| 1 | 
 % $Header$ | 
 % $Header$ | 
| 2 | 
 % $Name$ | 
 % $Name$ | 
| 3 | 
  | 
  | 
| 4 | 
 \section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} | 
 \section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} | 
| 5 | 
 \label{sec:eg-fourlayer} | 
 \label{www:tutorials} | 
| 6 | 
  | 
 \label{sect:eg-fourlayer} | 
| 7 | 
  | 
 \begin{rawhtml} | 
| 8 | 
  | 
 <!-- CMIREDIR:eg-fourlayer: --> | 
| 9 | 
  | 
 \end{rawhtml} | 
| 10 | 
  | 
  | 
| 11 | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
 \bodytext{bgcolor="#FFFFFFFF"} | 
| 12 | 
  | 
  | 
| 21 | 
 %\end{center} | 
 %\end{center} | 
| 22 | 
  | 
  | 
| 23 | 
 This document describes an example experiment using MITgcm | 
 This document describes an example experiment using MITgcm | 
| 24 | 
 to simulate a baroclinic ocean gyre in spherical | 
 to simulate a baroclinic ocean gyre for four layers in spherical | 
| 25 | 
 polar coordinates. The barotropic | 
 polar coordinates.  The files for this experiment can be found | 
| 26 | 
 example experiment in section \ref{sec:eg-baro} | 
 in the verification directory under tutorial\_baroclinic\_gyre. | 
 | 
 ilustrated how to configure the code for a single layer  | 
  | 
 | 
 simulation in a cartesian grid. In this example a similar physical problem | 
  | 
 | 
 is simulated, but the code is now configured | 
  | 
 | 
 for four layers and in a spherical polar coordinate system. | 
  | 
| 27 | 
  | 
  | 
| 28 | 
 \subsection{Overview} | 
 \subsection{Overview} | 
| 29 | 
  | 
 \label{www:tutorials} | 
| 30 | 
  | 
  | 
| 31 | 
 This example experiment demonstrates using the MITgcm to simulate | 
 This example experiment demonstrates using the MITgcm to simulate | 
| 32 | 
 a baroclinic, wind-forced, ocean gyre circulation. The experiment  | 
 a baroclinic, wind-forced, ocean gyre circulation. The experiment  | 
| 33 | 
 is a numerical rendition of the gyre circulation problem simliar | 
 is a numerical rendition of the gyre circulation problem similar | 
| 34 | 
 to the problems described analytically by Stommel in 1966  | 
 to the problems described analytically by Stommel in 1966  | 
| 35 | 
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
| 36 | 
 \\ | 
 \\ | 
| 44 | 
 according to latitude, $\varphi$ | 
 according to latitude, $\varphi$ | 
| 45 | 
  | 
  | 
| 46 | 
 \begin{equation} | 
 \begin{equation} | 
| 47 | 
 \label{EQ:fcori} | 
 \label{EQ:eg-fourlayer-fcori} | 
| 48 | 
 f(\varphi) = 2 \Omega \sin( \varphi ) | 
 f(\varphi) = 2 \Omega \sin( \varphi ) | 
| 49 | 
 \end{equation} | 
 \end{equation} | 
| 50 | 
   | 
   | 
| 62 | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
 $\tau_0$ is set to $0.1N m^{-2}$.  | 
| 63 | 
 \\ | 
 \\ | 
| 64 | 
  | 
  | 
| 65 | 
 Figure \ref{FIG:simulation_config} | 
 Figure \ref{FIG:eg-fourlayer-simulation_config} | 
| 66 | 
 summarises the configuration simulated. | 
 summarizes the configuration simulated. | 
| 67 | 
 In contrast to the example in section \ref{sec:eg-baro}, the  | 
 In contrast to the example in section \ref{sect:eg-baro}, the  | 
| 68 | 
 current experiment simulates a spherical polar domain. As indicated | 
 current experiment simulates a spherical polar domain. As indicated | 
| 69 | 
 by the axes in the lower left of the figure the model code works internally | 
 by the axes in the lower left of the figure the model code works internally | 
| 70 | 
 in a locally orthoganal coordinate $(x,y,z)$. For this experiment description  | 
 in a locally orthogonal coordinate $(x,y,z)$. For this experiment description  | 
| 71 | 
 the local orthogonal model coordinate $(x,y,z)$ is synonomous  | 
 the local orthogonal model coordinate $(x,y,z)$ is synonymous  | 
| 72 | 
 with the coordinates $(\lambda,\varphi,r)$ shown in figure | 
 with the coordinates $(\lambda,\varphi,r)$ shown in figure | 
| 73 | 
 \ref{fig:spherical-polar-coord} | 
 \ref{fig:spherical-polar-coord} | 
| 74 | 
 \\ | 
 \\ | 
| 83 | 
 linear | 
 linear | 
| 84 | 
  | 
  | 
| 85 | 
 \begin{equation} | 
 \begin{equation} | 
| 86 | 
 \label{EQ:linear1_eos} | 
 \label{EQ:eg-fourlayer-linear1_eos} | 
| 87 | 
 \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) | 
 \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) | 
| 88 | 
 \end{equation} | 
 \end{equation} | 
| 89 | 
  | 
  | 
| 90 | 
 \noindent which is implemented in the model as a density anomaly equation | 
 \noindent which is implemented in the model as a density anomaly equation | 
| 91 | 
  | 
  | 
| 92 | 
 \begin{equation} | 
 \begin{equation} | 
| 93 | 
 \label{EQ:linear1_eos_pert} | 
 \label{EQ:eg-fourlayer-linear1_eos_pert} | 
| 94 | 
 \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} | 
 \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} | 
| 95 | 
 \end{equation} | 
 \end{equation} | 
| 96 | 
  | 
  | 
| 103 | 
 the quantity that is carried in the model core equations. | 
 the quantity that is carried in the model core equations. | 
| 104 | 
  | 
  | 
| 105 | 
 \begin{figure} | 
 \begin{figure} | 
| 106 | 
 \begin{center} | 
 %% \begin{center} | 
| 107 | 
  \resizebox{7.5in}{5.5in}{ | 
 %%  \resizebox{7.5in}{5.5in}{ | 
| 108 | 
    \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
 %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 109 | 
    {part3/case_studies/fourlayer_gyre/simulation_config.eps} } | 
 %%    {part3/case_studies/fourlayer_gyre/simulation_config.eps} } | 
| 110 | 
 \end{center} | 
 %% \end{center} | 
| 111 | 
  | 
 \centerline{ | 
| 112 | 
  | 
   \scalefig{.95} | 
| 113 | 
  | 
   \epsfbox{part3/case_studies/fourlayer_gyre/simulation_config.eps} | 
| 114 | 
  | 
 } | 
| 115 | 
 \caption{Schematic of simulation domain and wind-stress forcing function  | 
 \caption{Schematic of simulation domain and wind-stress forcing function  | 
| 116 | 
 for the four-layer gyre numerical experiment. The domain is enclosed by solid | 
 for the four-layer gyre numerical experiment. The domain is enclosed by solid | 
| 117 | 
 walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. | 
 walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. | 
| 119 | 
 imposed by setting the potential temperature, $\theta$, in each layer. | 
 imposed by setting the potential temperature, $\theta$, in each layer. | 
| 120 | 
 The vertical spacing, $\Delta z$, is constant and equal to $500$m. | 
 The vertical spacing, $\Delta z$, is constant and equal to $500$m. | 
| 121 | 
 } | 
 } | 
| 122 | 
 \label{FIG:simulation_config} | 
 \label{FIG:eg-fourlayer-simulation_config} | 
| 123 | 
 \end{figure} | 
 \end{figure} | 
| 124 | 
  | 
  | 
| 125 | 
 \subsection{Equations solved} | 
 \subsection{Equations solved} | 
| 126 | 
  | 
 \label{www:tutorials} | 
| 127 | 
 For this problem | 
 For this problem | 
| 128 | 
 the implicit free surface, {\bf HPE} (see section \ref{sec:hydrostatic_and_quasi-hydrostatic_forms}) form of the  | 
 the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the  | 
| 129 | 
 equations described in Marshall et. al \cite{Marshall97a} are | 
 equations described in Marshall et. al \cite{marshall:97a} are | 
| 130 | 
 employed. The flow is three-dimensional with just temperature, $\theta$, as  | 
 employed. The flow is three-dimensional with just temperature, $\theta$, as  | 
| 131 | 
 an active tracer.  The equation of state is linear. | 
 an active tracer.  The equation of state is linear. | 
| 132 | 
 A horizontal laplacian operator $\nabla_{h}^2$ provides viscous | 
 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
| 133 | 
 dissipation and provides a diffusive sub-grid scale closure for the  | 
 dissipation and provides a diffusive sub-grid scale closure for the  | 
| 134 | 
 temperature equation. A wind-stress momentum forcing is added to the momentum  | 
 temperature equation. A wind-stress momentum forcing is added to the momentum  | 
| 135 | 
 equation for the zonal flow, $u$. Other terms in the model | 
 equation for the zonal flow, $u$. Other terms in the model | 
| 136 | 
 are explicitly switched off for this experiement configuration (see section | 
 are explicitly switched off for this experiment configuration (see section | 
| 137 | 
 \ref{SEC:eg_fourl_code_config} ). This yields an active set of equations | 
 \ref{SEC:eg_fourl_code_config} ). This yields an active set of equations | 
| 138 | 
 solved in this configuration, written in spherical polar coordinates as  | 
 solved in this configuration, written in spherical polar coordinates as  | 
| 139 | 
 follows | 
 follows | 
| 140 | 
  | 
  | 
| 141 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 142 | 
 \label{EQ:model_equations} | 
 \label{EQ:eg-fourlayer-model_equations} | 
| 143 | 
 \frac{Du}{Dt} - fv +  | 
 \frac{Du}{Dt} - fv +  | 
| 144 | 
   \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -  | 
   \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} -  | 
| 145 | 
   A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}  | 
   A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}  | 
| 208 | 
  | 
  | 
| 209 | 
  | 
  | 
| 210 | 
 \subsection{Discrete Numerical Configuration} | 
 \subsection{Discrete Numerical Configuration} | 
| 211 | 
  | 
 \label{www:tutorials} | 
| 212 | 
  | 
  | 
| 213 | 
  The domain is discretised with  | 
  The domain is discretised with  | 
| 214 | 
 a uniform grid spacing in latitude and longitude | 
 a uniform grid spacing in latitude and longitude | 
| 217 | 
 Vertically the  | 
 Vertically the  | 
| 218 | 
 model is configured with four layers with constant depth,  | 
 model is configured with four layers with constant depth,  | 
| 219 | 
 $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate  | 
 $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate  | 
| 220 | 
 variables $x$ and $y$ are initialised from the values of | 
 variables $x$ and $y$ are initialized from the values of | 
| 221 | 
 $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in | 
 $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in | 
| 222 | 
 radians according to | 
 radians according to | 
| 223 | 
  | 
  | 
| 228 | 
  | 
  | 
| 229 | 
 The procedure for generating a set of internal grid variables from a | 
 The procedure for generating a set of internal grid variables from a | 
| 230 | 
 spherical polar grid specification is discussed in section  | 
 spherical polar grid specification is discussed in section  | 
| 231 | 
 \ref{sec:spatial_discrete_horizontal_grid}. | 
 \ref{sect:spatial_discrete_horizontal_grid}. | 
| 232 | 
  | 
  | 
| 233 | 
 \noindent\fbox{ \begin{minipage}{5.5in} | 
 \noindent\fbox{ \begin{minipage}{5.5in} | 
| 234 | 
 {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em | 
 {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em | 
| 249 | 
  | 
  | 
| 250 | 
  | 
  | 
| 251 | 
  | 
  | 
| 252 | 
 As described in \ref{sec:tracer_equations}, the time evolution of potential  | 
 As described in \ref{sect:tracer_equations}, the time evolution of potential  | 
| 253 | 
 temperature,  | 
 temperature,  | 
| 254 | 
 $\theta$, (equation \ref{eq:eg_fourl_theta}) | 
 $\theta$, (equation \ref{eq:eg_fourl_theta}) | 
| 255 | 
 is evaluated prognostically. The centered second-order scheme with | 
 is evaluated prognostically. The centered second-order scheme with | 
| 256 | 
 Adams-Bashforth time stepping described in section  | 
 Adams-Bashforth time stepping described in section  | 
| 257 | 
 \ref{sec:tracer_equations_abII} is used to step forward the temperature  | 
 \ref{sect:tracer_equations_abII} is used to step forward the temperature  | 
| 258 | 
 equation. Prognostic terms in | 
 equation. Prognostic terms in | 
| 259 | 
 the momentum equations are solved using flux form as | 
 the momentum equations are solved using flux form as | 
| 260 | 
 described in section \ref{sec:flux-form_momentum_eqautions}. | 
 described in section \ref{sect:flux-form_momentum_eqautions}. | 
| 261 | 
 The pressure forces that drive the fluid motions, ( | 
 The pressure forces that drive the fluid motions, ( | 
| 262 | 
 $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface  | 
 $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface  | 
| 263 | 
 elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the  | 
 elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the  | 
| 265 | 
 height, $\eta$, is diagnosed using an implicit scheme. The pressure | 
 height, $\eta$, is diagnosed using an implicit scheme. The pressure | 
| 266 | 
 field solution method is described in sections | 
 field solution method is described in sections | 
| 267 | 
 \ref{sect:pressure-method-linear-backward} and  | 
 \ref{sect:pressure-method-linear-backward} and  | 
| 268 | 
 \ref{sec:finding_the_pressure_field}. | 
 \ref{sect:finding_the_pressure_field}. | 
| 269 | 
  | 
  | 
| 270 | 
 \subsubsection{Numerical Stability Criteria} | 
 \subsubsection{Numerical Stability Criteria} | 
| 271 | 
  | 
 \label{www:tutorials} | 
| 272 | 
  | 
  | 
| 273 | 
 The laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
 The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 274 | 
