2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
\label{www:tutorials} |
%\label{www:tutorials} |
6 |
\label{sect:eg-fourlayer} |
\label{sec:eg-fourlayer} |
7 |
\begin{rawhtml} |
\begin{rawhtml} |
8 |
<!-- CMIREDIR:eg-fourlayer: --> |
<!-- CMIREDIR:eg-fourlayer: --> |
9 |
\end{rawhtml} |
\end{rawhtml} |
29 |
in the verification directory under tutorial\_baroclinic\_gyre. |
in the verification directory under tutorial\_baroclinic\_gyre. |
30 |
|
|
31 |
\subsection{Overview} |
\subsection{Overview} |
32 |
\label{www:tutorials} |
%\label{www:tutorials} |
33 |
|
|
34 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
35 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
47 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
48 |
|
|
49 |
\begin{equation} |
\begin{equation} |
50 |
\label{EQ:eg-fourlayer-fcori} |
\label{eq:eg-fourlayer-fcori} |
51 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
52 |
\end{equation} |
\end{equation} |
53 |
|
|
57 |
The sinusoidal wind-stress variations are defined according to |
The sinusoidal wind-stress variations are defined according to |
58 |
|
|
59 |
\begin{equation} |
\begin{equation} |
60 |
\label{EQ:taux} |
\label{eq:taux} |
61 |
\tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
\tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
62 |
\end{equation} |
\end{equation} |
63 |
|
|
65 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
66 |
\\ |
\\ |
67 |
|
|
68 |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
Figure \ref{fig:eg-fourlayer-simulation_config} |
69 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
70 |
In contrast to the example in section \ref{sect:eg-baro}, the |
In contrast to the example in section \ref{sec:eg-baro}, the |
71 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
72 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
73 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
86 |
linear |
linear |
87 |
|
|
88 |
\begin{equation} |
\begin{equation} |
89 |
\label{EQ:eg-fourlayer-linear1_eos} |
\label{eq:eg-fourlayer-linear1_eos} |
90 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
91 |
\end{equation} |
\end{equation} |
92 |
|
|
93 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
94 |
|
|
95 |
\begin{equation} |
\begin{equation} |
96 |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
\label{eq:eg-fourlayer-linear1_eos_pert} |
97 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
98 |
\end{equation} |
\end{equation} |
99 |
|
|
109 |
%% \begin{center} |
%% \begin{center} |
110 |
%% \resizebox{7.5in}{5.5in}{ |
%% \resizebox{7.5in}{5.5in}{ |
111 |
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
112 |
%% {part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
%% {s_examples/baroclinic_gyre/simulation_config.eps} } |
113 |
%% \end{center} |
%% \end{center} |
114 |
\centerline{ |
\centerline{ |
115 |
\scalefig{.95} |
\scalefig{.95} |
116 |
\epsfbox{part3/case_studies/fourlayer_gyre/simulation_config.eps} |
\epsfbox{s_examples/baroclinic_gyre/simulation_config.eps} |
117 |
} |
} |
118 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
119 |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
122 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
123 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
124 |
} |
} |
125 |
\label{FIG:eg-fourlayer-simulation_config} |
\label{fig:eg-fourlayer-simulation_config} |
126 |
\end{figure} |
\end{figure} |
127 |
|
|
128 |
\subsection{Equations solved} |
\subsection{Equations solved} |
129 |
\label{www:tutorials} |
%\label{www:tutorials} |
130 |
For this problem |
For this problem |
131 |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
132 |
equations described in Marshall et. al \cite{marshall:97a} are |
equations described in Marshall et. al \cite{marshall:97a} are |
133 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
134 |
an active tracer. The equation of state is linear. |
an active tracer. The equation of state is linear. |
137 |
temperature equation. A wind-stress momentum forcing is added to the momentum |
temperature equation. A wind-stress momentum forcing is added to the momentum |
138 |
equation for the zonal flow, $u$. Other terms in the model |
equation for the zonal flow, $u$. Other terms in the model |
139 |
are explicitly switched off for this experiment configuration (see section |
are explicitly switched off for this experiment configuration (see section |
140 |
\ref{SEC:eg_fourl_code_config} ). This yields an active set of equations |
\ref{sec:eg_fourl_code_config} ). This yields an active set of equations |
141 |
solved in this configuration, written in spherical polar coordinates as |
solved in this configuration, written in spherical polar coordinates as |
142 |
follows |
follows |
143 |
|
|
144 |
\begin{eqnarray} |
\begin{eqnarray} |
145 |
\label{EQ:eg-fourlayer-model_equations} |
\label{eq:eg-fourlayer-model_equations} |
146 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
147 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
148 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
181 |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
182 |
The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical |
The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical |
183 |
integral term given in equation \ref{eq:free-surface} and |
integral term given in equation \ref{eq:free-surface} and |
184 |
explained in more detail in section \ref{sect:pressure-method-linear-backward}. |
explained in more detail in section \ref{sec:pressure-method-linear-backward}. |
185 |
However, for the problem presented here, the continuity relation (equation |
However, for the problem presented here, the continuity relation (equation |
186 |
\ref{eq:fourl_example_continuity}) differs from the general form given |
\ref{eq:fourl_example_continuity}) differs from the general form given |
187 |
in section \ref{sect:pressure-method-linear-backward}, |
in section \ref{sec:pressure-method-linear-backward}, |
188 |
equation \ref{eq:linear-free-surface=P-E+R}, because the source terms |
equation \ref{eq:linear-free-surface=P-E}, because the source terms |
189 |
${\cal P}-{\cal E}+{\cal R}$ |
${\cal P}-{\cal E}+{\cal R}$ |
190 |
are all $0$. |
are all $0$. |
191 |
|
|
203 |
lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ |
lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ |
204 |
and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified |
and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified |
205 |
when the numerical simulation is run - see section |
when the numerical simulation is run - see section |
206 |
\ref{SEC:eg_fourl_code_config}. For temperature |
\ref{sec:eg_fourl_code_config}. For temperature |
207 |
the boundary condition is ``zero-flux'' |
the boundary condition is ``zero-flux'' |
208 |
e.g. $\frac{\partial \theta}{\partial \varphi}= |
e.g. $\frac{\partial \theta}{\partial \varphi}= |
209 |
\frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. |
\frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. |
211 |
|
|
212 |
|
|
213 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
214 |
\label{www:tutorials} |
%\label{www:tutorials} |
215 |
|
|
216 |
The domain is discretised with |
The domain is discretised with |
217 |
a uniform grid spacing in latitude and longitude |
a uniform grid spacing in latitude and longitude |
231 |
|
|
232 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
233 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
234 |
\ref{sect:spatial_discrete_horizontal_grid}. |
\ref{sec:spatial_discrete_horizontal_grid}. |
235 |
|
|
236 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
237 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
252 |
|
|
253 |
|
|
254 |
|
|
255 |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
256 |
temperature, |
temperature, |
257 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
258 |
is evaluated prognostically. The centered second-order scheme with |
is evaluated prognostically. The centered second-order scheme with |
259 |
Adams-Bashforth time stepping described in section |
Adams-Bashforth time stepping described in section |
260 |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
\ref{sec:tracer_equations_abII} is used to step forward the temperature |
261 |
equation. Prognostic terms in |
equation. Prognostic terms in |
262 |
the momentum equations are solved using flux form as |
the momentum equations are solved using flux form as |
263 |
described in section \ref{sect:flux-form_momentum_eqautions}. |
described in section \ref{sec:flux-form_momentum_equations}. |
264 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
