Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 19:01:42 1.10
+++ manual/s_examples/baroclinic_gyre/fourlayer.tex 2001/11/13 20:13:54 1.11
@@ -1,8 +1,8 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.10 2001/11/13 19:01:42 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/baroclinic_gyre/fourlayer.tex,v 1.11 2001/11/13 20:13:54 adcroft Exp $
% $Name: $
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates}
-\label{sec:eg-fourlayer}
+\label{sect:eg-fourlayer}
\bodytext{bgcolor="#FFFFFFFF"}
@@ -19,7 +19,7 @@
This document describes an example experiment using MITgcm
to simulate a baroclinic ocean gyre in spherical
polar coordinates. The barotropic
-example experiment in section \ref{sec:eg-baro}
+example experiment in section \ref{sect:eg-baro}
illustrated how to configure the code for a single layer
simulation in a Cartesian grid. In this example a similar physical problem
is simulated, but the code is now configured
@@ -63,7 +63,7 @@
Figure \ref{FIG:simulation_config}
summarizes the configuration simulated.
-In contrast to the example in section \ref{sec:eg-baro}, the
+In contrast to the example in section \ref{sect:eg-baro}, the
current experiment simulates a spherical polar domain. As indicated
by the axes in the lower left of the figure the model code works internally
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description
@@ -119,7 +119,7 @@
\subsection{Equations solved}
For this problem
-the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the
+the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the
equations described in Marshall et. al \cite{marshall:97a} are
employed. The flow is three-dimensional with just temperature, $\theta$, as
an active tracer. The equation of state is linear.
@@ -221,7 +221,7 @@
The procedure for generating a set of internal grid variables from a
spherical polar grid specification is discussed in section
-\ref{sec:spatial_discrete_horizontal_grid}.
+\ref{sect:spatial_discrete_horizontal_grid}.
\noindent\fbox{ \begin{minipage}{5.5in}
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em
@@ -242,15 +242,15 @@
-As described in \ref{sec:tracer_equations}, the time evolution of potential
+As described in \ref{sect:tracer_equations}, the time evolution of potential
temperature,
$\theta$, (equation \ref{eq:eg_fourl_theta})
is evaluated prognostically. The centered second-order scheme with
Adams-Bashforth time stepping described in section
-\ref{sec:tracer_equations_abII} is used to step forward the temperature
+\ref{sect:tracer_equations_abII} is used to step forward the temperature
equation. Prognostic terms in
the momentum equations are solved using flux form as
-described in section \ref{sec:flux-form_momentum_eqautions}.
+described in section \ref{sect:flux-form_momentum_eqautions}.
The pressure forces that drive the fluid motions, (
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the
@@ -258,7 +258,7 @@
height, $\eta$, is diagnosed using an implicit scheme. The pressure
field solution method is described in sections
\ref{sect:pressure-method-linear-backward} and
-\ref{sec:finding_the_pressure_field}.
+\ref{sect:finding_the_pressure_field}.
\subsubsection{Numerical Stability Criteria}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |