| 1 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part3/case_studies/fourlayer_gyre/fourlayer.tex,v 1.24 2008/01/15 21:47:26 cnh Exp $ |
| 2 |
% $Name: $ |
| 3 |
|
| 4 |
\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{www:tutorials} |
| 6 |
\label{sect:eg-fourlayer} |
| 7 |
\begin{rawhtml} |
| 8 |
<!-- CMIREDIR:eg-fourlayer: --> |
| 9 |
\end{rawhtml} |
| 10 |
\begin{center} |
| 11 |
(in directory: {\it verification/tutorial\_baroclinic\_gyre/}) |
| 12 |
\end{center} |
| 13 |
|
| 14 |
\bodytext{bgcolor="#FFFFFFFF"} |
| 15 |
|
| 16 |
%\begin{center} |
| 17 |
%{\Large \bf Using MITgcm to Simulate a Baroclinic Ocean Gyre In Spherical |
| 18 |
%Polar Coordinates} |
| 19 |
% |
| 20 |
%\vspace*{4mm} |
| 21 |
% |
| 22 |
%\vspace*{3mm} |
| 23 |
%{\large May 2001} |
| 24 |
%\end{center} |
| 25 |
|
| 26 |
This document describes an example experiment using MITgcm |
| 27 |
to simulate a baroclinic ocean gyre for four layers in spherical |
| 28 |
polar coordinates. The files for this experiment can be found |
| 29 |
in the verification directory under tutorial\_baroclinic\_gyre. |
| 30 |
|
| 31 |
\subsection{Overview} |
| 32 |
\label{www:tutorials} |
| 33 |
|
| 34 |
This example experiment demonstrates using the MITgcm to simulate |
| 35 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
| 36 |
is a numerical rendition of the gyre circulation problem similar |
| 37 |
to the problems described analytically by Stommel in 1966 |
| 38 |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
| 39 |
\\ |
| 40 |
|
| 41 |
In this experiment the model is configured to represent a mid-latitude |
| 42 |
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
| 43 |
lateral extent. The fluid is $2$~km deep and is forced |
| 44 |
by a constant in time zonal wind stress, $\tau_{\lambda}$, that varies |
| 45 |
sinusoidally in the north-south direction. Topologically the simulated |
| 46 |
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
| 47 |
according to latitude, $\varphi$ |
| 48 |
|
| 49 |
\begin{equation} |
| 50 |
\label{EQ:eg-fourlayer-fcori} |
| 51 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
| 52 |
\end{equation} |
| 53 |
|
| 54 |
\noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. |
| 55 |
\\ |
| 56 |
|
| 57 |
The sinusoidal wind-stress variations are defined according to |
| 58 |
|
| 59 |
\begin{equation} |
| 60 |
\label{EQ:taux} |
| 61 |
\tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
| 62 |
\end{equation} |
| 63 |
|
| 64 |
\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and |
| 65 |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 66 |
\\ |
| 67 |
|
| 68 |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
| 69 |
summarizes the configuration simulated. |
| 70 |
In contrast to the example in section \ref{sect:eg-baro}, the |
| 71 |
current experiment simulates a spherical polar domain. As indicated |
| 72 |
by the axes in the lower left of the figure the model code works internally |
| 73 |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
| 74 |
the local orthogonal model coordinate $(x,y,z)$ is synonymous |
| 75 |
with the coordinates $(\lambda,\varphi,r)$ shown in figure |
| 76 |
\ref{fig:spherical-polar-coord} |
| 77 |
\\ |
| 78 |
|
| 79 |
The experiment has four levels in the vertical, each of equal thickness, |
| 80 |
$\Delta z = 500$~m. Initially the fluid is stratified with a reference |
| 81 |
potential temperature profile, |
| 82 |
$\theta_{250}=20^{\circ}$~C, |
| 83 |
$\theta_{750}=10^{\circ}$~C, |
| 84 |
$\theta_{1250}=8^{\circ}$~C, |
| 85 |
$\theta_{1750}=6^{\circ}$~C. The equation of state used in this experiment is |
| 86 |
linear |
| 87 |
|
| 88 |
\begin{equation} |
| 89 |
\label{EQ:eg-fourlayer-linear1_eos} |
| 90 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 91 |
\end{equation} |
| 92 |
|
| 93 |
\noindent which is implemented in the model as a density anomaly equation |
| 94 |
|
| 95 |
\begin{equation} |
| 96 |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
| 97 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 98 |
\end{equation} |
| 99 |
|
| 100 |
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
| 101 |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
| 102 |
this configuration the model state variable {\bf theta} is equivalent to |
| 103 |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
| 104 |
consistency with later examples, in which the equation of state is |
| 105 |
non-linear, we use $\theta$ to represent temperature here. This is |
| 106 |
the quantity that is carried in the model core equations. |
| 107 |
|
| 108 |
\begin{figure} |
| 109 |
%% \begin{center} |
| 110 |
%% \resizebox{7.5in}{5.5in}{ |
| 111 |
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 112 |
%% {part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
| 113 |
%% \end{center} |
| 114 |
\centerline{ |
| 115 |
\scalefig{.95} |
| 116 |
\epsfbox{part3/case_studies/fourlayer_gyre/simulation_config.eps} |
| 117 |
} |
| 118 |
\caption{Schematic of simulation domain and wind-stress forcing function |
| 119 |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
| 120 |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
| 121 |
An initial stratification is |
| 122 |
imposed by setting the potential temperature, $\theta$, in each layer. |
| 123 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
| 124 |
} |
| 125 |
\label{FIG:eg-fourlayer-simulation_config} |
| 126 |
\end{figure} |
| 127 |
|
| 128 |
\subsection{Equations solved} |
| 129 |
\label{www:tutorials} |
| 130 |
For this problem |
| 131 |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
| 132 |
equations described in Marshall et. al \cite{marshall:97a} are |
| 133 |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
| 134 |
an active tracer. The equation of state is linear. |
| 135 |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
| 136 |
dissipation and provides a diffusive sub-grid scale closure for the |
| 137 |
temperature equation. A wind-stress momentum forcing is added to the momentum |
| 138 |
equation for the zonal flow, $u$. Other terms in the model |
| 139 |
are explicitly switched off for this experiment configuration (see section |
| 140 |
\ref{SEC:eg_fourl_code_config} ). This yields an active set of equations |
| 141 |
solved in this configuration, written in spherical polar coordinates as |
| 142 |
follows |
| 143 |
|
| 144 |
\begin{eqnarray} |
| 145 |
\label{EQ:eg-fourlayer-model_equations} |
| 146 |
\frac{Du}{Dt} - fv + |
| 147 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
| 148 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 149 |
& = & |
| 150 |
\cal{F}_{\lambda} |
| 151 |
\\ |
| 152 |
\frac{Dv}{Dt} + fu + |
| 153 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} - |
| 154 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
| 155 |
& = & |
| 156 |
0 |
| 157 |
\\ |
| 158 |
\frac{\partial \eta}{\partial t} + \frac{\partial H \widehat{u}}{\partial \lambda} + |
| 159 |
\frac{\partial H \widehat{v}}{\partial \varphi} |
| 160 |
&=& |
| 161 |
0 |
| 162 |
\label{eq:fourl_example_continuity} |
| 163 |
\\ |
| 164 |
\frac{D\theta}{Dt} - |
| 165 |
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
| 166 |
& = & |
| 167 |
0 |
| 168 |
\label{eq:eg_fourl_theta} |
| 169 |
\\ |
| 170 |
p^{\prime} & = & |
| 171 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz |
| 172 |
\\ |
| 173 |
\rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} |
| 174 |
\\ |
| 175 |
{\cal F}_{\lambda} |_{s} & = & \frac{\tau_{\lambda}}{\rho_{0}\Delta z_{s}} |
| 176 |
\\ |
| 177 |
{\cal F}_{\lambda} |_{i} & = & 0 |
| 178 |
\end{eqnarray} |
| 179 |
|
| 180 |
\noindent where $u$ and $v$ are the components of the horizontal |
| 181 |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
| 182 |
The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical |
| 183 |
integral term given in equation \ref{eq:free-surface} and |
| 184 |
explained in more detail in section \ref{sect:pressure-method-linear-backward}. |
| 185 |
However, for the problem presented here, the continuity relation (equation |
| 186 |
\ref{eq:fourl_example_continuity}) differs from the general form given |
| 187 |
in section \ref{sect:pressure-method-linear-backward}, |
| 188 |
equation \ref{eq:linear-free-surface=P-E+R}, because the source terms |
| 189 |
${\cal P}-{\cal E}+{\cal R}$ |
| 190 |
are all $0$. |
| 191 |
|
| 192 |
The pressure field, $p^{\prime}$, is separated into a barotropic part |
| 193 |
due to variations in sea-surface height, $\eta$, and a hydrostatic |
| 194 |
part due to variations in density, $\rho^{\prime}$, integrated |
| 195 |
through the water column. |
| 196 |
|
| 197 |
The suffices ${s},{i}$ indicate surface layer and the interior of the domain. |
| 198 |
