Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/25 18:36:55 1.9
+++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 19:01:42 1.10
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.9 2001/10/25 18:36:55 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.10 2001/11/13 19:01:42 adcroft Exp $
% $Name: $
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}
@@ -120,7 +120,7 @@
\subsection{Equations solved}
For this problem
the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the
-equations described in Marshall et. al \cite{Marshall97a} are
+equations described in Marshall et. al \cite{marshall:97a} are
employed. The flow is three-dimensional with just temperature, $\theta$, as
an active tracer. The equation of state is linear.
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |