| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{sec:eg-fourlayer} |
\label{www:tutorials} |
| 6 |
|
\label{sect:eg-fourlayer} |
| 7 |
|
|
| 8 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 9 |
|
|
| 20 |
This document describes an example experiment using MITgcm |
This document describes an example experiment using MITgcm |
| 21 |
to simulate a baroclinic ocean gyre in spherical |
to simulate a baroclinic ocean gyre in spherical |
| 22 |
polar coordinates. The barotropic |
polar coordinates. The barotropic |
| 23 |
example experiment in section \ref{sec:eg-baro} |
example experiment in section \ref{sect:eg-baro} |
| 24 |
ilustrated how to configure the code for a single layer |
illustrated how to configure the code for a single layer |
| 25 |
simulation in a cartesian grid. In this example a similar physical problem |
simulation in a Cartesian grid. In this example a similar physical problem |
| 26 |
is simulated, but the code is now configured |
is simulated, but the code is now configured |
| 27 |
for four layers and in a spherical polar coordinate system. |
for four layers and in a spherical polar coordinate system. |
| 28 |
|
|
| 29 |
\subsection{Overview} |
\subsection{Overview} |
| 30 |
|
\label{www:tutorials} |
| 31 |
|
|
| 32 |
This example experiment demonstrates using the MITgcm to simulate |
This example experiment demonstrates using the MITgcm to simulate |
| 33 |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
| 34 |
is a numerical rendition of the gyre circulation problem simliar |
is a numerical rendition of the gyre circulation problem similar |
| 35 |
to the problems described analytically by Stommel in 1966 |
to the problems described analytically by Stommel in 1966 |
| 36 |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
| 37 |
\\ |
\\ |
| 39 |
In this experiment the model is configured to represent a mid-latitude |
In this experiment the model is configured to represent a mid-latitude |
| 40 |
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
| 41 |
lateral extent. The fluid is $2$~km deep and is forced |
lateral extent. The fluid is $2$~km deep and is forced |
| 42 |
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
by a constant in time zonal wind stress, $\tau_{\lambda}$, that varies |
| 43 |
in the north-south direction. Topologically the simulated |
sinusoidally in the north-south direction. Topologically the simulated |
| 44 |
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
| 45 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
| 46 |
|
|
| 47 |
\begin{equation} |
\begin{equation} |
| 48 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
| 49 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
| 50 |
\end{equation} |
\end{equation} |
| 51 |
|
|
| 56 |
|
|
| 57 |
\begin{equation} |
\begin{equation} |
| 58 |
\label{EQ:taux} |
\label{EQ:taux} |
| 59 |
\tau_x(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
\tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
| 60 |
\end{equation} |
\end{equation} |
| 61 |
|
|
| 62 |
\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and |
\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and |
| 63 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 64 |
\\ |
\\ |
| 65 |
|
|
| 66 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
| 67 |
summarises the configuration simulated. |
summarizes the configuration simulated. |
| 68 |
In contrast to the example in section \ref{sec:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
| 69 |
current experiment simulates a spherical polar domain. However, as indicated |
current experiment simulates a spherical polar domain. As indicated |
| 70 |
by the axes in the lower left of the figure the model code works internally |
by the axes in the lower left of the figure the model code works internally |
| 71 |
in a locally orthoganal coordinate $(x,y,z)$. For this experiment description |
in a locally orthogonal coordinate $(x,y,z)$. For this experiment description |
| 72 |
of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous |
the local orthogonal model coordinate $(x,y,z)$ is synonymous |
| 73 |
with the spherical polar coordinate shown in figure |
with the coordinates $(\lambda,\varphi,r)$ shown in figure |
| 74 |
\ref{fig:spherical-polar-coord} |
\ref{fig:spherical-polar-coord} |
| 75 |
\\ |
\\ |
| 76 |