The windstress forcing, ${\cal F}_{\lambda}$, is applied in the surface layer |
| 199 |
by a source term in the zonal momentum equation. In the ocean interior |
| 200 |
this term is zero. |
| 201 |
|
| 202 |
In the momentum equations |
| 203 |
lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ |
| 204 |
and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified |
| 205 |
when the numerical simulation is run - see section |
| 206 |
\ref{SEC:eg_fourl_code_config}. For temperature |
| 207 |
the boundary condition is ``zero-flux'' |
| 208 |
e.g. $\frac{\partial \theta}{\partial \varphi}= |
| 209 |
\frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. |
| 210 |
|
| 211 |
|
| 212 |
|
| 213 |
\subsection{Discrete Numerical Configuration} |
| 214 |
\label{www:tutorials} |
| 215 |
|
| 216 |
The domain is discretised with |
| 217 |
a uniform grid spacing in latitude and longitude |
| 218 |
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so |
| 219 |
that there are sixty grid cells in the zonal and meridional directions. |
| 220 |
Vertically the |
| 221 |
model is configured with four layers with constant depth, |
| 222 |
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate |
| 223 |
variables $x$ and $y$ are initialized from the values of |
| 224 |
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in |
| 225 |
radians according to |
| 226 |
|
| 227 |
\begin{eqnarray} |
| 228 |
x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ |
| 229 |
y=r\varphi,~\Delta y &= &r\Delta \varphi |
| 230 |
\end{eqnarray} |
| 231 |
|
| 232 |
The procedure for generating a set of internal grid variables from a |
| 233 |
spherical polar grid specification is discussed in section |
| 234 |
\ref{sect:spatial_discrete_horizontal_grid}. |
| 235 |
|
| 236 |
\noindent\fbox{ \begin{minipage}{5.5in} |
| 237 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
| 238 |
model/src/ini\_spherical\_polar\_grid.F}) |
| 239 |
|
| 240 |
$A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} |
| 241 |
({\em GRID.h}) |
| 242 |
|
| 243 |
$\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) |
| 244 |
|
| 245 |
$\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) |
| 246 |
|
| 247 |
$\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) |
| 248 |
|
| 249 |
$\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) |
| 250 |
|
| 251 |
\end{minipage} }\\ |
| 252 |
|
| 253 |
|
| 254 |
|
| 255 |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
| 256 |
temperature, |
| 257 |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
| 258 |
is evaluated prognostically. The centered second-order scheme with |
| 259 |
Adams-Bashforth time stepping described in section |
| 260 |
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
| 261 |
equation. Prognostic terms in |
| 262 |
the momentum equations are solved using flux form as |
| 263 |
described in section \ref{sect:flux-form_momentum_eqautions}. |
| 264 |
The pressure forces that drive the fluid motions, ( |
| 265 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
| 266 |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
| 267 |
pressure is diagnosed explicitly by integrating density. The sea-surface |
| 268 |
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
| 269 |
field solution method is described in sections |
| 270 |
\ref{sect:pressure-method-linear-backward} and |
| 271 |
\ref{sect:finding_the_pressure_field}. |
| 272 |
|
| 273 |
\subsubsection{Numerical Stability Criteria} |
| 274 |
\label{www:tutorials} |
| 275 |
|
| 276 |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
| 277 |
This value is chosen to yield a Munk layer width, |
| 278 |
|
| 279 |
\begin{eqnarray} |
| 280 |
\label{EQ:eg-fourlayer-munk_layer} |
| 281 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 282 |
\end{eqnarray} |
| 283 |
|
| 284 |
\noindent of $\approx 100$km. This is greater than the model |
| 285 |
resolution in mid-latitudes |
| 286 |
$\Delta x=r \cos(\varphi) \Delta \lambda \approx 80~{\rm km}$ at |
| 287 |
$\varphi=45^{\circ}$, ensuring that the frictional |
| 288 |
boundary layer is well resolved. |
| 289 |
\\ |
| 290 |
|
| 291 |
\noindent The model is stepped forward with a |
| 292 |
time step $\delta t=1200$secs. With this time step the stability |
| 293 |
parameter to the horizontal Laplacian friction |
| 294 |
|
| 295 |
\begin{eqnarray} |
| 296 |
\label{EQ:eg-fourlayer-laplacian_stability} |
| 297 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 298 |
\end{eqnarray} |
| 299 |
|
| 300 |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
| 301 |
for stability for this term under ABII time-stepping. |
| 302 |
\\ |
| 303 |
|
| 304 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
| 305 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 306 |
|
| 307 |
\begin{eqnarray} |
| 308 |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
| 309 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 310 |
\end{eqnarray} |
| 311 |
|
| 312 |
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
| 313 |
the upper limit. |
| 314 |
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
| 315 |
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
| 316 |
\\ |
| 317 |
|
| 318 |
\noindent The numerical stability for inertial oscillations |
| 319 |
|
| 320 |
\begin{eqnarray} |
| 321 |
\label{EQ:eg-fourlayer-inertial_stability} |
| 322 |
S_{i} = f^{2} {\delta t}^2 |
| 323 |
\end{eqnarray} |
| 324 |
|
| 325 |
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
| 326 |
limit for stability. |
| 327 |
\\ |
| 328 |
|
| 329 |
\noindent The advective CFL for a extreme maximum |
| 330 |
horizontal flow |
| 331 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 332 |
|
| 333 |
\begin{eqnarray} |
| 334 |
\label{EQ:eg-fourlayer-cfl_stability} |
| 335 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 336 |
\end{eqnarray} |
| 337 |
|
| 338 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
| 339 |
limit of 0.5. |
| 340 |
\\ |
| 341 |
|
| 342 |
\noindent The stability parameter for internal gravity waves |
| 343 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
| 344 |
|
| 345 |
\begin{eqnarray} |
| 346 |
\label{EQ:eg-fourlayer-igw_stability} |
| 347 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 348 |
\end{eqnarray} |
| 349 |
|
| 350 |
\noindent evaluates to $\approx 5 \times 10^{-2}$. This is well below the linear |
| 351 |
stability limit of 0.25. |
| 352 |
|
| 353 |
\subsection{Code Configuration} |
| 354 |
\label{www:tutorials} |
| 355 |
\label{SEC:eg_fourl_code_config} |
| 356 |
|
| 357 |
The model configuration for this experiment resides under the |
| 358 |
directory {\it verification/tutorial\_barotropic\_gyre/}. |
| 359 |
The experiment files |
| 360 |
\begin{itemize} |
| 361 |
\item {\it input/data} |
| 362 |
\item {\it input/data.pkg} |
| 363 |
\item {\it input/eedata}, |
| 364 |
\item {\it input/windx.sin\_y}, |
| 365 |
\item {\it input/topog.box}, |
| 366 |
\item {\it code/CPP\_EEOPTIONS.h} |
| 367 |
\item {\it code/CPP\_OPTIONS.h}, |
| 368 |
\item {\it code/SIZE.h}. |
| 369 |
\end{itemize} |
| 370 |
contain the code customisations and parameter settings for this |
| 371 |
experiment. Below we describe the customisations to these files |
| 372 |
associated with this experiment. |
| 373 |
|
| 374 |
\subsubsection{File {\it input/data}} |
| 375 |
\label{www:tutorials} |
| 376 |
|
| 377 |
This file, reproduced completely below, specifies the main parameters |
| 378 |
for the experiment. The parameters that are significant for this configuration |
| 379 |
are |
| 380 |
|
| 381 |
\begin{itemize} |
| 382 |
|
| 383 |
\item Line 4, |
| 384 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
| 385 |
this line sets the initial and reference values of potential |
| 386 |
temperature at each model level in units of $^{\circ}\mathrm{C}$. The entries |
| 387 |
are ordered from surface to depth. For each depth level the initial |
| 388 |
and reference profiles will be uniform in $x$ and $y$. The values |
| 389 |
specified here are read into the variable \varlink{tRef}{tRef} in the |
| 390 |
model code, by procedure \filelink{INI\_PARMS}{model-src-ini_parms.F} |
| 391 |
|
| 392 |
\fbox{ |
| 393 |
\begin{minipage}{5.0in} |
| 394 |
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
| 395 |
\end{minipage} |
| 396 |
} |
| 397 |
\filelink{ini\_theta.F}{model-src-ini_theta.F} |
| 398 |
|
| 399 |
\item Line 6, |
| 400 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
| 401 |
this line sets the vertical Laplacian dissipation coefficient to $1 |
| 402 |
\times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions for this |
| 403 |
operator are specified later. The variable \varlink{viscAz}{viscAz} |
| 404 |
is read in the routine \filelink{ini\_parms.F}{model-src-ini_parms.F} |
| 405 |
