Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 20:13:54 1.11
+++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2002/02/28 19:32:19 1.12
@@ -1,7 +1,7 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.11 2001/11/13 20:13:54 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.12 2002/02/28 19:32:19 cnh Exp $
% $Name: $
-\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}
+\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates}
\label{sect:eg-fourlayer}
\bodytext{bgcolor="#FFFFFFFF"}
@@ -43,7 +43,7 @@
according to latitude, $\varphi$
\begin{equation}
-\label{EQ:fcori}
+\label{EQ:eg-fourlayer-fcori}
f(\varphi) = 2 \Omega \sin( \varphi )
\end{equation}
@@ -61,7 +61,7 @@
$\tau_0$ is set to $0.1N m^{-2}$.
\\
-Figure \ref{FIG:simulation_config}
+Figure \ref{FIG:eg-fourlayer-simulation_config}
summarizes the configuration simulated.
In contrast to the example in section \ref{sect:eg-baro}, the
current experiment simulates a spherical polar domain. As indicated
@@ -82,14 +82,14 @@
linear
\begin{equation}
-\label{EQ:linear1_eos}
+\label{EQ:eg-fourlayer-linear1_eos}
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} )
\end{equation}
\noindent which is implemented in the model as a density anomaly equation
\begin{equation}
-\label{EQ:linear1_eos_pert}
+\label{EQ:eg-fourlayer-linear1_eos_pert}
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'}
\end{equation}
@@ -114,7 +114,7 @@
imposed by setting the potential temperature, $\theta$, in each layer.
The vertical spacing, $\Delta z$, is constant and equal to $500$m.
}
-\label{FIG:simulation_config}
+\label{FIG:eg-fourlayer-simulation_config}
\end{figure}
\subsection{Equations solved}
@@ -133,7 +133,7 @@
follows
\begin{eqnarray}
-\label{EQ:model_equations}
+\label{EQ:eg-fourlayer-model_equations}
\frac{Du}{Dt} - fv +
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}
@@ -266,7 +266,7 @@
This value is chosen to yield a Munk layer width,
\begin{eqnarray}
-\label{EQ:munk_layer}
+\label{EQ:eg-fourlayer-munk_layer}
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
\end{eqnarray}
@@ -282,7 +282,7 @@
parameter to the horizontal Laplacian friction
\begin{eqnarray}
-\label{EQ:laplacian_stability}
+\label{EQ:eg-fourlayer-laplacian_stability}
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
\end{eqnarray}
@@ -294,7 +294,7 @@
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
\begin{eqnarray}
-\label{EQ:laplacian_stability_z}
+\label{EQ:eg-fourlayer-laplacian_stability_z}
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2}
\end{eqnarray}
@@ -307,7 +307,7 @@
\noindent The numerical stability for inertial oscillations
\begin{eqnarray}
-\label{EQ:inertial_stability}
+\label{EQ:eg-fourlayer-inertial_stability}
S_{i} = f^{2} {\delta t}^2
\end{eqnarray}
@@ -320,7 +320,7 @@
speed of $ | \vec{u} | = 2 ms^{-1}$
\begin{eqnarray}
-\label{EQ:cfl_stability}
+\label{EQ:eg-fourlayer-cfl_stability}
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
\end{eqnarray}
@@ -332,7 +332,7 @@
propagating at $2~{\rm m}~{\rm s}^{-1}$
\begin{eqnarray}
-\label{EQ:igw_stability}
+\label{EQ:eg-fourlayer-igw_stability}
S_{c} = \frac{c_{g} \delta t}{ \Delta x}
\end{eqnarray}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |