/[MITgcm]/manual/s_examples/baroclinic_gyre/fourlayer.tex
ViewVC logotype

Diff of /manual/s_examples/baroclinic_gyre/fourlayer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by edhill, Mon Sep 15 19:39:04 2003 UTC revision 1.21 by molod, Tue Jun 27 19:08:22 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates}  \section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates}
5  \label{www:tutorials}  \label{www:tutorials}
6  \label{sect:eg-fourlayer}  \label{sect:eg-fourlayer}
7    \begin{rawhtml}
8    <!-- CMIREDIR:eg-fourlayer: -->
9    \end{rawhtml}
10    
11  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
12    
# Line 18  Line 21 
21  %\end{center}  %\end{center}
22    
23  This document describes an example experiment using MITgcm  This document describes an example experiment using MITgcm
24  to simulate a baroclinic ocean gyre in spherical  to simulate a baroclinic ocean gyre for four layers in spherical
25  polar coordinates. The barotropic  polar coordinates.  The files for this experiment can be found
26  example experiment in section \ref{sect:eg-baro}  in the verification directory under tutorial\_baroclinic\_gyre.
 illustrated how to configure the code for a single layer  
 simulation in a Cartesian grid. In this example a similar physical problem  
 is simulated, but the code is now configured  
 for four layers and in a spherical polar coordinate system.  
27    
28  \subsection{Overview}  \subsection{Overview}
29  \label{www:tutorials}  \label{www:tutorials}
# Line 104  non-linear, we use $\theta$ to represent Line 103  non-linear, we use $\theta$ to represent
103  the quantity that is carried in the model core equations.  the quantity that is carried in the model core equations.
104    
105  \begin{figure}  \begin{figure}
106  \begin{center}  %% \begin{center}
107   \resizebox{7.5in}{5.5in}{  %%  \resizebox{7.5in}{5.5in}{
108     \includegraphics*[0.2in,0.7in][10.5in,10.5in]  %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]
109     {part3/case_studies/fourlayer_gyre/simulation_config.eps} }  %%    {part3/case_studies/fourlayer_gyre/simulation_config.eps} }
110  \end{center}  %% \end{center}
111    \centerline{
112      \scalefig{.95}
113      \epsfbox{part3/case_studies/fourlayer_gyre/simulation_config.eps}
114    }
115  \caption{Schematic of simulation domain and wind-stress forcing function  \caption{Schematic of simulation domain and wind-stress forcing function
116  for the four-layer gyre numerical experiment. The domain is enclosed by solid  for the four-layer gyre numerical experiment. The domain is enclosed by solid
117  walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N.  walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N.
# Line 376  are Line 379  are
379  \item Line 4,  \item Line 4,
380  \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}  \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}
381  this line sets the initial and reference values of potential  this line sets the initial and reference values of potential
382  temperature at each model level in units of $^{\circ}$C.  The entries  temperature at each model level in units of $^{\circ}\mathrm{C}$.  The entries
383  are ordered from surface to depth. For each depth level the initial  are ordered from surface to depth. For each depth level the initial
384  and reference profiles will be uniform in $x$ and $y$. The values  and reference profiles will be uniform in $x$ and $y$. The values
385  specified here are read into the variable \varlink{tRef}{tRef} in the  specified here are read into the variable \varlink{tRef}{tRef} in the

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.21

  ViewVC Help
Powered by ViewVC 1.1.22