 This value is chosen to yield a Munk layer width, | 
 This value is chosen to yield a Munk layer width, | 
| 275 | 
  | 
  | 
| 276 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 277 | 
 \label{EQ:munk_layer} | 
 \label{EQ:eg-fourlayer-munk_layer} | 
| 278 | 
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 279 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 280 | 
  | 
  | 
| 287 | 
  | 
  | 
| 288 | 
 \noindent The model is stepped forward with a  | 
 \noindent The model is stepped forward with a  | 
| 289 | 
 time step $\delta t=1200$secs. With this time step the stability  | 
 time step $\delta t=1200$secs. With this time step the stability  | 
| 290 | 
 parameter to the horizontal laplacian friction | 
 parameter to the horizontal Laplacian friction | 
| 291 | 
  | 
  | 
| 292 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 293 | 
 \label{EQ:laplacian_stability} | 
 \label{EQ:eg-fourlayer-laplacian_stability} | 
| 294 | 
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
| 295 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 296 | 
  | 
  | 
| 302 | 
 $1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
 $1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
| 303 | 
  | 
  | 
| 304 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 305 | 
 \label{EQ:laplacian_stability_z} | 
 \label{EQ:eg-fourlayer-laplacian_stability_z} | 
| 306 | 
 S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} | 
 S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} | 
| 307 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 308 | 
  | 
  | 
| 315 | 
 \noindent The numerical stability for inertial oscillations | 
 \noindent The numerical stability for inertial oscillations | 
| 316 | 
  | 
  | 
| 317 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 318 | 
 \label{EQ:inertial_stability} | 
 \label{EQ:eg-fourlayer-inertial_stability} | 
| 319 | 
 S_{i} = f^{2} {\delta t}^2 | 
 S_{i} = f^{2} {\delta t}^2 | 
| 320 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 321 | 
  | 
  | 
| 328 | 
 speed of $ | \vec{u} | = 2 ms^{-1}$ | 
 speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 329 | 
  | 
  | 
| 330 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 331 | 
 \label{EQ:cfl_stability} | 
 \label{EQ:eg-fourlayer-cfl_stability} | 
| 332 | 
 C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
 C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
| 333 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 334 | 
  | 
  | 
| 337 | 
 \\ | 
 \\ | 
| 338 | 
  | 
  | 
| 339 | 
 \noindent The stability parameter for internal gravity waves | 
 \noindent The stability parameter for internal gravity waves | 
| 340 | 
 propogating at $2~{\rm m}~{\rm s}^{-1}$  | 
 propagating at $2~{\rm m}~{\rm s}^{-1}$  | 
| 341 | 
  | 
  | 
| 342 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 343 | 
 \label{EQ:igw_stability} | 
 \label{EQ:eg-fourlayer-igw_stability} | 
| 344 | 
 S_{c} = \frac{c_{g} \delta t}{ \Delta x} | 
 S_{c} = \frac{c_{g} \delta t}{ \Delta x} | 
| 345 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 346 | 
  | 
  | 
| 348 | 
 stability limit of 0.25. | 
 stability limit of 0.25. | 
| 349 | 
    | 
    | 
| 350 | 
 \subsection{Code Configuration} | 
 \subsection{Code Configuration} | 
| 351 | 
  | 
 \label{www:tutorials} | 
| 352 | 
 \label{SEC:eg_fourl_code_config} | 
 \label{SEC:eg_fourl_code_config} | 
| 353 | 
  | 
  | 
| 354 | 
 The model configuration for this experiment resides under the  | 
 The model configuration for this experiment resides under the  | 
| 363 | 
 \item {\it code/CPP\_OPTIONS.h}, | 
 \item {\it code/CPP\_OPTIONS.h}, | 
| 364 | 
 \item {\it code/SIZE.h}.  | 
 \item {\it code/SIZE.h}.  | 
| 365 | 
 \end{itemize} | 
 \end{itemize} | 
| 366 | 
 contain the code customisations and parameter settings for this  | 
 contain the code customisations and parameter settings for this | 
| 367 | 
 experiements. Below we describe the customisations | 
 experiment. Below we describe the customisations to these files | 
| 368 | 
 to these files associated with this experiment. | 
 associated with this experiment. | 
| 369 | 
  | 
  | 
| 370 | 
 \subsubsection{File {\it input/data}} | 
 \subsubsection{File {\it input/data}} | 
| 371 | 
  | 
 \label{www:tutorials} | 
| 372 | 
  | 
  | 
| 373 | 
 This file, reproduced completely below, specifies the main parameters  | 
 This file, reproduced completely below, specifies the main parameters  | 
| 374 | 
 for the experiment. The parameters that are significant for this configuration | 
 for the experiment. The parameters that are significant for this configuration | 
| 378 | 
  | 
  | 
| 379 | 
 \item Line 4,  | 
 \item Line 4,  | 
| 380 | 
 \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}  | 
 \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}  | 
| 381 | 
 this line sets | 
 this line sets the initial and reference values of potential | 
| 382 | 
 the initial and reference values of potential temperature at each model | 
 temperature at each model level in units of $^{\circ}\mathrm{C}$.  The entries | 
| 383 | 
 level in units of $^{\circ}$C. | 
 are ordered from surface to depth. For each depth level the initial | 
| 384 | 
 The entries are ordered from surface to depth. For each | 
 and reference profiles will be uniform in $x$ and $y$. The values | 
| 385 | 
 depth level the inital and reference profiles will be uniform in | 
 specified here are read into the variable \varlink{tRef}{tRef} in the | 
| 386 | 
 $x$ and $y$. The values specified here are read into the | 
 model code, by procedure \filelink{INI\_PARMS}{model-src-ini_parms.F} | 
 | 
 variable  | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
  | 
 | 
 tRef | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }  | 
  | 
 | 
 in the model code, by procedure  | 
  | 
 | 
 {\it | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
  | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. | 
  | 
 | 
  | 
  | 
 | 
 %% \codelink{var:tref} tRef \endlink | 
  | 
 | 
 %% \codelink{file:ini_parms} {\it INI\_PARMS } \endlink | 
  | 
 | 
 %% \codelink{proc:ini_parms} {\it INI\_PARMS } \endlink | 
  | 
 | 
 %% \var{tref} | 
  | 
 | 
 %% \proc{ini_parms} | 
  | 
 | 
 %% \file{ini_parms} | 
  | 
 | 
 \newcommand{\VARtref}{ | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
  | 
 | 
 tRef | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }  | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
 | 
  | 
  | 
| 387 | 
  | 
  | 
| 388 | 
 \fbox{ | 
