| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section[Baroclinic Gyre MITgcm Example]{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{www:tutorials} |
\label{www:tutorials} |
| 6 |
\label{sect:eg-fourlayer} |
\label{sect:eg-fourlayer} |
| 7 |
|
\begin{rawhtml} |
| 8 |
|
<!-- CMIREDIR:eg-fourlayer: --> |
| 9 |
|
\end{rawhtml} |
| 10 |
|
|
| 11 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 12 |
|
|
| 21 |
%\end{center} |
%\end{center} |
| 22 |
|
|
| 23 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
| 24 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre for four layers in spherical |
| 25 |
polar coordinates. The barotropic |
polar coordinates. The files for this experiment can be found |
| 26 |
example experiment in section \ref{sect:eg-baro} |
in the verification directory under tutorial\_baroclinic\_gyre. |
|
illustrated how to configure the code for a single layer |
|
|
simulation in a Cartesian grid. In this example a similar physical problem |
|
|
is simulated, but the code is now configured |
|
|
for four layers and in a spherical polar coordinate system. |
|
| 27 |
|
|
| 28 |
\subsection{Overview} |
\subsection{Overview} |
| 29 |
\label{www:tutorials} |
\label{www:tutorials} |
| 103 |
the quantity that is carried in the model core equations. |
the quantity that is carried in the model core equations. |
| 104 |
|
|
| 105 |
\begin{figure} |
\begin{figure} |
| 106 |
\begin{center} |
%% \begin{center} |
| 107 |
\resizebox{7.5in}{5.5in}{ |
%% \resizebox{7.5in}{5.5in}{ |
| 108 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
| 109 |
{part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
%% {part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
| 110 |
\end{center} |
%% \end{center} |
| 111 |
|
\centerline{ |
| 112 |
|
\scalefig{.95} |
| 113 |
|
\epsfbox{part3/case_studies/fourlayer_gyre/simulation_config.eps} |
| 114 |
|
} |
| 115 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
| 116 |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
| 117 |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
| 379 |
\item Line 4, |
\item Line 4, |
| 380 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
| 381 |
this line sets the initial and reference values of potential |
this line sets the initial and reference values of potential |
| 382 |
temperature at each model level in units of $^{\circ}$C. The entries |
temperature at each model level in units of $^{\circ}\mathrm{C}$. The entries |
| 383 |
are ordered from surface to depth. For each depth level the initial |
are ordered from surface to depth. For each depth level the initial |
| 384 |
and reference profiles will be uniform in $x$ and $y$. The values |
and reference profiles will be uniform in $x$ and $y$. The values |
| 385 |
specified here are read into the variable \varlink{tRef}{tRef} in the |
specified here are read into the variable \varlink{tRef}{tRef} in the |