|
|
| 84 |
linear |
linear |
| 85 |
|
|
| 86 |
\begin{equation} |
\begin{equation} |
| 87 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
| 88 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 89 |
\end{equation} |
\end{equation} |
| 90 |
|
|
| 91 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
| 92 |
|
|
| 93 |
\begin{equation} |
\begin{equation} |
| 94 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
| 95 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 96 |
\end{equation} |
\end{equation} |
| 97 |
|
|
| 98 |
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
| 99 |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
| 100 |
this configuration the model state variable {\bf theta} is synonomous with |
this configuration the model state variable {\bf theta} is equivalent to |
| 101 |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
| 102 |
consistency with later examples, in which the equation of state is |
consistency with later examples, in which the equation of state is |
| 103 |
non-linear, we use $\theta$ to represent temperature here. This is |
non-linear, we use $\theta$ to represent temperature here. This is |
| 112 |
\caption{Schematic of simulation domain and wind-stress forcing function |
\caption{Schematic of simulation domain and wind-stress forcing function |
| 113 |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
| 114 |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
| 115 |
In the four-layer case an initial temperature stratification is |
An initial stratification is |
| 116 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
| 117 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
| 118 |
} |
} |
| 119 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
| 120 |
\end{figure} |
\end{figure} |
| 121 |
|
|
| 122 |
\subsection{Equations solved} |
\subsection{Equations solved} |
| 123 |
|
\label{www:tutorials} |
| 124 |
The implicit free surface form of the |
For this problem |
| 125 |
pressure equation described in Marshall et. al \cite{Marshall97a} is |
the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the |
| 126 |
employed. |
equations described in Marshall et. al \cite{marshall:97a} are |
| 127 |
A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |
employed. The flow is three-dimensional with just temperature, $\theta$, as |
| 128 |
dissipation. The wind-stress momentum input is added to the momentum equation |
an active tracer. The equation of state is linear. |
| 129 |
for the ``zonal flow'', $u$. Other terms in the model |
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
| 130 |
are explicitly switched off for this experiement configuration (see section |
dissipation and provides a diffusive sub-grid scale closure for the |
| 131 |
\ref{SEC:code_config} ). This yields an active set of equations in |
temperature equation. A wind-stress momentum forcing is added to the momentum |
| 132 |
|
equation for the zonal flow, $u$. Other terms in the model |
| 133 |
|
are explicitly switched off for this experiment configuration (see section |
| 134 |
|
\ref{SEC:eg_fourl_code_config} ). This yields an active set of equations |
| 135 |
solved in this configuration, written in spherical polar coordinates as |
solved in this configuration, written in spherical polar coordinates as |
| 136 |
follows |
follows |
| 137 |
|
|
| 138 |
\begin{eqnarray} |
\begin{eqnarray} |
| 139 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
| 140 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
| 141 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
| 142 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 143 |
& = & |
& = & |
| 144 |
\cal{F} |
\cal{F}_{\lambda} |
| 145 |
\\ |
\\ |
| 146 |
\frac{Dv}{Dt} + fu + |
\frac{Dv}{Dt} + fu + |
| 147 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial \varphi} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} - |
| 148 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
| 149 |
& = & |
& = & |
| 150 |
0 |
0 |
| 151 |
\\ |
\\ |
| 152 |
\frac{\partial \eta}{\partial t} + \frac{\partial H \hat{u}}{\partial \lambda} + |
\frac{\partial \eta}{\partial t} + \frac{\partial H \widehat{u}}{\partial \lambda} + |
| 153 |
\frac{\partial H \hat{v}}{\partial \varphi} |
\frac{\partial H \widehat{v}}{\partial \varphi} |
| 154 |
&=& |
&=& |
| 155 |
0 |
0 |
| 156 |
|
\label{eq:fourl_example_continuity} |
| 157 |
\\ |
\\ |
| 158 |
\frac{D\theta}{Dt} - |
\frac{D\theta}{Dt} - |
| 159 |
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
| 160 |
& = & |
& = & |
| 161 |
0 |
0 |
| 162 |
|
\label{eq:eg_fourl_theta} |
| 163 |
\\ |
\\ |
| 164 |
p^{'} & = & |
p^{\prime} & = & |
| 165 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz |
| 166 |
\\ |
\\ |
| 167 |
\rho^{'} & = &- \alpha_{\theta}\rho_{0}\theta^{'} |
\rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} |
| 168 |
\\ |
\\ |
| 169 |
{\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} |
{\cal F}_{\lambda} |_{s} & = & \frac{\tau_{\lambda}}{\rho_{0}\Delta z_{s}} |
| 170 |
\\ |
\\ |
| 171 |
{\cal F} |_{i} & = & 0 |
{\cal F}_{\lambda} |_{i} & = & 0 |
| 172 |
\end{eqnarray} |
\end{eqnarray} |
| 173 |
|
|
| 174 |
\noindent where $u$ and $v$ are the components of the horizontal |
\noindent where $u$ and $v$ are the components of the horizontal |
| 175 |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
| 176 |
The suffices ${s},{i}$ indicate surface and interior of the domain. |
The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical |
| 177 |
The forcing $\cal F$ is only applied at the surface. |
integral term given in equation \ref{eq:free-surface} and |
| 178 |
The pressure field $p^{'}$ is separated into a barotropic part |
explained in more detail in section \ref{sect:pressure-method-linear-backward}. |
| 179 |
|
However, for the problem presented here, the continuity relation (equation |
| 180 |
|
\ref{eq:fourl_example_continuity}) differs from the general form given |
| 181 |
|
in section \ref{sect:pressure-method-linear-backward}, |
| 182 |
|
equation \ref{eq:linear-free-surface=P-E+R}, because the source terms |
| 183 |
|
${\cal P}-{\cal E}+{\cal R}$ |
| 184 |
|
are all $0$. |
| 185 |
|
|
| 186 |
|
The pressure field, $p^{\prime}$, is separated into a barotropic part |
| 187 |
due to variations in sea-surface height, $\eta$, and a hydrostatic |
due to variations in sea-surface height, $\eta$, and a hydrostatic |
| 188 |
part due to variations in density, $\rho^{'}$, over the water column. |
part due to variations in density, $\rho^{\prime}$, integrated |
| 189 |
|
through the water column. |
| 190 |
|
|
| 191 |
|
The suffices ${s},{i}$ indicate surface layer and the interior of the domain. |
| 192 |
|
The windstress forcing, ${\cal F}_{\lambda}$, is applied in the surface layer |
| 193 |
|
by a source term in the zonal momentum equation. In the ocean interior |
| 194 |
|
this term is zero. |
| 195 |
|
|
| 196 |
|
In the momentum equations |
| 197 |
|
lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ |
| 198 |
|
and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified |
| 199 |
|
when the numerical simulation is run - see section |
| 200 |
|
\ref{SEC:eg_fourl_code_config}. For temperature |
| 201 |
|
the boundary condition is ``zero-flux'' |
| 202 |
|
e.g. $\frac{\partial \theta}{\partial \varphi}= |
| 203 |
|
\frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. |
| 204 |
|
|
| 205 |
|
|
| 206 |
|
|
| 207 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
| 208 |
|
\label{www:tutorials} |
| 209 |
|
|
| 210 |
The model is configured in hydrostatic form. The domain is discretised with |
The domain is discretised with |
| 211 |
a uniform grid spacing in latitude and longitude |
a uniform grid spacing in latitude and longitude |
| 212 |
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so |
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so |
| 213 |
that there are sixty grid cells in the zonal and meridional directions. |
that there are sixty grid cells in the zonal and meridional directions. |
| 214 |
Vertically the |
Vertically the |
| 215 |
model is configured with a four layers with constant depth, |
model is configured with four layers with constant depth, |
| 216 |
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate |
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate |
| 217 |
variables $x$ and $y$ are initialised from the values of |
variables $x$ and $y$ are initialized from the values of |
| 218 |
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in |
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in |
| 219 |
radians according to |
radians according to |
| 220 |
|
|
| 225 |
|
|
| 226 |