 \fbox{ | 
| 389 | 
 \begin{minipage}{5.0in} | 
   \begin{minipage}{5.0in} | 
| 390 | 
 {\it S/R INI\_THETA} | 
     {\it S/R INI\_THETA}({\it ini\_theta.F}) | 
| 391 | 
 ({\it ini\_theta.F}) | 
   \end{minipage} | 
 | 
 \end{minipage} | 
  | 
| 392 | 
 } | 
 } | 
| 393 | 
 {\bf | 
 \filelink{ini\_theta.F}{model-src-ini_theta.F} | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/98.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
| 394 | 
  | 
  | 
| 395 | 
 \item Line 6,  | 
 \item Line 6,  | 
| 396 | 
 \begin{verbatim} viscAz=1.E-2, \end{verbatim}  | 
 \begin{verbatim} viscAz=1.E-2, \end{verbatim}  | 
| 397 | 
 this line sets the vertical laplacian dissipation coefficient to | 
 this line sets the vertical Laplacian dissipation coefficient to $1 | 
| 398 | 
 $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions for this | 
| 399 | 
 for this operator are specified later.  | 
 operator are specified later.  The variable \varlink{viscAz}{viscAz} | 
| 400 | 
 The variable  | 
 is read in the routine \filelink{ini\_parms.F}{model-src-ini_parms.F} | 
| 401 | 
 {\bf  | 
 and is copied into model general vertical coordinate variable | 
| 402 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} | 
 \varlink{viscAr}{viscAr} At each time step, the viscous term | 
| 403 | 
 viscAz | 
 contribution to the momentum equations is calculated in routine | 
| 404 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
 \varlink{CALC\_DIFFUSIVITY}{CALC_DIFFUSIVITY} | 
 | 
 } | 
  | 
 | 
 is read in the routine | 
  | 
 | 
 {\it | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
  | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
 and is copied into model general vertical coordinate variable  | 
  | 
 | 
 {\bf  | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} | 
  | 
 | 
 viscAr | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. At each time step, the viscous term contribution to the momentum eqautions | 
  | 
 | 
 is calculated in routine | 
  | 
 | 
 {\it S/R CALC\_DIFFUSIVITY}. | 
  | 
| 405 | 
  | 
  | 
| 406 | 
 \fbox{ | 
 \fbox{ | 
| 407 | 
 \begin{minipage}{5.0in} | 
 \begin{minipage}{5.0in} | 
| 408 | 
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 409 | 
 \end{minipage} | 
 \end{minipage} | 
| 410 | 
 } | 
 } | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 411 | 
  | 
  | 
| 412 | 
 \item Line 7,  | 
 \item Line 7,  | 
| 413 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 414 | 
 viscAh=4.E2, | 
 viscAh=4.E2, | 
| 415 | 
 \end{verbatim}  | 
 \end{verbatim}  | 
| 416 | 
 this line sets the horizontal laplacian frictional dissipation coefficient to | 
   this line sets the horizontal laplacian frictional dissipation | 
| 417 | 
 $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
   coefficient to $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary | 
| 418 | 
 for this operator are specified later. | 
   conditions for this operator are specified later.  The variable | 
| 419 | 
 The variable  | 
   \varlink{viscAh}{viscAh} is read in the routine | 
| 420 | 
 {\bf  | 
   \varlink{INI\_PARMS}{INI_PARMS} and applied in routine | 
| 421 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} | 
   \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. | 
 | 
 viscAh | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
 is read in the routine | 
  | 
 | 
 {\it | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
  | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and applied in routines {\it CALC\_MOM\_RHS} and {\it CALC\_GW}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 422 | 
  | 
  | 
| 423 | 
 \fbox{ | 
 \fbox{ | 
| 424 | 
 \begin{minipage}{5.0in} | 
   \begin{minipage}{5.0in} | 
| 425 | 
 {\it S/R CALC\_GW}({\it calc\_gw.F}) | 
     {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) | 
| 426 | 
 \end{minipage} | 
   \end{minipage} | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/58.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
| 427 | 
 } | 
 } | 
| 428 | 
  | 
  | 
| 429 | 
 \item Lines 8, | 
 \item Line 8, | 
| 430 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 431 | 
 no_slip_sides=.FALSE. | 
 no_slip_sides=.FALSE. | 
| 432 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 433 | 
 this line selects a free-slip lateral boundary condition for | 
   this line selects a free-slip lateral boundary condition for the | 
| 434 | 
 the horizontal laplacian friction operator  | 
   horizontal laplacian friction operator e.g. $\frac{\partial | 
| 435 | 
 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
     u}{\partial y}$=0 along boundaries in $y$ and $\frac{\partial | 
| 436 | 
 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
     v}{\partial x}$=0 along boundaries in $x$.  The variable | 
| 437 | 
 The variable | 
   \varlink{no\_slip\_sides}{no_slip_sides} is read in the routine | 
| 438 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS} and the boundary condition is | 
| 439 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} | 
   evaluated in routine | 
| 440 | 
 no\_slip\_sides | 
  | 
| 441 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \fbox{ | 
| 442 | 
 } | 
     \begin{minipage}{5.0in} | 
| 443 | 
 is read in the routine | 
       {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) | 
| 444 | 
 {\it | 
     \end{minipage} | 
| 445 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   } | 
| 446 | 
 INI\_PARMS | 
   \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} | 
| 447 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
    | 
 | 
 } and the boundary condition is evaluated in routine | 
  | 
 | 
 {\it S/R CALC\_MOM\_RHS}. | 
  | 
 | 
  | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
| 448 | 
 \item Lines 9, | 
 \item Lines 9, | 
| 449 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 450 | 
 no_slip_bottom=.TRUE. | 
 no_slip_bottom=.TRUE. | 
| 451 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 452 | 
 this line selects a no-slip boundary condition for bottom | 
   this line selects a no-slip boundary condition for bottom boundary | 
| 453 | 
 boundary condition in the vertical laplacian friction operator  | 
   condition in the vertical laplacian friction operator e.g. $u=v=0$ | 
| 454 | 
 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
   at $z=-H$, where $H$ is the local depth of the domain.  The variable | 
| 455 | 
 The variable | 
   \varlink{no\_slip\_bottom}{no\_slip\_bottom} is read in the routine | 
| 456 | 
 {\bf | 
