| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
| 3 |
|
|
| 4 |
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
\section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} |
| 5 |
\label{sect:eg-fourlayer} |
\label{sect:eg-fourlayer} |
| 6 |
|
|
| 7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
| 43 |
according to latitude, $\varphi$ |
according to latitude, $\varphi$ |
| 44 |
|
|
| 45 |
\begin{equation} |
\begin{equation} |
| 46 |
\label{EQ:fcori} |
\label{EQ:eg-fourlayer-fcori} |
| 47 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
f(\varphi) = 2 \Omega \sin( \varphi ) |
| 48 |
\end{equation} |
\end{equation} |
| 49 |
|
|
| 61 |
$\tau_0$ is set to $0.1N m^{-2}$. |
$\tau_0$ is set to $0.1N m^{-2}$. |
| 62 |
\\ |
\\ |
| 63 |
|
|
| 64 |
Figure \ref{FIG:simulation_config} |
Figure \ref{FIG:eg-fourlayer-simulation_config} |
| 65 |
summarizes the configuration simulated. |
summarizes the configuration simulated. |
| 66 |
In contrast to the example in section \ref{sect:eg-baro}, the |
In contrast to the example in section \ref{sect:eg-baro}, the |
| 67 |
current experiment simulates a spherical polar domain. As indicated |
current experiment simulates a spherical polar domain. As indicated |
| 82 |
linear |
linear |
| 83 |
|
|
| 84 |
\begin{equation} |
\begin{equation} |
| 85 |
\label{EQ:linear1_eos} |
\label{EQ:eg-fourlayer-linear1_eos} |
| 86 |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
| 87 |
\end{equation} |
\end{equation} |
| 88 |
|
|
| 89 |
\noindent which is implemented in the model as a density anomaly equation |
\noindent which is implemented in the model as a density anomaly equation |
| 90 |
|
|
| 91 |
\begin{equation} |
\begin{equation} |
| 92 |
\label{EQ:linear1_eos_pert} |
\label{EQ:eg-fourlayer-linear1_eos_pert} |
| 93 |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
| 94 |
\end{equation} |
\end{equation} |
| 95 |
|
|
| 114 |
imposed by setting the potential temperature, $\theta$, in each layer. |
imposed by setting the potential temperature, $\theta$, in each layer. |
| 115 |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
| 116 |
} |
} |
| 117 |
\label{FIG:simulation_config} |
\label{FIG:eg-fourlayer-simulation_config} |
| 118 |
\end{figure} |
\end{figure} |
| 119 |
|
|
| 120 |
\subsection{Equations solved} |
\subsection{Equations solved} |
| 133 |
follows |
follows |
| 134 |
|
|
| 135 |
\begin{eqnarray} |
\begin{eqnarray} |
| 136 |
\label{EQ:model_equations} |
\label{EQ:eg-fourlayer-model_equations} |
| 137 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
| 138 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
| 139 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 266 |
This value is chosen to yield a Munk layer width, |
This value is chosen to yield a Munk layer width, |
| 267 |
|
|
| 268 |
\begin{eqnarray} |
\begin{eqnarray} |
| 269 |
\label{EQ:munk_layer} |
\label{EQ:eg-fourlayer-munk_layer} |
| 270 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 271 |
\end{eqnarray} |
\end{eqnarray} |
| 272 |
|
|
| 282 |
parameter to the horizontal Laplacian friction |
parameter to the horizontal Laplacian friction |
| 283 |
|
|
| 284 |
\begin{eqnarray} |
\begin{eqnarray} |
| 285 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-fourlayer-laplacian_stability} |
| 286 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 287 |
\end{eqnarray} |
\end{eqnarray} |
| 288 |
|
|
| 294 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 295 |
|
|
| 296 |
\begin{eqnarray} |
\begin{eqnarray} |
| 297 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-fourlayer-laplacian_stability_z} |
| 298 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 299 |
\end{eqnarray} |
\end{eqnarray} |
| 300 |
|
|
| 307 |
\noindent The numerical stability for inertial oscillations |
\noindent The numerical stability for inertial oscillations |
| 308 |
|
|
| 309 |
\begin{eqnarray} |
\begin{eqnarray} |
| 310 |
\label{EQ:inertial_stability} |
\label{EQ:eg-fourlayer-inertial_stability} |
| 311 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
| 312 |
\end{eqnarray} |
\end{eqnarray} |
| 313 |
|
|
| 320 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 321 |
|
|
| 322 |
\begin{eqnarray} |
\begin{eqnarray} |
| 323 |
\label{EQ:cfl_stability} |
\label{EQ:eg-fourlayer-cfl_stability} |
| 324 |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 325 |
\end{eqnarray} |
\end{eqnarray} |
| 326 |
|
|
| 332 |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
propagating at $2~{\rm m}~{\rm s}^{-1}$ |
| 333 |
|
|
| 334 |
\begin{eqnarray} |
\begin{eqnarray} |
| 335 |
\label{EQ:igw_stability} |
\label{EQ:eg-fourlayer-igw_stability} |
| 336 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 337 |
\end{eqnarray} |
\end{eqnarray} |
| 338 |
|
|