The procedure for generating a set of internal grid variables from a |
The procedure for generating a set of internal grid variables from a |
| 227 |
spherical polar grid specification is discussed in section |
spherical polar grid specification is discussed in section |
| 228 |
\ref{sec:spatial_discrete_horizontal_grid}. |
\ref{sect:spatial_discrete_horizontal_grid}. |
| 229 |
|
|
| 230 |
\noindent\fbox{ \begin{minipage}{5.5in} |
\noindent\fbox{ \begin{minipage}{5.5in} |
| 231 |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
| 246 |
|
|
| 247 |
|
|
| 248 |
|
|
| 249 |
As described in \ref{sec:tracer_equations}, the time evolution of potential |
As described in \ref{sect:tracer_equations}, the time evolution of potential |
| 250 |
temperature, |
temperature, |
| 251 |
$\theta$, equation is solved prognostically. |
$\theta$, (equation \ref{eq:eg_fourl_theta}) |
| 252 |
|
is evaluated prognostically. The centered second-order scheme with |
| 253 |
|
Adams-Bashforth time stepping described in section |
| 254 |
|
\ref{sect:tracer_equations_abII} is used to step forward the temperature |
| 255 |
|
equation. Prognostic terms in |
| 256 |
|
the momentum equations are solved using flux form as |
| 257 |
|
described in section \ref{sect:flux-form_momentum_eqautions}. |
| 258 |
The pressure forces that drive the fluid motions, ( |
The pressure forces that drive the fluid motions, ( |
| 259 |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
| 260 |
elevation $\eta$ and the hydrostatic pressure. |
elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the |
| 261 |
|
pressure is diagnosed explicitly by integrating density. The sea-surface |
| 262 |
|
height, $\eta$, is diagnosed using an implicit scheme. The pressure |
| 263 |
|
field solution method is described in sections |
| 264 |
|
\ref{sect:pressure-method-linear-backward} and |
| 265 |
|
\ref{sect:finding_the_pressure_field}. |
| 266 |
|
|
| 267 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
| 268 |
|
\label{www:tutorials} |
| 269 |
|
|
| 270 |
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
| 271 |
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
This value is chosen to yield a Munk layer width, |
| 272 |
|
|
| 273 |
\begin{eqnarray} |
\begin{eqnarray} |
| 274 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
| 275 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 276 |
\end{eqnarray} |
\end{eqnarray} |
| 277 |
|
|
| 278 |
\noindent of $\approx 100$km. This is greater than the model |
\noindent of $\approx 100$km. This is greater than the model |
| 279 |
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
resolution in mid-latitudes |
| 280 |
|
$\Delta x=r \cos(\varphi) \Delta \lambda \approx 80~{\rm km}$ at |
| 281 |
|
$\varphi=45^{\circ}$, ensuring that the frictional |
| 282 |
boundary layer is well resolved. |
boundary layer is well resolved. |
| 283 |
\\ |
\\ |
| 284 |
|
|
| 285 |
\noindent The model is stepped forward with a |
\noindent The model is stepped forward with a |
| 286 |
time step $\delta t=1200$secs. With this time step the stability |
time step $\delta t=1200$secs. With this time step the stability |
| 287 |
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
parameter to the horizontal Laplacian friction |
| 288 |
|
|
| 289 |
\begin{eqnarray} |
\begin{eqnarray} |
| 290 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
| 291 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 292 |
\end{eqnarray} |
\end{eqnarray} |
| 293 |
|
|
| 294 |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
| 295 |
for stability. |
for stability for this term under ABII time-stepping. |
| 296 |
\\ |
\\ |
| 297 |
|
|
| 298 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
| 299 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 300 |
|
|
| 301 |
\begin{eqnarray} |
\begin{eqnarray} |
| 302 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
| 303 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 304 |
\end{eqnarray} |
\end{eqnarray} |
| 305 |
|
|
| 310 |
\\ |
\\ |
| 311 |
|
|
| 312 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
|
\cite{Adcroft_thesis} |
|
| 313 |
|
|
| 314 |
\begin{eqnarray} |
\begin{eqnarray} |
| 315 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
| 316 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
| 317 |
\end{eqnarray} |
\end{eqnarray} |
| 318 |
|
|