and is copied into model general vertical coordinate variable |
| 406 |
\varlink{viscAr}{viscAr} At each time step, the viscous term |
| 407 |
contribution to the momentum equations is calculated in routine |
| 408 |
\varlink{CALC\_DIFFUSIVITY}{CALC_DIFFUSIVITY} |
| 409 |
|
| 410 |
\fbox{ |
| 411 |
\begin{minipage}{5.0in} |
| 412 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
| 413 |
\end{minipage} |
| 414 |
} |
| 415 |
|
| 416 |
\item Line 7, |
| 417 |
\begin{verbatim} |
| 418 |
viscAh=4.E2, |
| 419 |
\end{verbatim} |
| 420 |
this line sets the horizontal laplacian frictional dissipation |
| 421 |
coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary |
| 422 |
conditions for this operator are specified later. The variable |
| 423 |
\varlink{viscAh}{viscAh} is read in the routine |
| 424 |
\varlink{INI\_PARMS}{INI_PARMS} and applied in routine |
| 425 |
\varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. |
| 426 |
|
| 427 |
\fbox{ |
| 428 |
\begin{minipage}{5.0in} |
| 429 |
{\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) |
| 430 |
\end{minipage} |
| 431 |
} |
| 432 |
|
| 433 |
\item Line 8, |
| 434 |
\begin{verbatim} |
| 435 |
no_slip_sides=.FALSE. |
| 436 |
\end{verbatim} |
| 437 |
this line selects a free-slip lateral boundary condition for the |
| 438 |
horizontal laplacian friction operator e.g. $\frac{\partial |
| 439 |
u}{\partial y}$=0 along boundaries in $y$ and $\frac{\partial |
| 440 |
v}{\partial x}$=0 along boundaries in $x$. The variable |
| 441 |
\varlink{no\_slip\_sides}{no_slip_sides} is read in the routine |
| 442 |
\varlink{INI\_PARMS}{INI_PARMS} and the boundary condition is |
| 443 |
evaluated in routine |
| 444 |
|
| 445 |
\fbox{ |
| 446 |
\begin{minipage}{5.0in} |
| 447 |
{\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) |
| 448 |
\end{minipage} |
| 449 |
} |
| 450 |
\filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} |
| 451 |
|
| 452 |
\item Lines 9, |
| 453 |
\begin{verbatim} |
| 454 |
no_slip_bottom=.TRUE. |
| 455 |
\end{verbatim} |
| 456 |
this line selects a no-slip boundary condition for bottom boundary |
| 457 |
condition in the vertical laplacian friction operator e.g. $u=v=0$ |
| 458 |
at $z=-H$, where $H$ is the local depth of the domain. The variable |
| 459 |
\varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine |
| 460 |
\filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the |
| 461 |
routine \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. |
| 462 |
|
| 463 |
\fbox{ |
| 464 |
\begin{minipage}{5.0in} |
| 465 |
{\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) |
| 466 |
\end{minipage} |
| 467 |
} |
| 468 |
\filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} |
| 469 |
|
| 470 |
\item Line 10, |
| 471 |
\begin{verbatim} |
| 472 |
diffKhT=4.E2, |
| 473 |
\end{verbatim} |
| 474 |
this line sets the horizontal diffusion coefficient for temperature |
| 475 |
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this operator |
| 476 |
is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
| 477 |
all boundaries. The variable \varlink{diffKhT}{diffKhT} is read in |
| 478 |
the routine \varlink{INI\_PARMS}{INI_PARMS} and used in routine |
| 479 |
\varlink{CALC\_GT}{CALC_GT}. |
| 480 |
|
| 481 |
\fbox{ \begin{minipage}{5.0in} |
| 482 |
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
| 483 |
\end{minipage} |
| 484 |
} |
| 485 |
\filelink{calc\_gt.F}{model-src-calc_gt.F} |
| 486 |
|
| 487 |
\item Line 11, |
| 488 |
\begin{verbatim} |
| 489 |
diffKzT=1.E-2, |
| 490 |
\end{verbatim} |
| 491 |
this line sets the vertical diffusion coefficient for temperature to |
| 492 |
$10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
| 493 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
| 494 |
The variable \varlink{diffKzT}{diffKzT} is read in the routine |
| 495 |
\varlink{INI\_PARMS}{INI_PARMS}. It is copied into model general |
| 496 |
vertical coordinate variable \varlink{diffKrT}{diffKrT} which is |
| 497 |
used in routine \varlink{CALC\_DIFFUSIVITY}{CALC_DIFFUSIVITY}. |
| 498 |
|
| 499 |
\fbox{ \begin{minipage}{5.0in} |
| 500 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
| 501 |
\end{minipage} |
| 502 |
} |
| 503 |
\filelink{calc\_diffusivity.F}{model-src-calc_diffusivity.F} |
| 504 |
|
| 505 |
\item Line 13, |
| 506 |
\begin{verbatim} |
| 507 |
tAlpha=2.E-4, |
| 508 |
\end{verbatim} |
| 509 |
This line sets the thermal expansion coefficient for the fluid to $2 |
| 510 |
\times 10^{-4}\,{\rm degrees}^{-1}$ The variable |
| 511 |
\varlink{tAlpha}{tAlpha} is read in the routine |
| 512 |
\varlink{INI\_PARMS}{INI_PARMS}. The routine |
| 513 |
\varlink{FIND\_RHO}{FIND\_RHO} makes use of {\bf tAlpha}. |
| 514 |
|
| 515 |
\fbox{ |
| 516 |
\begin{minipage}{5.0in} |
| 517 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
| 518 |
\end{minipage} |
| 519 |
} |
| 520 |
\filelink{find\_rho.F}{model-src-find_rho.F} |
| 521 |
|
| 522 |
\item Line 18, |
| 523 |
\begin{verbatim} |
| 524 |
eosType='LINEAR' |
| 525 |
\end{verbatim} |
| 526 |
This line selects the linear form of the equation of state. The |
| 527 |
variable \varlink{eosType}{eosType} is read in the routine |
| 528 |
\varlink{INI\_PARMS}{INI_PARMS}. The values of {\bf eosType} sets |
| 529 |
which formula in routine {\it FIND\_RHO} is used to calculate |
| 530 |
density. |
| 531 |
|
| 532 |
\fbox{ |
| 533 |
\begin{minipage}{5.0in} |
| 534 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
| 535 |
\end{minipage} |
| 536 |
} |
| 537 |
\filelink{find\_rho.F}{model-src-find_rho.F} |
| 538 |
|
| 539 |
\item Line 40, |
| 540 |
\begin{verbatim} |
| 541 |
usingSphericalPolarGrid=.TRUE., |
| 542 |
\end{verbatim} |
| 543 |
This line requests that the simulation be performed in a spherical |
| 544 |
polar coordinate system. It affects the interpretation of grid input |
| 545 |
parameters, for example {\bf delX} and {\bf delY} and causes the |
| 546 |
grid generation routines to initialize an internal grid based on |
| 547 |
spherical polar geometry. The variable |
| 548 |
\varlink{usingSphericalPolarGrid}{usingSphericalPolarGrid} is read |
| 549 |
in the routine \varlink{INI\_PARMS}{INI_PARMS}. When set to {\bf |
| 550 |
.TRUE.} the settings of {\bf delX} and {\bf delY} are taken to be |
| 551 |
in degrees. These values are used in the routine |
| 552 |
|
| 553 |
\fbox{ |
| 554 |
\begin{minipage}{5.0in} |
| 555 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
| 556 |
\end{minipage} |
| 557 |
} |
| 558 |
\filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} |
| 559 |
|
| 560 |
\item Line 41, |
| 561 |
\begin{verbatim} |
| 562 |
phiMin=0., |
| 563 |
\end{verbatim} |
| 564 |
This line sets the southern boundary of the modeled domain to |
| 565 |
$0^{\circ}$ latitude. This value affects both the generation of the |
| 566 |
locally orthogonal grid that the model uses internally and affects |
| 567 |
the initialization of the coriolis force. Note - it is not required |
| 568 |
to set a longitude boundary, since the absolute longitude does not |
| 569 |
alter the kernel equation discretisation. The variable |
| 570 |
\varlink{phiMin}{phiMin} is read in the |
| 571 |
routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine |
| 572 |
|
| 573 |
\fbox{ |
| 574 |
\begin{minipage}{5.0in} |
| 575 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
| 576 |
\end{minipage} |
| 577 |
} |
| 578 |
\filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} |
| 579 |
|
| 580 |
\item Line 42, |
| 581 |
\begin{verbatim} |
| 582 |
delX=60*1., |
| 583 |
\end{verbatim} |
| 584 |
This line sets the horizontal grid spacing between each y-coordinate |
| 585 |
line in the discrete grid to $1^{\circ}$ in longitude. The variable |
| 586 |
\varlink{delX}{delX} is read in the routine |
| 587 |
\varlink{INI\_PARMS}{INI_PARMS} and is used in routine |
| 588 |
|
| 589 |
\fbox{ |
| 590 |
\begin{minipage}{5.0in} |
| 591 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
| 592 |
\end{minipage} |
| 593 |
} |
| 594 |
\filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} |
| 595 |
|
| 596 |
\item Line 43, |
| 597 |
\begin{verbatim} |
| 598 |
delY=60*1., |
| 599 |
\end{verbatim} |
| 600 |
This line sets the horizontal grid spacing between each y-coordinate |
| 601 |
line in the discrete grid to $1^{\circ}$ in latitude. The variable |
| 602 |
\varlink{delY}{delY} is read in the routine |
| 603 |
\varlink{INI\_PARMS}{INI_PARMS} and is used in routine |
| 604 |
|
| 605 |
\fbox{ |
| 606 |
\begin{minipage}{5.0in} |
| 607 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
| 608 |
\end{minipage} |
| 609 |
} |
| 610 |
\filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} |
| 611 |
|
| 612 |
\item Line 44, |
| 613 |
\begin{verbatim} |
| 614 |
delZ=500.,500.,500.,500., |
| 615 |
\end{verbatim} |
| 616 |
