtml} |
360 |
} |
361 |
} |
362 |
|
363 |
|
364 |
|
365 |
\fbox{ |
366 |
\begin{minipage}{5.0in} |
367 |
{\it S/R INI\_THETA} |
368 |
({\it ini\_theta.F}) |
369 |
\end{minipage} |
370 |
} |
371 |
{\bf |
372 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/98.htm> \end{rawhtml} |
373 |
goto code |
374 |
\begin{rawhtml} </A>\end{rawhtml} |
375 |
} |
376 |
|
377 |
|
378 |
\item Line 6, |
379 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
380 |
this line sets the vertical laplacian dissipation coefficient to |
381 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
382 |
for this operator are specified later. |
383 |
The variable |
384 |
{\bf |
385 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
386 |
viscAz |
387 |
\begin{rawhtml} </A>\end{rawhtml} |
388 |
} |
389 |
is read in the routine |
390 |
{\it |
391 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
392 |
INI\_PARMS |
393 |
\begin{rawhtml} </A>\end{rawhtml} |
394 |
} |
395 |
and is copied into model general vertical coordinate variable |
396 |
{\bf |
397 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} |
398 |
viscAr |
399 |
\begin{rawhtml} </A>\end{rawhtml} |
400 |
}. |
401 |
|
402 |
\fbox{ |
403 |
\begin{minipage}{5.0in} |
404 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
405 |
\end{minipage} |
406 |
} |
407 |
{\bf |
408 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
409 |
goto code |
410 |
\begin{rawhtml} </A>\end{rawhtml} |
411 |
} |
412 |
|
413 |
\item Line 7, |
414 |
\begin{verbatim} |
415 |
viscAh=4.E2, |
416 |
\end{verbatim} |
417 |
this line sets the horizontal laplacian frictional dissipation coefficient to |
418 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
419 |
for this operator are specified later. |
420 |
The variable |
421 |
{\bf |
422 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} |
423 |
viscAh |
424 |
\begin{rawhtml} </A>\end{rawhtml} |
425 |
} |
426 |
is read in the routine |
427 |
{\it |
428 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
429 |
INI\_PARMS |
430 |
\begin{rawhtml} </A>\end{rawhtml} |
431 |
}. |
432 |
|
433 |
\fbox{ |
434 |
\begin{minipage}{5.0in} |
435 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
436 |
\end{minipage} |
437 |
} |
438 |
{\bf |
439 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
440 |
goto code |
441 |
\begin{rawhtml} </A>\end{rawhtml} |
442 |
} |
443 |
|
444 |
\fbox{ |
445 |
\begin{minipage}{5.0in} |
446 |
{\it S/R CALC\_GW}({\it calc\_gw.F}) |
447 |
\end{minipage} |
448 |
} |
449 |
{\bf |
450 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/58.htm> \end{rawhtml} |
451 |
goto code |
452 |
\begin{rawhtml} </A>\end{rawhtml} |
453 |
} |
454 |
|
455 |
\item Lines 8, |
456 |
\begin{verbatim} |
457 |
no_slip_sides=.FALSE. |
458 |
\end{verbatim} |
459 |
this line selects a free-slip lateral boundary condition for |
460 |
the horizontal laplacian friction operator |
461 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
462 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
463 |
The variable |
464 |
{\bf |
465 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} |
466 |
no\_slip\_sides |
467 |
\begin{rawhtml} </A>\end{rawhtml} |
468 |
} |
469 |
is read in the routine |
470 |
{\it |
471 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
472 |
INI\_PARMS |
473 |
\begin{rawhtml} </A>\end{rawhtml} |
474 |
}. |
475 |
|
476 |
|
477 |
\fbox{ |
478 |
\begin{minipage}{5.0in} |
479 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
480 |
\end{minipage} |
481 |
} |
482 |
{\bf |
483 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
484 |
goto code |
485 |
\begin{rawhtml} </A>\end{rawhtml} |
486 |
} |
487 |
|
488 |
\item Lines 9, |
489 |
\begin{verbatim} |
490 |
no_slip_bottom=.TRUE. |
491 |
\end{verbatim} |
492 |
this line selects a no-slip boundary condition for bottom |
493 |
boundary condition in the vertical laplacian friction operator |
494 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
495 |
The variable |
496 |
{\bf |
497 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} |
498 |
no\_slip\_bottom |
499 |
\begin{rawhtml} </A>\end{rawhtml} |
500 |
} |
501 |
is read in the routine |
502 |
{\it |
503 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
504 |
INI\_PARMS |
505 |
\begin{rawhtml} </A>\end{rawhtml} |
506 |
}. |
507 |
|
508 |
\fbox{ |
509 |
\begin{minipage}{5.0in} |
510 |
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
511 |
\end{minipage} |
512 |
} |
513 |
{\bf |
514 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
515 |
goto code |
516 |
\begin{rawhtml} </A>\end{rawhtml} |
517 |
} |
518 |
|
519 |
\item Line 10, |
520 |
\begin{verbatim} |
521 |
diffKhT=4.E2, |
522 |
\end{verbatim} |
523 |
this line sets the horizontal diffusion coefficient for temperature |
524 |
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
525 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
526 |
all boundaries. |
527 |
The variable |
528 |
{\bf |
529 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} |
530 |
diffKhT |
531 |
\begin{rawhtml} </A>\end{rawhtml} |
532 |
} |
533 |
is read in the routine |
534 |
{\it |
535 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
536 |
INI\_PARMS |
537 |
\begin{rawhtml} </A>\end{rawhtml} |
538 |
}. |
539 |
|
540 |
\fbox{ \begin{minipage}{5.0in} |
541 |
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
542 |
\end{minipage} |
543 |
} |
544 |
{\bf |
545 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/57.htm> \end{rawhtml} |
546 |
goto code |
547 |
\begin{rawhtml} </A>\end{rawhtml} |
548 |
} |
549 |
|
550 |
\item Line 11, |
551 |
\begin{verbatim} |
552 |
diffKzT=1.E-2, |
553 |
\end{verbatim} |
554 |
this line sets the vertical diffusion coefficient for temperature |
555 |
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
556 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
557 |
The variable |
558 |
{\bf |
559 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
560 |
diffKzT |
561 |
\begin{rawhtml} </A>\end{rawhtml} |
562 |
} |
563 |
is read in the routine |
564 |
{\it |
565 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
566 |
INI\_PARMS |
567 |
\begin{rawhtml} </A>\end{rawhtml} |
568 |
}. |
569 |
It is copied into model general vertical coordinate variable |
570 |
{\bf |
571 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} |
572 |
diffKrT |
573 |
\begin{rawhtml} </A>\end{rawhtml} |
574 |
}. |
575 |
|
576 |
\fbox{ \begin{minipage}{5.0in} |
577 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
578 |
\end{minipage} |
579 |
} |
580 |
{\bf |
581 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
582 |
goto code |
583 |
\begin{rawhtml} </A>\end{rawhtml} |
584 |
} |
585 |
|
586 |
|
587 |
|
588 |
\item Line 13, |
589 |
\begin{verbatim} |
590 |
tAlpha=2.E-4, |
591 |
\end{verbatim} |
592 |
This line sets the thermal expansion coefficient for the fluid |
593 |
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
594 |
The variable |
595 |
{\bf |
596 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
597 |
tAlpha |
598 |
\begin{rawhtml} </A>\end{rawhtml} |
599 |
} |
600 |
is read in the routine |
601 |
{\it |
602 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
603 |
INI\_PARMS |
604 |
\begin{rawhtml} </A>\end{rawhtml} |
605 |
}. |
606 |
|
607 |
\fbox{ |
608 |
\begin{minipage}{5.0in} |
609 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
610 |
\end{minipage} |
611 |
} |
612 |
{\bf |
613 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
614 |
goto code |
615 |
\begin{rawhtml} </A>\end{rawhtml} |
616 |
} |
617 |
|
618 |
\item Line 18, |
619 |
\begin{verbatim} |
620 |
eosType='LINEAR' |
621 |
\end{verbatim} |
622 |
This line selects the linear form of the equation of state. |
623 |
The variable |
624 |
{\bf |
625 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/WV.htm> \end{rawhtml} |
626 |
eosType |
627 |
\begin{rawhtml} </A>\end{rawhtml} |
628 |
} |
629 |
is read in the routine |
630 |
{\it |
631 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
632 |
INI\_PARMS |
633 |
\begin{rawhtml} </A>\end{rawhtml} |
634 |
}. |
635 |
|
636 |
\fbox{ |
637 |
\begin{minipage}{5.0in} |
638 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
639 |
\end{minipage} |
640 |
} |
641 |
{\bf |
642 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
643 |
goto code |
644 |
\begin{rawhtml} </A>\end{rawhtml} |
645 |
} |
646 |
|
647 |
|
648 |
|
649 |
\item Line 40, |
650 |
\begin{verbatim} |
651 |
usingSphericalPolarGrid=.TRUE., |
652 |
\end{verbatim} |
653 |
This line requests that the simulation be performed in a |
654 |
spherical polar coordinate system. It affects the interpretation of |
655 |
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
656 |
causes the grid generation routines to initialise an internal grid based |
657 |
on spherical polar geometry. |
658 |
The variable |
659 |
{\bf |
660 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10T.htm> \end{rawhtml} |
661 |
usingSphericalPolarGrid |
662 |
\begin{rawhtml} </A>\end{rawhtml} |
663 |
} |
664 |
is read in the routine |
665 |
{\it |
666 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
667 |
INI\_PARMS |
668 |
\begin{rawhtml} </A>\end{rawhtml} |
669 |
}. |
670 |
|
671 |
\fbox{ |
672 |
\begin{minipage}{5.0in} |
673 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
674 |
\end{minipage} |
675 |
} |
676 |
{\bf |
677 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
678 |
goto code |
679 |
\begin{rawhtml} </A>\end{rawhtml} |
680 |
} |
681 |
|
682 |
\item Line 41, |
683 |
\begin{verbatim} |
684 |
phiMin=0., |
685 |
\end{verbatim} |
686 |
This line sets the southern boundary of the modeled |
687 |
domain to $0^{\circ}$ latitude. This value affects both the |
688 |
generation of the locally orthogonal grid that the model |
689 |
uses internally and affects the initialisation of the coriolis force. |
690 |
Note - it is not required to set |
691 |
a longitude boundary, since the absolute longitude does |
692 |
not alter the kernel equation discretisation. |
693 |
The variable |
694 |
{\bf |
695 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/110.htm> \end{rawhtml} |
696 |
phiMin |
697 |
\begin{rawhtml} </A>\end{rawhtml} |
698 |
} |
699 |
is read in the routine |
700 |
{\it |
701 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
702 |
INI\_PARMS |
703 |
\begin{rawhtml} </A>\end{rawhtml} |
704 |
}. |
705 |
|
706 |
\fbox{ |
707 |
\begin{minipage}{5.0in} |
708 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
709 |
\end{minipage} |
710 |
} |
711 |
{\bf |
712 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
713 |
goto code |
714 |
\begin{rawhtml} </A>\end{rawhtml} |
715 |
} |
716 |
|
717 |
\item Line 42, |
718 |
\begin{verbatim} |
719 |
delX=60*1., |
720 |
\end{verbatim} |
721 |
This line sets the horizontal grid spacing between each y-coordinate line |
722 |
in the discrete grid to $1^{\circ}$ in longitude. |
723 |
The variable |
724 |
{\bf |
725 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Z.htm> \end{rawhtml} |
726 |
delX |
727 |
\begin{rawhtml} </A>\end{rawhtml} |
728 |
} |
729 |
is read in the routine |
730 |
{\it |
731 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
732 |
INI\_PARMS |
733 |
\begin{rawhtml} </A>\end{rawhtml} |
734 |
}. |
735 |
|
736 |
\fbox{ |
737 |
\begin{minipage}{5.0in} |
738 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
739 |
\end{minipage} |
740 |
} |
741 |
{\bf |
742 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
743 |
goto code |
744 |
\begin{rawhtml} </A>\end{rawhtml} |
745 |
} |
746 |
|
747 |
\item Line 43, |
748 |
\begin{verbatim} |
749 |
delY=60*1., |
750 |
\end{verbatim} |
751 |
This line sets the horizontal grid spacing between each y-coordinate line |
752 |
in the discrete grid to $1^{\circ}$ in latitude. |
753 |
The variable |
754 |
{\bf |
755 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UB.htm> \end{rawhtml} |
756 |
delY |
757 |
\begin{rawhtml} </A>\end{rawhtml} |
758 |
} |
759 |
is read in the routine |
760 |
{\it |
761 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
762 |
INI\_PARMS |
763 |
\begin{rawhtml} </A>\end{rawhtml} |
764 |
}. |
765 |
|
766 |
\fbox{ |
767 |
\begin{minipage}{5.0in} |
768 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
769 |
\end{minipage} |
770 |
} |
771 |
{\bf |
772 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
773 |
goto code |
774 |
\begin{rawhtml} </A>\end{rawhtml} |
775 |
} |
776 |
|
777 |
\item Line 44, |
778 |
\begin{verbatim} |
779 |
delZ=500.,500.,500.,500., |
780 |
\end{verbatim} |
781 |
This line sets the vertical grid spacing between each z-coordinate line |
782 |
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
783 |
is $2\,{\rm km}$. |
784 |
The variable |
785 |
{\bf |
786 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10W.htm> \end{rawhtml} |
787 |
delZ |
788 |
\begin{rawhtml} </A>\end{rawhtml} |
789 |
} |
790 |