   \filelink{INI\_PARMS}{model-src-ini_parms.F} and is applied in the | 
| 457 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} | 
   routine \varlink{MOM\_FLUXFORM}{MOM_FLUXFORM}. | 
| 458 | 
 no\_slip\_bottom | 
  | 
| 459 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \fbox{ | 
| 460 | 
 } | 
     \begin{minipage}{5.0in} | 
| 461 | 
 is read in the routine | 
       {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) | 
| 462 | 
 {\it | 
     \end{minipage} | 
| 463 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   } | 
| 464 | 
 INI\_PARMS | 
   \filelink{mom\_fluxform.F}{pkg-mom_fluxform-mom_fluxform.F} | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and is applied in the routine {\it S/R CALC\_MOM\_RHS}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 465 | 
  | 
  | 
| 466 | 
 \item Line 10, | 
 \item Line 10, | 
| 467 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 468 | 
 diffKhT=4.E2, | 
 diffKhT=4.E2, | 
| 469 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 470 | 
 this line sets the horizontal diffusion coefficient for temperature | 
   this line sets the horizontal diffusion coefficient for temperature | 
| 471 | 
 to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
   to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this operator | 
| 472 | 
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
   is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
| 473 | 
 all boundaries. | 
   all boundaries.  The variable \varlink{diffKhT}{diffKhT} is read in | 
| 474 | 
 The variable | 
   the routine \varlink{INI\_PARMS}{INI_PARMS} and used in routine | 
| 475 | 
 {\bf | 
   \varlink{CALC\_GT}{CALC_GT}. | 
| 476 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
  | 
| 477 | 
 diffKhT | 
   \fbox{ \begin{minipage}{5.0in} | 
| 478 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
       {\it S/R CALC\_GT}({\it calc\_gt.F}) | 
| 479 | 
 } | 
     \end{minipage} | 
| 480 | 
 is read in the routine | 
   } | 
| 481 | 
 {\it | 
   \filelink{calc\_gt.F}{model-src-calc_gt.F} | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
  | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and used in routine {\it S/R CALC\_GT}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R CALC\_GT}({\it calc\_gt.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/57.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 482 | 
  | 
  | 
| 483 | 
 \item Line 11, | 
 \item Line 11, | 
| 484 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 485 | 
 diffKzT=1.E-2, | 
 diffKzT=1.E-2, | 
| 486 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 487 | 
 this line sets the vertical diffusion coefficient for temperature | 
   this line sets the vertical diffusion coefficient for temperature to | 
| 488 | 
 to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
   $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 489 | 
 operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
   operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 490 | 
 The variable | 
   The variable \varlink{diffKzT}{diffKzT} is read in the routine | 
| 491 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS}. It is copied into model general | 
| 492 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
   vertical coordinate variable \varlink{diffKrT}{diffKrT} which is | 
| 493 | 
 diffKzT | 
   used in routine \varlink{CALC\_DIFFUSIVITY}{CALC_DIFFUSIVITY}. | 
| 494 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
| 495 | 
 } | 
   \fbox{ \begin{minipage}{5.0in} | 
| 496 | 
 is read in the routine | 
       {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 497 | 
 {\it | 
     \end{minipage} | 
| 498 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   } | 
| 499 | 
 INI\_PARMS | 
   \filelink{calc\_diffusivity.F}{model-src-calc_diffusivity.F} | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. | 
  | 
 | 
 It is copied into model general vertical coordinate variable | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
  | 
 | 
 diffKrT | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } which is used in routine {\it S/R CALC\_DIFFUSIVITY}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
 | 
  | 
  | 
| 500 | 
  | 
  | 
| 501 | 
 \item Line 13, | 
 \item Line 13, | 
| 502 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 503 | 
 tAlpha=2.E-4, | 
 tAlpha=2.E-4, | 
| 504 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 505 | 
 This line sets the thermal expansion coefficient for the fluid | 
   This line sets the thermal expansion coefficient for the fluid to $2 | 
| 506 | 
 to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ | 
   \times 10^{-4}\,{\rm degrees}^{-1}$ The variable | 
| 507 | 
 The variable | 
   \varlink{tAlpha}{tAlpha} is read in the routine | 
| 508 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS}. The routine | 
| 509 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} | 
   \varlink{FIND\_RHO}{FIND\_RHO} makes use of {\bf tAlpha}. | 
| 510 | 
 tAlpha  | 
  | 
| 511 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \fbox{ | 
| 512 | 
 } | 
     \begin{minipage}{5.0in} | 
| 513 | 
 is read in the routine | 
       {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 514 | 
 {\it | 
     \end{minipage} | 
| 515 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   } | 
| 516 | 
 INI\_PARMS | 
   \filelink{find\_rho.F}{model-src-find_rho.F} | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. The routine {\it S/R FIND\_RHO} makes use of {\bf tAlpha}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 517 | 
  | 
  | 
| 518 | 
 \item Line 18, | 
 \item Line 18, | 
| 519 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 520 | 
 eosType='LINEAR' | 
 eosType='LINEAR' | 
| 521 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 522 | 
 This line selects the linear form of the equation of state. | 
   This line selects the linear form of the equation of state.  The | 
| 523 | 
 The variable | 
   variable \varlink{eosType}{eosType} is read in the routine | 
| 524 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS}. The values of {\bf eosType} sets | 
| 525 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/WV.htm> \end{rawhtml} | 
   which formula in routine {\it FIND\_RHO} is used to calculate | 
| 526 | 
 eosType | 
   density. | 
| 527 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
| 528 | 
 } | 
   \fbox{ | 
| 529 | 
 is read in the routine | 
     \begin{minipage}{5.0in} | 
| 530 | 
 {\it | 