| 320 |
limit for stability. |
limit for stability. |
| 321 |
\\ |
\\ |
| 322 |
|
|
| 323 |
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
\noindent The advective CFL for a extreme maximum |
| 324 |
horizontal flow |
horizontal flow |
| 325 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 326 |
|
|
| 327 |
\begin{eqnarray} |
\begin{eqnarray} |
| 328 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
| 329 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 330 |
\end{eqnarray} |
\end{eqnarray} |
| 331 |
|
|
| 332 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
| 333 |
limit of 0.5. |
limit of 0.5. |
| 334 |
\\ |
\\ |
| 335 |
|
|
| 336 |
\noindent The stability parameter for internal gravity waves |
\noindent The stability parameter for internal gravity waves |
| 337 |
\cite{Adcroft_thesis} |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
| 338 |
|
|
| 339 |
\begin{eqnarray} |
\begin{eqnarray} |
| 340 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
| 341 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 342 |
\end{eqnarray} |
\end{eqnarray} |
| 343 |
|
|
| 344 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
\noindent evaluates to $\approx 5 \times 10^{-2}$. This is well below the linear |
| 345 |
stability limit of 0.25. |
stability limit of 0.25. |
| 346 |
|
|
| 347 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
| 348 |
\label{SEC:code_config} |
\label{www:tutorials} |
| 349 |
|
\label{SEC:eg_fourl_code_config} |
| 350 |
|
|
| 351 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
| 352 |
directory {\it verification/exp1/}. The experiment files |
directory {\it verification/exp2/}. The experiment files |
| 353 |
\begin{itemize} |
\begin{itemize} |
| 354 |
\item {\it input/data} |
\item {\it input/data} |
| 355 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
| 361 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
| 362 |
\end{itemize} |
\end{itemize} |
| 363 |
contain the code customisations and parameter settings for this |
contain the code customisations and parameter settings for this |
| 364 |
experiements. Below we describe the customisations |
experiments. Below we describe the customisations |
| 365 |
to these files associated with this experiment. |
to these files associated with this experiment. |
| 366 |
|
|
| 367 |
\subsubsection{File {\it input/data}} |
\subsubsection{File {\it input/data}} |
| 368 |
|
\label{www:tutorials} |
| 369 |
|
|
| 370 |
This file, reproduced completely below, specifies the main parameters |
This file, reproduced completely below, specifies the main parameters |
| 371 |
for the experiment. The parameters that are significant for this configuration |
for the experiment. The parameters that are significant for this configuration |
| 379 |
the initial and reference values of potential temperature at each model |
the initial and reference values of potential temperature at each model |
| 380 |
level in units of $^{\circ}$C. |
level in units of $^{\circ}$C. |
| 381 |
The entries are ordered from surface to depth. For each |
The entries are ordered from surface to depth. For each |
| 382 |
depth level the inital and reference profiles will be uniform in |
depth level the initial and reference profiles will be uniform in |
| 383 |
$x$ and $y$. The values specified here are read into the |
$x$ and $y$. The values specified here are read into the |
| 384 |
variable |
variable |
| 385 |
{\bf |
{\bf |
| 425 |
|
|
| 426 |
\item Line 6, |
\item Line 6, |
| 427 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
| 428 |
this line sets the vertical laplacian dissipation coefficient to |
this line sets the vertical Laplacian dissipation coefficient to |
| 429 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
| 430 |
for this operator are specified later. |
for this operator are specified later. |
| 431 |
The variable |
The variable |
| 445 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} |
| 446 |
viscAr |
viscAr |
| 447 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 448 |
}. |
}. At each time step, the viscous term contribution to the momentum equations |
| 449 |
|
is calculated in routine |
| 450 |
|
{\it S/R CALC\_DIFFUSIVITY}. |
| 451 |
|
|
| 452 |
\fbox{ |
\fbox{ |
| 453 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 478 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 479 |
INI\_PARMS |
INI\_PARMS |
| 480 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 481 |
}. |
} and applied in routines {\it CALC\_MOM\_RHS} and {\it CALC\_GW}. |
| 482 |
|
|
| 483 |
\fbox{ |
\fbox{ |
| 484 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 521 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 522 |
INI\_PARMS |
INI\_PARMS |
| 523 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 524 |
}. |
} and the boundary condition is evaluated in routine |
| 525 |
|
{\it S/R CALC\_MOM\_RHS}. |
| 526 |
|
|
| 527 |
|
|
| 528 |
\fbox{ |
\fbox{ |
| 554 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 555 |
INI\_PARMS |
INI\_PARMS |
| 556 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 557 |
}. |
} and is applied in the routine {\it S/R CALC\_MOM\_RHS}. |
| 558 |
|
|
| 559 |
\fbox{ |
\fbox{ |
| 560 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 586 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 587 |
INI\_PARMS |
INI\_PARMS |
| 588 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 589 |
}. |
} and used in routine {\it S/R CALC\_GT}. |
| 590 |
|
|
| 591 |
\fbox{ \begin{minipage}{5.0in} |
\fbox{ \begin{minipage}{5.0in} |
| 592 |
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
| 622 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} |
| 623 |
diffKrT |
diffKrT |
| 624 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 625 |
}. |
} which is used in routine {\it S/R CALC\_DIFFUSIVITY}. |
| 626 |
|
|
| 627 |
\fbox{ \begin{minipage}{5.0in} |
\fbox{ \begin{minipage}{5.0in} |
| 628 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
| 653 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 654 |
INI\_PARMS |
INI\_PARMS |
| 655 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 656 |
}. |
}. The routine {\it S/R FIND\_RHO} makes use of {\bf tAlpha}. |
| 657 |
|
|
| 658 |
\fbox{ |
\fbox{ |
| 659 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 682 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 683 |
INI\_PARMS |
INI\_PARMS |
| 684 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 685 |
}. |
}. The values of {\bf eosType} sets which formula in routine |
| 686 |
|
{\it FIND\_RHO} is used to calculate density. |
| 687 |
|
|
| 688 |
\fbox{ |
\fbox{ |
| 689 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 704 |
\end{verbatim} |
\end{verbatim} |
| 705 |
This line requests that the simulation be performed in a |
This line requests that the simulation be performed in a |
| 706 |
spherical polar coordinate system. It affects the interpretation of |
spherical polar coordinate system. It affects the interpretation of |
| 707 |
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
grid input parameters, for example {\bf delX} and {\bf delY} and |
| 708 |
causes the grid generation routines to initialise an internal grid based |
causes the grid generation routines to initialize an internal grid based |
| 709 |
on spherical polar geometry. |
on spherical polar geometry. |
| 710 |
The variable |
The variable |
| 711 |
{\bf |
{\bf |
| 718 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 719 |
INI\_PARMS |
INI\_PARMS |
| 720 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 721 |
}. |
}. When set to {\bf .TRUE.} the settings of {\bf delX} and {\bf delY} are |
| 722 |
|
taken to be in degrees. These values are used in the |
| 723 |
|
routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. |
| 724 |
|
|
| 725 |
\fbox{ |
\fbox{ |
| 726 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 740 |
This line sets the southern boundary of the modeled |
This line sets the southern boundary of the modeled |
| 741 |
domain to $0^{\circ}$ latitude. This value affects both the |
domain to $0^{\circ}$ latitude. This value affects both the |
| 742 |
generation of the locally orthogonal grid that the model |
generation of the locally orthogonal grid that the model |
| 743 |
uses internally and affects the initialisation of the coriolis force. |
uses internally and affects the initialization of the coriolis force. |
| 744 |
Note - it is not required to set |
Note - it is not required to set |
| 745 |
a longitude boundary, since the absolute longitude does |
a longitude boundary, since the absolute longitude does |
| 746 |
not alter the kernel equation discretisation. |
not alter the kernel equation discretisation. |
| 755 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 756 |
INI\_PARMS |
INI\_PARMS |
| 757 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 758 |
}. |
} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. |
| 759 |
|
|
| 760 |
\fbox{ |
\fbox{ |
| 761 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 785 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 786 |
INI\_PARMS |
INI\_PARMS |
| 787 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 788 |
}. |
} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. |
| 789 |
|
|
| 790 |
\fbox{ |
\fbox{ |
| 791 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 815 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 816 |
INI\_PARMS |
INI\_PARMS |
| 817 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 818 |
}. |
} and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. |
| 819 |
|
|
| 820 |
\fbox{ |
\fbox{ |
| 821 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 853 |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} |
| 854 |
delR |
delR |
| 855 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 856 |
}. |
} which is used in routine {\it INI\_VERTICAL\_GRID}. |
| 857 |
|
|
| 858 |
\fbox{ |
\fbox{ |
| 859 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 892 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 893 |
INI\_PARMS |
INI\_PARMS |
| 894 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 895 |
}. |
}. The bathymetry file is read in the routine {\it INI\_DEPTHS}. |
| 896 |
|
|
| 897 |
\fbox{ |
\fbox{ |
| 898 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 911 |
zonalWindFile='windx.sin_y' |
zonalWindFile='windx.sin_y' |
| 912 |
\end{verbatim} |
\end{verbatim} |
| 913 |
This line specifies the name of the file from which the x-direction |
This line specifies the name of the file from which the x-direction |
| 914 |
surface wind stress is read. This file is also a two-dimensional |
(zonal) surface wind stress is read. This file is also a two-dimensional |
| 915 |
($x,y$) map and is enumerated and formatted in the same manner as the |
($x,y$) map and is enumerated and formatted in the same manner as the |
| 916 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
| 917 |
code to generate a valid |
code to generate a valid |
| 928 |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
| 929 |
INI\_PARMS |
INI\_PARMS |
| 930 |
\begin{rawhtml} </A>\end{rawhtml} |
\begin{rawhtml} </A>\end{rawhtml} |
| 931 |
}. |
}. The wind-stress file is read in the routine |
| 932 |
|
{\it EXTERNAL\_FIELDS\_LOAD}. |
| 933 |
|
|
| 934 |
\fbox{ |
\fbox{ |
| 935 |
\begin{minipage}{5.0in} |
\begin{minipage}{5.0in} |
| 944 |
|
|
| 945 |
\end{itemize} |
\end{itemize} |
| 946 |
|
|
| 947 |
\noindent other lines in the file {\it input/data} are standard values |
\noindent other lines in the file {\it input/data} are standard values. |
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
|
|
notes. |
|
| 948 |
|
|
| 949 |
\begin{rawhtml}<PRE>\end{rawhtml} |
\begin{rawhtml}<PRE>\end{rawhtml} |
| 950 |
\begin{small} |
\begin{small} |
| 953 |
\begin{rawhtml}</PRE>\end{rawhtml} |
\begin{rawhtml}</PRE>\end{rawhtml} |
| 954 |
|
|
| 955 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
| 956 |
|
\label{www:tutorials} |
| 957 |
|
|
| 958 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 959 |
customisations for this experiment. |
customisations for this experiment. |
| 960 |
|
|
| 961 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
| 962 |
|
\label{www:tutorials} |
| 963 |
|
|
| 964 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 965 |
customisations for this experiment. |
customisations for this experiment. |
| 966 |
|
|
| 967 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
| 968 |
|
\label{www:tutorials} |
| 969 |
|
|
| 970 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
| 971 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the |
| 972 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
default for MITgcm). |
| 973 |
|
Although $\tau_{x}$ is only a function of latitude, $y$, |
| 974 |
|
in this experiment |
| 975 |
this file must still define a complete two-dimensional map in order |
this file must still define a complete two-dimensional map in order |
| 976 |
to be compatible with the standard code for loading forcing fields |