is read in the routine |
791 |
{\it |
792 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
793 |
INI\_PARMS |
794 |
\begin{rawhtml} </A>\end{rawhtml} |
795 |
}. |
796 |
It is copied into the internal |
797 |
model coordinate variable |
798 |
{\bf |
799 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} |
800 |
delR |
801 |
\begin{rawhtml} </A>\end{rawhtml} |
802 |
}. |
803 |
|
804 |
\fbox{ |
805 |
\begin{minipage}{5.0in} |
806 |
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
807 |
\end{minipage} |
808 |
} |
809 |
{\bf |
810 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/100.htm> \end{rawhtml} |
811 |
goto code |
812 |
\begin{rawhtml} </A>\end{rawhtml} |
813 |
} |
814 |
|
815 |
\item Line 47, |
816 |
\begin{verbatim} |
817 |
bathyFile='topog.box' |
818 |
\end{verbatim} |
819 |
This line specifies the name of the file from which the domain |
820 |
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
821 |
depths. This file is assumed to contain 64-bit binary numbers |
822 |
giving the depth of the model at each grid cell, ordered with the x |
823 |
coordinate varying fastest. The points are ordered from low coordinate |
824 |
to high coordinate for both axes. The units and orientation of the |
825 |
depths in this file are the same as used in the MITgcm code. In this |
826 |
experiment, a depth of $0m$ indicates a solid wall and a depth |
827 |
of $-2000m$ indicates open ocean. The matlab program |
828 |
{\it input/gendata.m} shows an example of how to generate a |
829 |
bathymetry file. |
830 |
The variable |
831 |
{\bf |
832 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} |
833 |
bathyFile |
834 |
\begin{rawhtml} </A>\end{rawhtml} |
835 |
} |
836 |
is read in the routine |
837 |
{\it |
838 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
839 |
INI\_PARMS |
840 |
\begin{rawhtml} </A>\end{rawhtml} |
841 |
}. |
842 |
|
843 |
\fbox{ |
844 |
\begin{minipage}{5.0in} |
845 |
{\it S/R INI\_DEPTHS}({\it ini\_depths.F}) |
846 |
\end{minipage} |
847 |
} |
848 |
{\bf |
849 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/88.htm> \end{rawhtml} |
850 |
goto code |
851 |
\begin{rawhtml} </A>\end{rawhtml} |
852 |
} |
853 |
|
854 |
|
855 |
\item Line 50, |
856 |
\begin{verbatim} |
857 |
zonalWindFile='windx.sin_y' |
858 |
\end{verbatim} |
859 |
This line specifies the name of the file from which the x-direction |
860 |
surface wind stress is read. This file is also a two-dimensional |
861 |
($x,y$) map and is enumerated and formatted in the same manner as the |
862 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
863 |
code to generate a valid |
864 |
{\bf zonalWindFile} |
865 |
file. |
866 |
The variable |
867 |
{\bf |
868 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/13W.htm> \end{rawhtml} |
869 |
zonalWindFile |
870 |
\begin{rawhtml} </A>\end{rawhtml} |
871 |
} |
872 |
is read in the routine |
873 |
{\it |
874 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
875 |
INI\_PARMS |
876 |
\begin{rawhtml} </A>\end{rawhtml} |
877 |
}. |
878 |
|
879 |
\fbox{ |
880 |
\begin{minipage}{5.0in} |
881 |
{\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) |
882 |
\end{minipage} |
883 |
} |
884 |
{\bf |
885 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/75.htm> \end{rawhtml} |
886 |
goto code |
887 |
\begin{rawhtml} </A>\end{rawhtml} |
888 |
} |
889 |
|
890 |
\end{itemize} |
891 |
|
892 |
\noindent other lines in the file {\it input/data} are standard values |
893 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
894 |
notes. |
895 |
|
896 |
\begin{rawhtml}<PRE>\end{rawhtml} |
897 |
\begin{small} |
898 |
\input{part3/case_studies/fourlayer_gyre/input/data} |
899 |
\end{small} |
900 |
\begin{rawhtml}</PRE>\end{rawhtml} |
901 |
|
902 |
\subsubsection{File {\it input/data.pkg}} |
903 |
|
904 |
This file uses standard default values and does not contain |
905 |
customisations for this experiment. |
906 |
|
907 |
\subsubsection{File {\it input/eedata}} |
908 |
|
909 |
This file uses standard default values and does not contain |
910 |
customisations for this experiment. |
911 |
|
912 |
\subsubsection{File {\it input/windx.sin\_y}} |
913 |
|
914 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
915 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
916 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