       {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 531 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
     \end{minipage} | 
| 532 | 
 INI\_PARMS | 
   } | 
| 533 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \filelink{find\_rho.F}{model-src-find_rho.F} | 
 | 
 }. The values of {\bf eosType} sets which formula in routine | 
  | 
 | 
 {\it FIND\_RHO} is used to calculate density. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
 | 
  | 
  | 
| 534 | 
  | 
  | 
| 535 | 
 \item Line 40, | 
 \item Line 40, | 
| 536 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 537 | 
 usingSphericalPolarGrid=.TRUE., | 
 usingSphericalPolarGrid=.TRUE., | 
| 538 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 539 | 
 This line requests that the simulation be performed in a  | 
   This line requests that the simulation be performed in a spherical | 
| 540 | 
 spherical polar coordinate system. It affects the interpretation of | 
   polar coordinate system. It affects the interpretation of grid input | 
| 541 | 
 grid inoput parameters, for exampl {\bf delX} and {\bf delY} and | 
   parameters, for example {\bf delX} and {\bf delY} and causes the | 
| 542 | 
 causes the grid generation routines to initialise an internal grid based | 
   grid generation routines to initialize an internal grid based on | 
| 543 | 
 on spherical polar geometry. | 
   spherical polar geometry.  The variable | 
| 544 | 
 The variable | 
   \varlink{usingSphericalPolarGrid}{usingSphericalPolarGrid} is read | 
| 545 | 
 {\bf | 
   in the routine \varlink{INI\_PARMS}{INI_PARMS}. When set to {\bf | 
| 546 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/10T.htm> \end{rawhtml} | 
     .TRUE.} the settings of {\bf delX} and {\bf delY} are taken to be | 
| 547 | 
 usingSphericalPolarGrid | 
   in degrees. These values are used in the routine | 
| 548 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
| 549 | 
 } | 
   \fbox{ | 
| 550 | 
 is read in the routine | 
     \begin{minipage}{5.0in} | 
| 551 | 
 {\it | 
       {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 552 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
     \end{minipage} | 
| 553 | 
 INI\_PARMS | 
   } | 
| 554 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} | 
 | 
 }. When set to {\bf .TRUE.} the settings of {\bf delX} and {\bf delY} are | 
  | 
 | 
 taken to be in degrees. These values are used in the | 
  | 
 | 
 routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 555 | 
  | 
  | 
| 556 | 
 \item Line 41, | 
 \item Line 41, | 
| 557 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 558 | 
 phiMin=0., | 
 phiMin=0., | 
| 559 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 560 | 
 This line sets the southern boundary of the modeled | 
   This line sets the southern boundary of the modeled domain to | 
| 561 | 
 domain to $0^{\circ}$ latitude. This value affects both the | 
   $0^{\circ}$ latitude. This value affects both the generation of the | 
| 562 | 
 generation of the locally orthogonal grid that the model | 
   locally orthogonal grid that the model uses internally and affects | 
| 563 | 
 uses internally and affects the initialisation of the coriolis force. | 
   the initialization of the coriolis force.  Note - it is not required | 
| 564 | 
 Note - it is not required to set | 
   to set a longitude boundary, since the absolute longitude does not | 
| 565 | 
 a longitude boundary, since the absolute longitude does | 
   alter the kernel equation discretisation.  The variable | 
| 566 | 
 not alter the kernel equation discretisation. | 
   \varlink{phiMin}{phiMin} is read in the | 
| 567 | 
 The variable | 
   routine \varlink{INI\_PARMS}{INI_PARMS} and is used in routine | 
| 568 | 
 {\bf | 
  | 
| 569 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/110.htm> \end{rawhtml} | 
   \fbox{ | 
| 570 | 
 phiMin | 
     \begin{minipage}{5.0in} | 
| 571 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
       {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 572 | 
 } | 
     \end{minipage} | 
| 573 | 
 is read in the routine | 
   } | 
| 574 | 
 {\it | 
   \filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
  | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 575 | 
  | 
  | 
| 576 | 
 \item Line 42, | 
 \item Line 42, | 
| 577 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 578 | 
 delX=60*1., | 
 delX=60*1., | 
| 579 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 580 | 
 This line sets the horizontal grid spacing between each y-coordinate line | 
   This line sets the horizontal grid spacing between each y-coordinate | 
| 581 | 
 in the discrete grid to $1^{\circ}$ in longitude. | 
   line in the discrete grid to $1^{\circ}$ in longitude.  The variable | 
| 582 | 
 The variable | 
   \varlink{delX}{delX} is read in the routine | 
| 583 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS} and is used in routine | 
| 584 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/10Z.htm> \end{rawhtml} | 
   | 
| 585 | 
 delX | 
   \fbox{ | 
| 586 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
     \begin{minipage}{5.0in} | 
| 587 | 
 } | 
       {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 588 | 
 is read in the routine | 
     \end{minipage} | 
| 589 | 
 {\it | 
   } | 
| 590 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   \filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}.  | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 591 | 
  | 
  | 
| 592 | 
 \item Line 43, | 
 \item Line 43, | 
| 593 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 594 | 
 delY=60*1., | 
 delY=60*1., | 
| 595 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 596 | 
 This line sets the horizontal grid spacing between each y-coordinate line | 
   This line sets the horizontal grid spacing between each y-coordinate | 
| 597 | 
 in the discrete grid to $1^{\circ}$ in latitude. | 
   line in the discrete grid to $1^{\circ}$ in latitude.  The variable | 
| 598 | 
 The variable | 
   \varlink{delY}{delY} is read in the routine | 
| 599 | 
 {\bf | 
   \varlink{INI\_PARMS}{INI_PARMS} and is used in routine | 
| 600 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/UB.htm> \end{rawhtml} | 
  | 
| 601 | 
 delY    | 
   \fbox{ | 
| 602 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
     \begin{minipage}{5.0in} | 
| 603 | 
 } | 
       {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 604 | 
 is read in the routine | 
     \end{minipage} | 
| 605 | 
 {\it | 
   } | 
| 606 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   \filelink{ini\_spherical\_polar\_grid.F}{model-src-ini_spherical_polar_grid.F} | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}.  | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 607 | 
  | 
  | 
| 608 | 
 \item Line 44, | 
 \item Line 44, | 
| 609 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 610 | 
 delZ=500.,500.,500.,500., | 
 delZ=500.,500.,500.,500., | 
| 611 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 612 | 
 This line sets the vertical grid spacing between each z-coordinate line | 
   This line sets the vertical grid spacing between each z-coordinate | 
| 613 | 
 in the discrete grid to $500\,{\rm m}$, so that the total model depth  | 
   line in the discrete grid to $500\,{\rm m}$, so that the total model | 
| 614 | 
 is $2\,{\rm km}$. | 
   depth is $2\,{\rm km}$.  The variable \varlink{delZ}{delZ} is read | 
| 615 | 
 The variable | 
   in the routine \varlink{INI\_PARMS}{INI_PARMS}.  It is copied into | 
| 616 | 
 {\bf | 
   the internal model coordinate variable \varlink{delR}{delR} which is | 
| 617 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/10W.htm> \end{rawhtml} | 
   used in routine | 
| 618 | 
 delZ | 
  | 
| 619 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
   \fbox{ | 
| 620 | 
 } | 
     \begin{minipage}{5.0in} | 
| 621 | 
 is read in the routine | 
       {\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) | 
| 622 | 
 {\it | 
     \end{minipage} | 
| 623 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   } | 
| 624 | 
 INI\_PARMS | 
   \filelink{ini\_vertical\_grid.F}{model-src-ini_vertical_grid.F} | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. | 
  | 
 | 
 It is copied into the internal | 
  | 
 | 
 model coordinate variable  | 
  | 
 | 
 {\bf  | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} | 
  | 
 | 
 delR | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } which is used in routine {\it INI\_VERTICAL\_GRID}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/100.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 625 | 
  | 
  | 
| 626 | 
 \item Line 47, | 
 \item Line 47, | 
| 627 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 628 | 
 bathyFile='topog.box' | 
 bathyFile='topog.box' | 
| 629 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 630 | 
 This line specifies the name of the file from which the domain | 
   This line specifies the name of the file from which the domain | 
| 631 | 
 bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
   bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
| 632 | 
 depths. This file is assumed to contain 64-bit binary numbers  | 
   depths. This file is assumed to contain 64-bit binary numbers giving | 
| 633 | 
 giving the depth of the model at each grid cell, ordered with the x  | 
   the depth of the model at each grid cell, ordered with the x | 
| 634 | 
 coordinate varying fastest. The points are ordered from low coordinate | 
   coordinate varying fastest. The points are ordered from low | 
| 635 | 
 to high coordinate for both axes. The units and orientation of the | 
   coordinate to high coordinate for both axes. The units and | 
| 636 | 
 depths in this file are the same as used in the MITgcm code. In this | 
   orientation of the depths in this file are the same as used in the | 
| 637 | 
 experiment, a depth of $0m$ indicates a solid wall and a depth | 
   MITgcm code. In this experiment, a depth of $0m$ indicates a solid | 
| 638 | 
 of $-2000m$ indicates open ocean. The matlab program | 
   wall and a depth of $-2000m$ indicates open ocean. The matlab | 
| 639 | 
 {\it input/gendata.m} shows an example of how to generate a | 
   program {\it input/gendata.m} shows an example of how to generate a | 
| 640 | 
 bathymetry file. | 
   bathymetry file.  The variable \varlink{bathyFile}{bathyFile} is | 
| 641 | 
 The variable | 
   read in the routine \varlink{INI\_PARMS}{INI_PARMS}.  The bathymetry | 
| 642 | 
 {\bf | 
   file is read in the routine | 
| 643 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} | 
  | 
| 644 | 
 bathyFile | 
   \fbox{ | 
| 645 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
     \begin{minipage}{5.0in} | 
| 646 | 
 } | 
       {\it S/R INI\_DEPTHS}({\it ini\_depths.F}) | 
| 647 | 
 is read in the routine | 
     \end{minipage} | 
| 648 | 
 {\it | 
   } | 
| 649 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   \filelink{ini\_depths.F}{model-src-ini_depths.F} | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }. The bathymetry file is read in the routine {\it INI\_DEPTHS}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R INI\_DEPTHS}({\it ini\_depths.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/88.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
 | 
  | 
  | 
| 650 | 
  | 
  | 
| 651 | 
 \item Line 50, | 
 \item Line 50, | 
| 652 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 653 | 
 zonalWindFile='windx.sin_y' | 
 zonalWindFile='windx.sin_y' | 
| 654 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 655 | 
 This line specifies the name of the file from which the x-direction | 
   This line specifies the name of the file from which the x-direction | 
| 656 | 
 (zonal) surface wind stress is read. This file is also a two-dimensional | 
   (zonal) surface wind stress is read. This file is also a | 
| 657 | 
 ($x,y$) map and is enumerated and formatted in the same manner as the  | 
   two-dimensional ($x,y$) map and is enumerated and formatted in the | 
| 658 | 
 bathymetry file. The matlab program {\it input/gendata.m} includes example  | 
   same manner as the bathymetry file. The matlab program {\it | 
| 659 | 
 code to generate a valid  | 
     input/gendata.m} includes example code to generate a valid {\bf | 
| 660 | 
 {\bf zonalWindFile}  | 
     zonalWindFile} file.  The variable | 
| 661 | 
 file.   | 
   \varlink{zonalWindFile}{zonalWindFile} is read in the routine | 
| 662 | 
 The variable | 
   \varlink{INI\_PARMS}{INI_PARMS}.  The wind-stress file is read in | 
| 663 | 
 {\bf | 
   the routine | 
| 664 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/names/13W.htm> \end{rawhtml} | 
  | 
| 665 | 
 zonalWindFile | 
   \fbox{ | 
| 666 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
     \begin{minipage}{5.0in} | 
| 667 | 
 } | 
       {\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) | 
| 668 | 
 is read in the routine | 
     \end{minipage} | 
| 669 | 
 {\it | 
   } | 