This line sets the vertical grid spacing between each z-coordinate |
| 617 |
line in the discrete grid to $500\,{\rm m}$, so that the total model |
| 618 |
depth is $2\,{\rm km}$. The variable \varlink{delZ}{delZ} is read |
| 619 |
in the routine \varlink{INI\_PARMS}{INI_PARMS}. It is copied into |
| 620 |
the internal model coordinate variable \varlink{delR}{delR} which is |
| 621 |
used in routine |
| 622 |
|
| 623 |
\fbox{ |
| 624 |
\begin{minipage}{5.0in} |
| 625 |
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
| 626 |
\end{minipage} |
| 627 |
} |
| 628 |
\filelink{ini\_vertical\_grid.F}{model-src-ini_vertical_grid.F} |
| 629 |
|
| 630 |
\item Line 47, |
| 631 |
\begin{verbatim} |
| 632 |
bathyFile='topog.box' |
| 633 |
\end{verbatim} |
| 634 |
This line specifies the name of the file from which the domain |
| 635 |
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
| 636 |
depths. This file is assumed to contain 64-bit binary numbers giving |
| 637 |
the depth of the model at each grid cell, ordered with the x |
| 638 |
coordinate varying fastest. The points are ordered from low |
| 639 |
coordinate to high coordinate for both axes. The units and |
| 640 |
orientation of the depths in this file are the same as used in the |
| 641 |
MITgcm code. In this experiment, a depth of $0m$ indicates a solid |
| 642 |
wall and a depth of $-2000m$ indicates open ocean. The matlab |
| 643 |
program {\it input/gendata.m} shows an example of how to generate a |
| 644 |
bathymetry file. The variable \varlink{bathyFile}{bathyFile} is |
| 645 |
read in the routine \varlink{INI\_PARMS}{INI_PARMS}. The bathymetry |
| 646 |
file is read in the routine |
| 647 |
|
| 648 |
\fbox{ |
| 649 |
\begin{minipage}{5.0in} |
| 650 |
{\it S/R INI\_DEPTHS}({\it ini\_depths.F}) |
| 651 |
\end{minipage} |
| 652 |
} |
| 653 |
\filelink{ini\_depths.F}{model-src-ini_depths.F} |
| 654 |
|
| 655 |
\item Line 50, |
| 656 |
\begin{verbatim} |
| 657 |
zonalWindFile='windx.sin_y' |
| 658 |
\end{verbatim} |
| 659 |
This line specifies the name of the file from which the x-direction |
| 660 |
(zonal) surface wind stress is read. This file is also a |
| 661 |
two-dimensional ($x,y$) map and is enumerated and formatted in the |
| 662 |
same manner as the bathymetry file. The matlab program {\it |
| 663 |
input/gendata.m} includes example code to generate a valid {\bf |
| 664 |
zonalWindFile} file. The variable |
| 665 |
\varlink{zonalWindFile}{zonalWindFile} is read in the routine |
| 666 |
\varlink{INI\_PARMS}{INI_PARMS}. The wind-stress file is read in |
| 667 |
the routine |
| 668 |
|
| 669 |
\fbox{ |
| 670 |
\begin{minipage}{5.0in} |
| 671 |
{\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) |
| 672 |
\end{minipage} |
| 673 |
} |
| 674 |
\filelink{external\_fields\_load.F}{model-src-external_fields_load.F} |
| 675 |
|
| 676 |
\end{itemize} |
| 677 |
|
| 678 |
\noindent other lines in the file {\it input/data} are standard values. |
| 679 |
|
| 680 |
\begin{rawhtml}<PRE>\end{rawhtml} |
| 681 |
\begin{small} |
| 682 |
\input{part3/case_studies/fourlayer_gyre/input/data} |
| 683 |
\end{small} |
| 684 |
\begin{rawhtml}</PRE>\end{rawhtml} |
| 685 |
|
| 686 |
\subsubsection{File {\it input/data.pkg}} |
| 687 |
\label{www:tutorials} |
| 688 |
|
| 689 |
This file uses standard default values and does not contain |
| 690 |
customisations for this experiment. |
| 691 |
|
| 692 |
\subsubsection{File {\it input/eedata}} |
| 693 |
\label{www:tutorials} |
| 694 |
|
| 695 |
This file uses standard default values and does not contain |
| 696 |
customisations for this experiment. |
| 697 |
|
| 698 |
\subsubsection{File {\it input/windx.sin\_y}} |
| 699 |
\label{www:tutorials} |
| 700 |
|
| 701 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
| 702 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ |
| 703 |
(the default for MITgcm). Although $\tau_{x}$ is only a function of |
| 704 |
latitude, $y$, in this experiment this file must still define a |
| 705 |
complete two-dimensional map in order to be compatible with the |
| 706 |
standard code for loading forcing fields in MITgcm (routine {\it |
| 707 |
EXTERNAL\_FIELDS\_LOAD}. The included matlab program {\it |
| 708 |
input/gendata.m} gives a complete code for creating the {\it |
| 709 |
input/windx.sin\_y} file. |
| 710 |
|
| 711 |
\subsubsection{File {\it input/topog.box}} |
| 712 |