265 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
266 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
267 |
pressure is diagnosed explicitly by integrating density. The sea-surface |
pressure is diagnosed explicitly by integrating density. The sea-surface |
268 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
269 |
field solution method is described in sections |
field solution method is described in sections |
270 |
\ref{sect:pressure-method-linear-backward} and |
\ref{sec:pressure-method-linear-backward} and |
271 |
\ref{sect:finding_the_pressure_field}. |
\ref{sec:finding_the_pressure_field}. |
272 |
|
|
273 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
274 |
\label{www:tutorials} |
%\label{www:tutorials} |
275 |
|
|
276 |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
277 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
278 |
|
|
279 |
\begin{eqnarray} |
\begin{eqnarray} |
280 |
\label{EQ:eg-fourlayer-munk_layer} |
\label{eq:eg-fourlayer-munk_layer} |
281 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
282 |
\end{eqnarray} |
\end{eqnarray} |
283 |
|
|
293 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
294 |
|
|
295 |
\begin{eqnarray} |
\begin{eqnarray} |
296 |
\label{EQ:eg-fourlayer-laplacian_stability} |
\label{eq:eg-fourlayer-laplacian_stability} |
297 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
298 |
\end{eqnarray} |
\end{eqnarray} |
299 |
|
|
305 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
306 |
|
|
307 |
\begin{eqnarray} |
\begin{eqnarray} |
308 |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
\label{eq:eg-fourlayer-laplacian_stability_z} |
309 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
310 |
\end{eqnarray} |
\end{eqnarray} |
311 |
|
|
318 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
319 |
|
|
320 |
\begin{eqnarray} |
\begin{eqnarray} |
321 |
\label{EQ:eg-fourlayer-inertial_stability} |
\label{eq:eg-fourlayer-inertial_stability} |
322 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
323 |
\end{eqnarray} |
\end{eqnarray} |
324 |
|
|
331 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
332 |
|
|
333 |
\begin{eqnarray} |
\begin{eqnarray} |
334 |
\label{EQ:eg-fourlayer-cfl_stability} |
\label{eq:eg-fourlayer-cfl_stability} |
335 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
336 |
\end{eqnarray} |
\end{eqnarray} |
337 |
|
|
343 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
344 |
|
|
345 |
\begin{eqnarray} |
\begin{eqnarray} |
346 |
\label{EQ:eg-fourlayer-igw_stability} |
\label{eq:eg-fourlayer-igw_stability} |
347 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
348 |
\end{eqnarray} |
\end{eqnarray} |
349 |
|
|
351 |
stability limit of 0.25. |
stability limit of 0.25. |
352 |
|
|
353 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
354 |
\label{www:tutorials} |
%\label{www:tutorials} |
355 |
\label{SEC:eg_fourl_code_config} |
\label{sec:eg_fourl_code_config} |
356 |
|
|
357 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
358 |
directory {\it verification/tutorial\_barotropic\_gyre/}. |
directory {\it verification/tutorial\_barotropic\_gyre/}. |
372 |
associated with this experiment. |
associated with this experiment. |
373 |
|
|
374 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
375 |
\label{www:tutorials} |
%\label{www:tutorials} |
376 |
|
|
377 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
378 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
559 |
|
|
560 |
\item Line 41, |
\item Line 41, |
561 |
\begin{verbatim} |
\begin{verbatim} |
562 |
phiMin=0., |
ygOrigin=0., |
563 |
\end{verbatim} |
\end{verbatim} |
564 |
This line sets the southern boundary of the modeled domain to |
This line sets the southern boundary of the modeled domain to |
565 |
$0^{\circ}$ latitude. This value affects both the generation of the |
$0^{\circ}$ latitude. This value affects both the generation of the |
567 |
the initialization of the coriolis force. Note - it is not required |
the initialization of the coriolis force. Note - it is not required |
568 |
to set a longitude boundary, since the absolute longitude does not |
to set a longitude boundary, since the absolute longitude does not |
569 |
alter the kernel equation discretisation. The variable |
alter the kernel equation discretisation. The variable |
570 |
\varlink{phiMin}{phiMin} is read in the |
\varlink{ygOrigin}{ygOrigin} is read in the |
571 |
routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine |
routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine |
572 |
|
|
573 |
\fbox{ |
\fbox{ |
679 |
|
|
680 |
\begin{rawhtml}<PRE>\end{rawhtml} |
\begin{rawhtml}<PRE>\end{rawhtml} |
681 |
\begin{small} |
\begin{small} |
682 |
\input{part3/case_studies/fourlayer_gyre/input/data} |
\input{s_examples/baroclinic_gyre/input/data} |
683 |
\end{small} |
\end{small} |
684 |
\begin{rawhtml}</PRE>\end{rawhtml} |
\begin{rawhtml}</PRE>\end{rawhtml} |
685 |
|
|
686 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
687 |
\label{www:tutorials} |
%\label{www:tutorials} |
688 |
|
|
689 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
690 |
customisations for this experiment. |
customisations for this experiment. |
691 |
|
|
692 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
693 |
\label{www:tutorials} |
%\label{www:tutorials} |
694 |
|
|
695 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
696 |
customisations for this experiment. |
customisations for this experiment. |
697 |
|
|
698 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
699 |
\label{www:tutorials} |
%\label{www:tutorials} |
700 |
|
|
701 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
702 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ |
709 |
input/windx.sin\_y} file. |
input/windx.sin\_y} file. |
710 |
|
|
711 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
712 |
\label{www:tutorials} |
%\label{www:tutorials} |
713 |
|
|
714 |
|
|
715 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
721 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
722 |
|
|
723 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
724 |
\label{www:tutorials} |
%\label{www:tutorials} |
725 |
|
|
726 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
727 |
|
|
744 |
\end{itemize} |
\end{itemize} |
745 |
|
|
746 |
\begin{small} |
\begin{small} |
747 |
\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} |
\include{s_examples/baroclinic_gyre/code/SIZE.h} |
748 |
\end{small} |
\end{small} |
749 |
|
|
750 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
751 |
\label{www:tutorials} |
%\label{www:tutorials} |
752 |
|
|
753 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
754 |
customisations for this experiment. |
customisations for this experiment. |
755 |
|
|
756 |
|
|
757 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
758 |
\label{www:tutorials} |
%\label{www:tutorials} |
759 |
|
|
760 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
761 |
customisations for this experiment. |
customisations for this experiment. |
762 |
|
|
763 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
764 |
\label{www:tutorials} |
%\label{www:tutorials} |
765 |
|
|
766 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
767 |
\begin{itemize} |
\begin{itemize} |
774 |
\end{itemize} |
\end{itemize} |
775 |
|
|
776 |
\subsection{Running The Example} |
\subsection{Running The Example} |
777 |
\label{www:tutorials} |
%\label{www:tutorials} |
778 |
\label{SEC:running_the_example} |
%\label{sec:running_the_example} |
779 |
|
|
780 |
\subsubsection{Code Download} |
\subsubsection{Code Download} |
781 |
\label{www:tutorials} |
%\label{www:tutorials} |
782 |
|
|
783 |
In order to run the examples you must first download the code distribution. |
In order to run the examples you must first download the code distribution. |
784 |
Instructions for downloading the code can be found in section |
Instructions for downloading the code can be found in section |
785 |
\ref{sect:obtainingCode}. |
\ref{sec:obtainingCode}. |
786 |
|
|
787 |
\subsubsection{Experiment Location} |
\subsubsection{Experiment Location} |
788 |
\label{www:tutorials} |
%\label{www:tutorials} |
789 |
|
|
790 |
This example experiments is located under the release sub-directory |
This example experiments is located under the release sub-directory |
791 |
|
|
793 |
{\it verification/exp2/ } |
{\it verification/exp2/ } |
794 |
|
|
795 |
\subsubsection{Running the Experiment} |
\subsubsection{Running the Experiment} |
796 |
\label{www:tutorials} |
%\label{www:tutorials} |
797 |
|
|
798 |
To run the experiment |
To run the experiment |
799 |
|
|