| 670 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
   \filelink{external\_fields\_load.F}{model-src-external_fields_load.F} | 
 | 
 INI\_PARMS | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 }.  The wind-stress file is read in the routine  | 
  | 
 | 
 {\it EXTERNAL\_FIELDS\_LOAD}. | 
  | 
 | 
  | 
  | 
 | 
 \fbox{ | 
  | 
 | 
 \begin{minipage}{5.0in} | 
  | 
 | 
 {\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) | 
  | 
 | 
 \end{minipage} | 
  | 
 | 
 } | 
  | 
 | 
 {\bf | 
  | 
 | 
 \begin{rawhtml} <A href=../../../code_reference/vdb/code/75.htm> \end{rawhtml} | 
  | 
 | 
 goto code | 
  | 
 | 
 \begin{rawhtml} </A>\end{rawhtml} | 
  | 
 | 
 } | 
  | 
| 671 | 
  | 
  | 
| 672 | 
 \end{itemize} | 
 \end{itemize} | 
| 673 | 
  | 
  | 
| 680 | 
 \begin{rawhtml}</PRE>\end{rawhtml} | 
 \begin{rawhtml}</PRE>\end{rawhtml} | 
| 681 | 
  | 
  | 
| 682 | 
 \subsubsection{File {\it input/data.pkg}} | 
 \subsubsection{File {\it input/data.pkg}} | 
| 683 | 
  | 
 \label{www:tutorials} | 
| 684 | 
  | 
  | 
| 685 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 686 | 
 customisations for this experiment. | 
 customisations for this experiment. | 
| 687 | 
  | 
  | 
| 688 | 
 \subsubsection{File {\it input/eedata}} | 
 \subsubsection{File {\it input/eedata}} | 
| 689 | 
  | 
 \label{www:tutorials} | 
| 690 | 
  | 
  | 
| 691 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 692 | 
 customisations for this experiment. | 
 customisations for this experiment. | 
| 693 | 
  | 
  | 
| 694 | 
 \subsubsection{File {\it input/windx.sin\_y}} | 
 \subsubsection{File {\it input/windx.sin\_y}} | 
| 695 | 
  | 
 \label{www:tutorials} | 
| 696 | 
  | 
  | 
| 697 | 
 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  | 
 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) | 
| 698 | 
 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the | 
 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ | 
| 699 | 
 default for MITgcm). | 
 (the default for MITgcm).  Although $\tau_{x}$ is only a function of | 
| 700 | 
 Although $\tau_{x}$ is only a function of latituted, $y$, | 
 latitude, $y$, in this experiment this file must still define a | 
| 701 | 
 in this experiment | 
 complete two-dimensional map in order to be compatible with the | 
| 702 | 
 this file must still define a complete two-dimensional map in order | 
 standard code for loading forcing fields in MITgcm (routine {\it | 
| 703 | 
 to be compatible with the standard code for loading forcing fields  | 
   EXTERNAL\_FIELDS\_LOAD}.  The included matlab program {\it | 
| 704 | 
 in MITgcm (routine {\it EXTERNAL\_FIELDS\_LOAD}. | 
   input/gendata.m} gives a complete code for creating the {\it | 
| 705 | 
 The included matlab program {\it input/gendata.m} gives a complete | 
   input/windx.sin\_y} file. | 
 | 
 code for creating the {\it input/windx.sin\_y} file. | 
  | 
| 706 | 
  | 
  | 
| 707 | 
 \subsubsection{File {\it input/topog.box}} | 
 \subsubsection{File {\it input/topog.box}} | 
| 708 | 
  | 
 \label{www:tutorials} | 
| 709 | 
  | 
  | 
| 710 | 
  | 
  | 
| 711 | 
 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  | 
 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  | 
| 717 | 
 code for creating the {\it input/topog.box} file. | 
 code for creating the {\it input/topog.box} file. | 
| 718 | 
  | 
  | 
| 719 | 
 \subsubsection{File {\it code/SIZE.h}} | 
 \subsubsection{File {\it code/SIZE.h}} | 
| 720 | 
  | 
 \label{www:tutorials} | 
| 721 | 
  | 
  | 
| 722 | 
 Two lines are customized in this file for the current experiment | 
 Two lines are customized in this file for the current experiment | 
| 723 | 
  | 
  | 
| 744 | 
 \end{small} | 
 \end{small} | 
| 745 | 
  | 
  | 
| 746 | 
 \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
 \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 747 | 
  | 
 \label{www:tutorials} | 
| 748 | 
  | 
  | 
| 749 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 750 | 
 customisations for this experiment. | 
 customisations for this experiment. | 
| 751 | 
  | 
  | 
| 752 | 
  | 
  | 
| 753 | 
 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 754 | 
  | 
 \label{www:tutorials} | 
| 755 | 
  | 
  | 
| 756 | 
 This file uses standard default values and does not contain | 
 This file uses standard default values and does not contain | 
| 757 | 
 customisations for this experiment. | 
 customisations for this experiment. | 
| 758 | 
  | 
  | 
| 759 | 
 \subsubsection{Other Files } | 
 \subsubsection{Other Files } | 
| 760 | 
  | 
 \label{www:tutorials} | 
| 761 | 
  | 
  | 
| 762 | 
 Other files relevant to this experiment are | 
 Other files relevant to this experiment are | 
| 763 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 770 | 
 \end{itemize} | 
 \end{itemize} | 
| 771 | 
  | 
  | 
| 772 | 
 \subsection{Running The Example} | 
 \subsection{Running The Example} | 
| 773 | 
  | 
 \label{www:tutorials} | 
| 774 | 
 \label{SEC:running_the_example} | 
 \label{SEC:running_the_example} | 
| 775 | 
  | 
  | 
| 776 | 
 \subsubsection{Code Download} | 
 \subsubsection{Code Download} | 
| 777 | 
  | 
 \label{www:tutorials} | 
| 778 | 
  | 
  | 
| 779 | 
  In order to run the examples you must first download the code distribution. | 
  In order to run the examples you must first download the code distribution. | 
| 780 | 
 Instructions for downloading the code can be found in section | 
 Instructions for downloading the code can be found in section | 
| 781 | 
 \ref{sect:obtainingCode}. | 
 \ref{sect:obtainingCode}. | 
| 782 | 
  | 
  | 
| 783 | 
 \subsubsection{Experiment Location} | 
 \subsubsection{Experiment Location} | 
| 784 | 
  | 
 \label{www:tutorials} | 
| 785 | 
  | 
  | 
| 786 | 
  This example experiments is located under the release sub-directory | 
  This example experiments is located under the release sub-directory | 
| 787 | 
  | 
  | 
| 789 | 
 {\it verification/exp2/ } | 
 {\it verification/exp2/ } | 
| 790 | 
  | 
  | 
| 791 | 
 \subsubsection{Running the Experiment} | 
 \subsubsection{Running the Experiment} | 
| 792 | 
  | 
 \label{www:tutorials} | 
| 793 | 
  | 
  | 
| 794 | 
  To run the experiment | 
  To run the experiment | 
| 795 | 
  | 
  | 
| 806 | 
 % pwd | 
 % pwd | 
| 807 | 
 \end{verbatim} | 
 \end{verbatim} | 
| 808 | 
  | 
  | 
| 809 | 
  You shold see a response on the screen ending in | 
  You should see a response on the screen ending in | 
| 810 | 
  | 
  | 
| 811 | 
 {\it verification/exp2/input } | 
 {\it verification/exp2/input } | 
| 812 | 
  | 
  |