\label{www:tutorials} |
| 713 |
|
| 714 |
|
| 715 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
| 716 |
map of depth values. For this experiment values are either |
| 717 |
$0~{\rm m}$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
| 718 |
ocean. The file contains a raw binary stream of data that is enumerated |
| 719 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
| 720 |
The included matlab program {\it input/gendata.m} gives a complete |
| 721 |
code for creating the {\it input/topog.box} file. |
| 722 |
|
| 723 |
\subsubsection{File {\it code/SIZE.h}} |
| 724 |
\label{www:tutorials} |
| 725 |
|
| 726 |
Two lines are customized in this file for the current experiment |
| 727 |
|
| 728 |
\begin{itemize} |
| 729 |
|
| 730 |
\item Line 39, |
| 731 |
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
| 732 |
the lateral domain extent in grid points for the |
| 733 |
axis aligned with the x-coordinate. |
| 734 |
|
| 735 |
\item Line 40, |
| 736 |
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
| 737 |
the lateral domain extent in grid points for the |
| 738 |
axis aligned with the y-coordinate. |
| 739 |
|
| 740 |
\item Line 49, |
| 741 |
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
| 742 |
the vertical domain extent in grid points. |
| 743 |
|
| 744 |
\end{itemize} |
| 745 |
|
| 746 |
\begin{small} |
| 747 |
\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} |
| 748 |
\end{small} |
| 749 |
|
| 750 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 751 |
\label{www:tutorials} |
| 752 |
|
| 753 |
This file uses standard default values and does not contain |
| 754 |
customisations for this experiment. |
| 755 |
|
| 756 |
|
| 757 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 758 |
\label{www:tutorials} |
| 759 |
|
| 760 |
This file uses standard default values and does not contain |
| 761 |
customisations for this experiment. |
| 762 |
|
| 763 |
\subsubsection{Other Files } |
| 764 |
\label{www:tutorials} |
| 765 |
|
| 766 |
Other files relevant to this experiment are |
| 767 |
\begin{itemize} |
| 768 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
| 769 |
coriolis variables {\bf fCorU} and {\bf fCorV}. |
| 770 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} This file |
| 771 |
initializes the model grid discretisation variables {\bf |
| 772 |
dxF, dyF, dxG, dyG, dxC, dyC}. |
| 773 |
\item {\it model/src/ini\_parms.F}. |
| 774 |
\end{itemize} |
| 775 |
|
| 776 |
\subsection{Running The Example} |
| 777 |
\label{www:tutorials} |
| 778 |
\label{SEC:running_the_example} |
| 779 |
|
| 780 |
\subsubsection{Code Download} |
| 781 |
\label{www:tutorials} |
| 782 |
|
| 783 |
In order to run the examples you must first download the code distribution. |
| 784 |
Instructions for downloading the code can be found in section |
| 785 |
\ref{sect:obtainingCode}. |
| 786 |
|
| 787 |
\subsubsection{Experiment Location} |
| 788 |
\label{www:tutorials} |
| 789 |
|
| 790 |
This example experiments is located under the release sub-directory |
| 791 |
|
| 792 |
\vspace{5mm} |
| 793 |
{\it verification/exp2/ } |
| 794 |
|
| 795 |
\subsubsection{Running the Experiment} |
| 796 |
\label{www:tutorials} |
| 797 |
|
| 798 |
To run the experiment |
| 799 |
|
| 800 |
\begin{enumerate} |
| 801 |
\item Set the current directory to {\it input/ } |
| 802 |
|
| 803 |
\begin{verbatim} |
| 804 |
% cd input |
| 805 |
\end{verbatim} |
| 806 |
|
| 807 |
\item Verify that current directory is now correct |
| 808 |
|
| 809 |
\begin{verbatim} |
| 810 |
% pwd |
| 811 |
\end{verbatim} |
| 812 |
|
| 813 |
You should see a response on the screen ending in |
| 814 |
|
| 815 |
{\it verification/exp2/input } |
| 816 |
|
| 817 |
|
| 818 |
\item Run the genmake script to create the experiment {\it Makefile} |
| 819 |
|
| 820 |
\begin{verbatim} |
| 821 |
% ../../../tools/genmake -mods=../code |
| 822 |
\end{verbatim} |
| 823 |
|
| 824 |
\item Create a list of header file dependencies in {\it Makefile} |
| 825 |
|
| 826 |
\begin{verbatim} |
| 827 |
% make depend |
| 828 |
\end{verbatim} |
| 829 |
|
| 830 |
\item Build the executable file. |
| 831 |
|
| 832 |
\begin{verbatim} |
| 833 |
% make |
| 834 |
\end{verbatim} |
| 835 |
|
| 836 |
\item Run the {\it mitgcmuv} executable |
| 837 |
|
| 838 |
\begin{verbatim} |
| 839 |
% ./mitgcmuv |
| 840 |
\end{verbatim} |
| 841 |
|
| 842 |
\end{enumerate} |
| 843 |
|
| 844 |
|