917 |
this file must still define a complete two-dimensional map in order |
918 |
to be compatible with the standard code for loading forcing fields |
919 |
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
920 |
code for creating the {\it input/windx.sin\_y} file. |
921 |
|
922 |
\subsubsection{File {\it input/topog.box}} |
923 |
|
924 |
|
925 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
926 |
map of depth values. For this experiment values are either |
927 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
928 |
ocean. The file contains a raw binary stream of data that is enumerated |
929 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
930 |
The included matlab program {\it input/gendata.m} gives a complete |
931 |
code for creating the {\it input/topog.box} file. |
932 |
|
933 |
\subsubsection{File {\it code/SIZE.h}} |
934 |
|
935 |
Two lines are customized in this file for the current experiment |
936 |
|
937 |
\begin{itemize} |
938 |
|
939 |
\item Line 39, |
940 |
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
941 |
the lateral domain extent in grid points for the |
942 |
axis aligned with the x-coordinate. |
943 |
|
944 |
\item Line 40, |
945 |
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
946 |
the lateral domain extent in grid points for the |
947 |
axis aligned with the y-coordinate. |
948 |
|
949 |
\item Line 49, |
950 |
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
951 |
the vertical domain extent in grid points. |
952 |
|
953 |
\end{itemize} |
954 |
|
955 |
\begin{small} |
956 |
\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} |
957 |
\end{small} |
958 |
|
959 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
960 |
|
961 |
This file uses standard default values and does not contain |
962 |
customisations for this experiment. |
963 |
|
964 |
|
965 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
966 |
|
967 |
This file uses standard default values and does not contain |
968 |
customisations for this experiment. |
969 |
|
970 |
\subsubsection{Other Files } |
971 |
|
972 |
Other files relevant to this experiment are |
973 |
\begin{itemize} |
974 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
975 |
coriolis variables {\bf fCorU} and {\bf fCorV}. |
976 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} This file |
977 |
initializes the model grid discretisation variables {\bf |
978 |
dxF, dyF, dxG, dyG, dxC, dyC}. |
979 |
\item {\it model/src/ini\_parms.F}. |
980 |
\end{itemize} |
981 |
|
982 |
\subsection{Running The Example} |
983 |
\label{SEC:running_the_example} |
984 |
|
985 |
\subsubsection{Code Download} |
986 |
|
987 |
In order to run the examples you must first download the code distribution. |
988 |
Instructions for downloading the code can be found in the Getting Started |
989 |
Guide \cite{MITgcm_Getting_Started}. |
990 |
|
991 |
\subsubsection{Experiment Location} |
992 |
|
993 |
This example experiments is located under the release sub-directory |
994 |
|
995 |
\vspace{5mm} |
996 |
{\it verification/exp1/ } |
997 |
|
998 |
\subsubsection{Running the Experiment} |
999 |
|
1000 |
To run the experiment |
1001 |
|
1002 |
\begin{enumerate} |
1003 |
\item Set the current directory to {\it input/ } |
1004 |
|
1005 |
\begin{verbatim} |
1006 |
% cd input |
1007 |
\end{verbatim} |
1008 |
|
1009 |
\item Verify that current directory is now correct |
1010 |
|
1011 |
\begin{verbatim} |
1012 |
% pwd |
1013 |
\end{verbatim} |
1014 |
|
1015 |
You shold see a response on the screen ending in |
1016 |
|
1017 |
{\it verification/exp1/input } |
1018 |
|
1019 |
|
1020 |
\item Run the genmake script to create the experiment {\it Makefile} |
1021 |
|
1022 |
\begin{verbatim} |
1023 |
% ../../../tools/genmake -mods=../code |
1024 |
\end{verbatim} |
1025 |
|
1026 |
\item Create a list of header file dependencies in {\it Makefile} |
1027 |
|
1028 |
\begin{verbatim} |
1029 |
% make depend |
1030 |
\end{verbatim} |
1031 |
|
1032 |
\item Build the executable file. |
1033 |
|
1034 |
\begin{verbatim} |
1035 |
% make |
1036 |
\end{verbatim} |
1037 |
|
1038 |
\item Run the {\it mitgcmuv} executable |
1039 |
|
1040 |
\begin{verbatim} |
1041 |
% ./mitgcmuv |
1042 |
\end{verbatim} |
1043 |
|
1044 |
\end{enumerate} |
1045 |
|
1046 |
|