to be compatible with the standard code for loading forcing fields |
| 977 |
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
in MITgcm (routine {\it EXTERNAL\_FIELDS\_LOAD}. |
| 978 |
|
The included matlab program {\it input/gendata.m} gives a complete |
| 979 |
code for creating the {\it input/windx.sin\_y} file. |
code for creating the {\it input/windx.sin\_y} file. |
| 980 |
|
|
| 981 |
\subsubsection{File {\it input/topog.box}} |
\subsubsection{File {\it input/topog.box}} |
| 982 |
|
\label{www:tutorials} |
| 983 |
|
|
| 984 |
|
|
| 985 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
| 986 |
map of depth values. For this experiment values are either |
map of depth values. For this experiment values are either |
| 987 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
$0~{\rm m}$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
| 988 |
ocean. The file contains a raw binary stream of data that is enumerated |
ocean. The file contains a raw binary stream of data that is enumerated |
| 989 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
| 990 |
The included matlab program {\it input/gendata.m} gives a complete |
The included matlab program {\it input/gendata.m} gives a complete |
| 991 |
code for creating the {\it input/topog.box} file. |
code for creating the {\it input/topog.box} file. |
| 992 |
|
|
| 993 |
\subsubsection{File {\it code/SIZE.h}} |
\subsubsection{File {\it code/SIZE.h}} |
| 994 |
|
\label{www:tutorials} |
| 995 |
|
|
| 996 |
Two lines are customized in this file for the current experiment |
Two lines are customized in this file for the current experiment |
| 997 |
|
|
| 1018 |
\end{small} |
\end{small} |
| 1019 |
|
|
| 1020 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 1021 |
|
\label{www:tutorials} |
| 1022 |
|
|
| 1023 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 1024 |
customisations for this experiment. |
customisations for this experiment. |
| 1025 |
|
|
| 1026 |
|
|
| 1027 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 1028 |
|
\label{www:tutorials} |
| 1029 |
|
|
| 1030 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
| 1031 |
customisations for this experiment. |
customisations for this experiment. |
| 1032 |
|
|
| 1033 |
\subsubsection{Other Files } |
\subsubsection{Other Files } |
| 1034 |
|
\label{www:tutorials} |
| 1035 |
|
|
| 1036 |
Other files relevant to this experiment are |
Other files relevant to this experiment are |
| 1037 |
\begin{itemize} |
\begin{itemize} |
| 1044 |
\end{itemize} |
\end{itemize} |
| 1045 |
|
|
| 1046 |
\subsection{Running The Example} |
\subsection{Running The Example} |
| 1047 |
|
\label{www:tutorials} |
| 1048 |
\label{SEC:running_the_example} |
\label{SEC:running_the_example} |
| 1049 |
|
|
| 1050 |
\subsubsection{Code Download} |
\subsubsection{Code Download} |
| 1051 |
|
\label{www:tutorials} |
| 1052 |
|
|
| 1053 |
In order to run the examples you must first download the code distribution. |
In order to run the examples you must first download the code distribution. |
| 1054 |
Instructions for downloading the code can be found in the Getting Started |
Instructions for downloading the code can be found in section |
| 1055 |
Guide \cite{MITgcm_Getting_Started}. |
\ref{sect:obtainingCode}. |
| 1056 |
|
|
| 1057 |
\subsubsection{Experiment Location} |
\subsubsection{Experiment Location} |
| 1058 |
|
\label{www:tutorials} |
| 1059 |
|
|
| 1060 |
This example experiments is located under the release sub-directory |
This example experiments is located under the release sub-directory |
| 1061 |
|
|
| 1062 |
\vspace{5mm} |
\vspace{5mm} |
| 1063 |
{\it verification/exp1/ } |
{\it verification/exp2/ } |
| 1064 |
|
|
| 1065 |
\subsubsection{Running the Experiment} |
\subsubsection{Running the Experiment} |
| 1066 |
|
\label{www:tutorials} |
| 1067 |
|
|
| 1068 |
To run the experiment |
To run the experiment |
| 1069 |
|
|
| 1080 |
% pwd |
% pwd |
| 1081 |
\end{verbatim} |
\end{verbatim} |
| 1082 |
|
|
| 1083 |
You shold see a response on the screen ending in |
You should see a response on the screen ending in |
| 1084 |
|
|
| 1085 |
{\it verification/exp1/input } |
{\it verification/exp2/input } |
| 1086 |
|
|
| 1087 |
|
|
| 1088 |
\item Run the genmake script to create the experiment {\it Makefile} |
\item Run the genmake script to create the experiment {\it Makefile} |