Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/24 15:21:27 1.3
+++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/10/24 19:43:07 1.4
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.3 2001/10/24 15:21:27 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.4 2001/10/24 19:43:07 cnh Exp $
% $Name: $
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}
@@ -133,13 +133,13 @@
\begin{eqnarray}
\label{EQ:model_equations}
\frac{Du}{Dt} - fv +
- \frac{1}{\rho}\frac{\partial p^{'}}{\partial \lambda} -
+ \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}
& = &
\cal{F}
\\
\frac{Dv}{Dt} + fu +
- \frac{1}{\rho}\frac{\partial p^{'}}{\partial \varphi} -
+ \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} -
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}
& = &
0
@@ -154,10 +154,10 @@
& = &
0
\\
-p^{'} & = &
-g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz
+p^{\prime} & = &
+g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz
\\
-\rho^{'} & = &- \alpha_{\theta}\rho_{0}\theta^{'}
+\rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime}
\\
{\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}}
\\
@@ -166,11 +166,14 @@
\noindent where $u$ and $v$ are the components of the horizontal
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$).
+The terms $H\hat{u}$ and $H\hat{v}$ are the components of the term
+integrated in eqaution \ref{eq:free-surface}, as descirbed in section
+
The suffices ${s},{i}$ indicate surface and interior of the domain.
The forcing $\cal F$ is only applied at the surface.
-The pressure field $p^{'}$ is separated into a barotropic part
+The pressure field, $p^{\prime}$, is separated into a barotropic part
due to variations in sea-surface height, $\eta$, and a hydrostatic
-part due to variations in density, $\rho^{'}$, over the water column.
+part due to variations in density, $\rho^{\prime}$, over the water column.
\subsection{Discrete Numerical Configuration}
@@ -179,7 +182,7 @@
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so
that there are sixty grid cells in the zonal and meridional directions.
Vertically the
-model is configured with a four layers with constant depth,
+model is configured with four layers with constant depth,
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate
variables $x$ and $y$ are initialised from the values of
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |