1 |
cnh |
1.4 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part3/case_studies/fourlayer_gyre/fourlayer.tex,v 1.3 2001/10/24 15:21:27 cnh Exp $ |
2 |
cnh |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
|
|
\section{Example: Four layer Baroclinic Ocean Gyre In Spherical Coordinates} |
5 |
cnh |
1.3 |
\label{sec:eg-fourlayer} |
6 |
adcroft |
1.1 |
|
7 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
8 |
|
|
|
9 |
|
|
%\begin{center} |
10 |
|
|
%{\Large \bf Using MITgcm to Simulate a Baroclinic Ocean Gyre In Spherical |
11 |
|
|
%Polar Coordinates} |
12 |
|
|
% |
13 |
|
|
%\vspace*{4mm} |
14 |
|
|
% |
15 |
|
|
%\vspace*{3mm} |
16 |
|
|
%{\large May 2001} |
17 |
|
|
%\end{center} |
18 |
|
|
|
19 |
cnh |
1.3 |
This document describes an example experiment using MITgcm |
20 |
|
|
to simulate a baroclinic ocean gyre in spherical |
21 |
|
|
polar coordinates. The barotropic |
22 |
|
|
example experiment in section \ref{sec:eg-baro} |
23 |
|
|
ilustrated how to configure the code for a single layer |
24 |
adcroft |
1.1 |
simulation in a cartesian grid. In this example a similar physical problem |
25 |
|
|
is simulated, but the code is now configured |
26 |
|
|
for four layers and in a spherical polar coordinate system. |
27 |
|
|
|
28 |
|
|
\subsection{Overview} |
29 |
|
|
|
30 |
|
|
This example experiment demonstrates using the MITgcm to simulate |
31 |
|
|
a baroclinic, wind-forced, ocean gyre circulation. The experiment |
32 |
|
|
is a numerical rendition of the gyre circulation problem simliar |
33 |
|
|
to the problems described analytically by Stommel in 1966 |
34 |
|
|
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
35 |
|
|
\\ |
36 |
|
|
|
37 |
|
|
In this experiment the model is configured to represent a mid-latitude |
38 |
|
|
enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in |
39 |
|
|
lateral extent. The fluid is $2$~km deep and is forced |
40 |
|
|
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
41 |
|
|
in the north-south direction. Topologically the simulated |
42 |
|
|
domain is a sector on a sphere and the coriolis parameter, $f$, is defined |
43 |
cnh |
1.3 |
according to latitude, $\varphi$ |
44 |
adcroft |
1.1 |
|
45 |
|
|
\begin{equation} |
46 |
|
|
\label{EQ:fcori} |
47 |
cnh |
1.3 |
f(\varphi) = 2 \Omega \sin( \varphi ) |
48 |
adcroft |
1.1 |
\end{equation} |
49 |
|
|
|
50 |
|
|
\noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. |
51 |
|
|
\\ |
52 |
|
|
|
53 |
|
|
The sinusoidal wind-stress variations are defined according to |
54 |
|
|
|
55 |
|
|
\begin{equation} |
56 |
|
|
\label{EQ:taux} |
57 |
cnh |
1.3 |
\tau_x(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) |
58 |
adcroft |
1.1 |
\end{equation} |
59 |
|
|
|
60 |
cnh |
1.3 |
\noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and |
61 |
adcroft |
1.1 |
$\tau_0$ is set to $0.1N m^{-2}$. |
62 |
|
|
\\ |
63 |
|
|
|
64 |
|
|
Figure \ref{FIG:simulation_config} |
65 |
|
|
summarises the configuration simulated. |
66 |
cnh |
1.3 |
In contrast to the example in section \ref{sec:eg-baro}, the |
67 |
|
|
current experiment simulates a spherical polar domain. However, as indicated |
68 |
adcroft |
1.1 |
by the axes in the lower left of the figure the model code works internally |
69 |
cnh |
1.3 |
in a locally orthoganal coordinate $(x,y,z)$. For this experiment description |
70 |
|
|
of this document the local orthogonal model coordinate $(x,y,z)$ is synonomous |
71 |
|
|
with the spherical polar coordinate shown in figure |
72 |
|
|
\ref{fig:spherical-polar-coord} |
73 |
adcroft |
1.1 |
\\ |
74 |
|
|
|
75 |
|
|
The experiment has four levels in the vertical, each of equal thickness, |
76 |
|
|
$\Delta z = 500$~m. Initially the fluid is stratified with a reference |
77 |
|
|
potential temperature profile, |
78 |
|
|
$\theta_{250}=20^{\circ}$~C, |
79 |
|
|
$\theta_{750}=10^{\circ}$~C, |
80 |
|
|
$\theta_{1250}=8^{\circ}$~C, |
81 |
|
|
$\theta_{1750}=6^{\circ}$~C. The equation of state used in this experiment is |
82 |
|
|
linear |
83 |
|
|
|
84 |
|
|
\begin{equation} |
85 |
|
|
\label{EQ:linear1_eos} |
86 |
|
|
\rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) |
87 |
|
|
\end{equation} |
88 |
|
|
|
89 |
|
|
\noindent which is implemented in the model as a density anomaly equation |
90 |
|
|
|
91 |
|
|
\begin{equation} |
92 |
|
|
\label{EQ:linear1_eos_pert} |
93 |
|
|
\rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} |
94 |
|
|
\end{equation} |
95 |
|
|
|
96 |
|
|
\noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and |
97 |
|
|
$\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in |
98 |
|
|
this configuration the model state variable {\bf theta} is synonomous with |
99 |
|
|
either in-situ temperature, $T$, or potential temperature, $\theta$. For |
100 |
|
|
consistency with later examples, in which the equation of state is |
101 |
|
|
non-linear, we use $\theta$ to represent temperature here. This is |
102 |
|
|
the quantity that is carried in the model core equations. |
103 |
|
|
|
104 |
|
|
\begin{figure} |
105 |
cnh |
1.2 |
\begin{center} |
106 |
adcroft |
1.1 |
\resizebox{7.5in}{5.5in}{ |
107 |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in] |
108 |
|
|
{part3/case_studies/fourlayer_gyre/simulation_config.eps} } |
109 |
cnh |
1.2 |
\end{center} |
110 |
adcroft |
1.1 |
\caption{Schematic of simulation domain and wind-stress forcing function |
111 |
|
|
for the four-layer gyre numerical experiment. The domain is enclosed by solid |
112 |
|
|
walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. |
113 |
|
|
In the four-layer case an initial temperature stratification is |
114 |
|
|
imposed by setting the potential temperature, $\theta$, in each layer. |
115 |
|
|
The vertical spacing, $\Delta z$, is constant and equal to $500$m. |
116 |
|
|
} |
117 |
|
|
\label{FIG:simulation_config} |
118 |
|
|
\end{figure} |
119 |
|
|
|
120 |
cnh |
1.3 |
\subsection{Equations solved} |
121 |
adcroft |
1.1 |
|
122 |
|
|
The implicit free surface form of the |
123 |
|
|
pressure equation described in Marshall et. al \cite{Marshall97a} is |
124 |
|
|
employed. |
125 |
|
|
A horizontal laplacian operator $\nabla_{h}^2$ provides viscous |
126 |
|
|
dissipation. The wind-stress momentum input is added to the momentum equation |
127 |
|
|
for the ``zonal flow'', $u$. Other terms in the model |
128 |
|
|
are explicitly switched off for this experiement configuration (see section |
129 |
cnh |
1.3 |
\ref{SEC:code_config} ). This yields an active set of equations in |
130 |
|
|
solved in this configuration, written in spherical polar coordinates as |
131 |
|
|
follows |
132 |
adcroft |
1.1 |
|
133 |
|
|
\begin{eqnarray} |
134 |
|
|
\label{EQ:model_equations} |
135 |
|
|
\frac{Du}{Dt} - fv + |
136 |
cnh |
1.4 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - |
137 |
adcroft |
1.1 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
138 |
|
|
& = & |
139 |
|
|
\cal{F} |
140 |
|
|
\\ |
141 |
|
|
\frac{Dv}{Dt} + fu + |
142 |
cnh |
1.4 |
\frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} - |
143 |
adcroft |
1.1 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
144 |
|
|
& = & |
145 |
|
|
0 |
146 |
|
|
\\ |
147 |
cnh |
1.3 |
\frac{\partial \eta}{\partial t} + \frac{\partial H \hat{u}}{\partial \lambda} + |
148 |
|
|
\frac{\partial H \hat{v}}{\partial \varphi} |
149 |
adcroft |
1.1 |
&=& |
150 |
|
|
0 |
151 |
|
|
\\ |
152 |
|
|
\frac{D\theta}{Dt} - |
153 |
|
|
K_{h}\nabla_{h}^2\theta - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} |
154 |
|
|
& = & |
155 |
|
|
0 |
156 |
|
|
\\ |
157 |
cnh |
1.4 |
p^{\prime} & = & |
158 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz |
159 |
cnh |
1.3 |
\\ |
160 |
cnh |
1.4 |
\rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} |
161 |
adcroft |
1.1 |
\\ |
162 |
|
|
{\cal F} |_{s} & = & \frac{\tau_{x}}{\rho_{0}\Delta z_{s}} |
163 |
|
|
\\ |
164 |
|
|
{\cal F} |_{i} & = & 0 |
165 |
|
|
\end{eqnarray} |
166 |
|
|
|
167 |
cnh |
1.3 |
\noindent where $u$ and $v$ are the components of the horizontal |
168 |
|
|
flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). |
169 |
cnh |
1.4 |
The terms $H\hat{u}$ and $H\hat{v}$ are the components of the term |
170 |
|
|
integrated in eqaution \ref{eq:free-surface}, as descirbed in section |
171 |
|
|
|
172 |
cnh |
1.3 |
The suffices ${s},{i}$ indicate surface and interior of the domain. |
173 |
|
|
The forcing $\cal F$ is only applied at the surface. |
174 |
cnh |
1.4 |
The pressure field, $p^{\prime}$, is separated into a barotropic part |
175 |
cnh |
1.3 |
due to variations in sea-surface height, $\eta$, and a hydrostatic |
176 |
cnh |
1.4 |
part due to variations in density, $\rho^{\prime}$, over the water column. |
177 |
cnh |
1.3 |
|
178 |
|
|
\subsection{Discrete Numerical Configuration} |
179 |
|
|
|
180 |
|
|
The model is configured in hydrostatic form. The domain is discretised with |
181 |
|
|
a uniform grid spacing in latitude and longitude |
182 |
|
|
$\Delta \lambda=\Delta \varphi=1^{\circ}$, so |
183 |
|
|
that there are sixty grid cells in the zonal and meridional directions. |
184 |
|
|
Vertically the |
185 |
cnh |
1.4 |
model is configured with four layers with constant depth, |
186 |
cnh |
1.3 |
$\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate |
187 |
|
|
variables $x$ and $y$ are initialised from the values of |
188 |
|
|
$\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in |
189 |
|
|
radians according to |
190 |
|
|
|
191 |
|
|
\begin{eqnarray} |
192 |
|
|
x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ |
193 |
|
|
y=r\varphi,~\Delta y &= &r\Delta \varphi |
194 |
|
|
\end{eqnarray} |
195 |
|
|
|
196 |
|
|
The procedure for generating a set of internal grid variables from a |
197 |
|
|
spherical polar grid specification is discussed in section |
198 |
|
|
\ref{sec:spatial_discrete_horizontal_grid}. |
199 |
|
|
|
200 |
|
|
\noindent\fbox{ \begin{minipage}{5.5in} |
201 |
|
|
{\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em |
202 |
|
|
model/src/ini\_spherical\_polar\_grid.F}) |
203 |
|
|
|
204 |
|
|
$A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} |
205 |
|
|
({\em GRID.h}) |
206 |
|
|
|
207 |
|
|
$\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) |
208 |
|
|
|
209 |
|
|
$\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) |
210 |
|
|
|
211 |
|
|
$\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) |
212 |
|
|
|
213 |
|
|
$\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) |
214 |
|
|
|
215 |
|
|
\end{minipage} }\\ |
216 |
|
|
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
As described in \ref{sec:tracer_equations}, the time evolution of potential |
220 |
|
|
temperature, |
221 |
|
|
$\theta$, equation is solved prognostically. |
222 |
|
|
The pressure forces that drive the fluid motions, ( |
223 |
|
|
$\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface |
224 |
adcroft |
1.1 |
elevation $\eta$ and the hydrostatic pressure. |
225 |
|
|
|
226 |
|
|
\subsubsection{Numerical Stability Criteria} |
227 |
|
|
|
228 |
|
|
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
229 |
|
|
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
230 |
|
|
|
231 |
|
|
\begin{eqnarray} |
232 |
|
|
\label{EQ:munk_layer} |
233 |
|
|
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
234 |
|
|
\end{eqnarray} |
235 |
|
|
|
236 |
|
|
\noindent of $\approx 100$km. This is greater than the model |
237 |
|
|
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
238 |
|
|
boundary layer is well resolved. |
239 |
|
|
\\ |
240 |
|
|
|
241 |
|
|
\noindent The model is stepped forward with a |
242 |
|
|
time step $\delta t=1200$secs. With this time step the stability |
243 |
|
|
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
244 |
|
|
|
245 |
|
|
\begin{eqnarray} |
246 |
|
|
\label{EQ:laplacian_stability} |
247 |
|
|
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
248 |
|
|
\end{eqnarray} |
249 |
|
|
|
250 |
|
|
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
251 |
|
|
for stability. |
252 |
|
|
\\ |
253 |
|
|
|
254 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
255 |
|
|
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
256 |
|
|
|
257 |
|
|
\begin{eqnarray} |
258 |
|
|
\label{EQ:laplacian_stability_z} |
259 |
|
|
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
260 |
|
|
\end{eqnarray} |
261 |
|
|
|
262 |
|
|
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
263 |
|
|
the upper limit. |
264 |
|
|
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
265 |
|
|
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
266 |
|
|
\\ |
267 |
|
|
|
268 |
|
|
\noindent The numerical stability for inertial oscillations |
269 |
|
|
\cite{Adcroft_thesis} |
270 |
|
|
|
271 |
|
|
\begin{eqnarray} |
272 |
|
|
\label{EQ:inertial_stability} |
273 |
|
|
S_{i} = f^{2} {\delta t}^2 |
274 |
|
|
\end{eqnarray} |
275 |
|
|
|
276 |
|
|
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
277 |
|
|
limit for stability. |
278 |
|
|
\\ |
279 |
|
|
|
280 |
|
|
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
281 |
|
|
horizontal flow |
282 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
283 |
|
|
|
284 |
|
|
\begin{eqnarray} |
285 |
|
|
\label{EQ:cfl_stability} |
286 |
|
|
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
287 |
|
|
\end{eqnarray} |
288 |
|
|
|
289 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
290 |
|
|
limit of 0.5. |
291 |
|
|
\\ |
292 |
|
|
|
293 |
|
|
\noindent The stability parameter for internal gravity waves |
294 |
|
|
\cite{Adcroft_thesis} |
295 |
|
|
|
296 |
|
|
\begin{eqnarray} |
297 |
|
|
\label{EQ:igw_stability} |
298 |
|
|
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
299 |
|
|
\end{eqnarray} |
300 |
|
|
|
301 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
302 |
|
|
stability limit of 0.25. |
303 |
|
|
|
304 |
|
|
\subsection{Code Configuration} |
305 |
|
|
\label{SEC:code_config} |
306 |
|
|
|
307 |
|
|
The model configuration for this experiment resides under the |
308 |
|
|
directory {\it verification/exp1/}. The experiment files |
309 |
|
|
\begin{itemize} |
310 |
|
|
\item {\it input/data} |
311 |
|
|
\item {\it input/data.pkg} |
312 |
|
|
\item {\it input/eedata}, |
313 |
|
|
\item {\it input/windx.sin\_y}, |
314 |
|
|
\item {\it input/topog.box}, |
315 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
316 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
317 |
|
|
\item {\it code/SIZE.h}. |
318 |
|
|
\end{itemize} |
319 |
|
|
contain the code customisations and parameter settings for this |
320 |
|
|
experiements. Below we describe the customisations |
321 |
|
|
to these files associated with this experiment. |
322 |
|
|
|
323 |
|
|
\subsubsection{File {\it input/data}} |
324 |
|
|
|
325 |
|
|
This file, reproduced completely below, specifies the main parameters |
326 |
|
|
for the experiment. The parameters that are significant for this configuration |
327 |
|
|
are |
328 |
|
|
|
329 |
|
|
\begin{itemize} |
330 |
|
|
|
331 |
|
|
\item Line 4, |
332 |
|
|
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
333 |
|
|
this line sets |
334 |
|
|
the initial and reference values of potential temperature at each model |
335 |
|
|
level in units of $^{\circ}$C. |
336 |
|
|
The entries are ordered from surface to depth. For each |
337 |
|
|
depth level the inital and reference profiles will be uniform in |
338 |
|
|
$x$ and $y$. The values specified here are read into the |
339 |
|
|
variable |
340 |
|
|
{\bf |
341 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
342 |
|
|
tRef |
343 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
344 |
|
|
} |
345 |
|
|
in the model code, by procedure |
346 |
|
|
{\it |
347 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
348 |
|
|
INI\_PARMS |
349 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
350 |
|
|
}. |
351 |
|
|
|
352 |
|
|
%% \codelink{var:tref} tRef \endlink |
353 |
|
|
%% \codelink{file:ini_parms} {\it INI\_PARMS } \endlink |
354 |
|
|
%% \codelink{proc:ini_parms} {\it INI\_PARMS } \endlink |
355 |
|
|
%% \var{tref} |
356 |
|
|
%% \proc{ini_parms} |
357 |
|
|
%% \file{ini_parms} |
358 |
|
|
\newcommand{\VARtref}{ |
359 |
|
|
{\bf |
360 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} |
361 |
|
|
tRef |
362 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
363 |
|
|
} |
364 |
|
|
} |
365 |
|
|
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
\fbox{ |
369 |
|
|
\begin{minipage}{5.0in} |
370 |
|
|
{\it S/R INI\_THETA} |
371 |
|
|
({\it ini\_theta.F}) |
372 |
|
|
\end{minipage} |
373 |
|
|
} |
374 |
|
|
{\bf |
375 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/98.htm> \end{rawhtml} |
376 |
|
|
goto code |
377 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
378 |
|
|
} |
379 |
|
|
|
380 |
|
|
|
381 |
|
|
\item Line 6, |
382 |
|
|
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
383 |
|
|
this line sets the vertical laplacian dissipation coefficient to |
384 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
385 |
|
|
for this operator are specified later. |
386 |
|
|
The variable |
387 |
|
|
{\bf |
388 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} |
389 |
|
|
viscAz |
390 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
391 |
|
|
} |
392 |
|
|
is read in the routine |
393 |
|
|
{\it |
394 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
395 |
|
|
INI\_PARMS |
396 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
397 |
|
|
} |
398 |
|
|
and is copied into model general vertical coordinate variable |
399 |
|
|
{\bf |
400 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} |
401 |
|
|
viscAr |
402 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
403 |
|
|
}. |
404 |
|
|
|
405 |
|
|
\fbox{ |
406 |
|
|
\begin{minipage}{5.0in} |
407 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
408 |
|
|
\end{minipage} |
409 |
|
|
} |
410 |
|
|
{\bf |
411 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
412 |
|
|
goto code |
413 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
414 |
|
|
} |
415 |
|
|
|
416 |
|
|
\item Line 7, |
417 |
|
|
\begin{verbatim} |
418 |
|
|
viscAh=4.E2, |
419 |
|
|
\end{verbatim} |
420 |
|
|
this line sets the horizontal laplacian frictional dissipation coefficient to |
421 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
422 |
|
|
for this operator are specified later. |
423 |
|
|
The variable |
424 |
|
|
{\bf |
425 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} |
426 |
|
|
viscAh |
427 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
428 |
|
|
} |
429 |
|
|
is read in the routine |
430 |
|
|
{\it |
431 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
432 |
|
|
INI\_PARMS |
433 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
434 |
|
|
}. |
435 |
|
|
|
436 |
|
|
\fbox{ |
437 |
|
|
\begin{minipage}{5.0in} |
438 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
439 |
|
|
\end{minipage} |
440 |
|
|
} |
441 |
|
|
{\bf |
442 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
443 |
|
|
goto code |
444 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
445 |
|
|
} |
446 |
|
|
|
447 |
|
|
\fbox{ |
448 |
|
|
\begin{minipage}{5.0in} |
449 |
|
|
{\it S/R CALC\_GW}({\it calc\_gw.F}) |
450 |
|
|
\end{minipage} |
451 |
|
|
} |
452 |
|
|
{\bf |
453 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/58.htm> \end{rawhtml} |
454 |
|
|
goto code |
455 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
456 |
|
|
} |
457 |
|
|
|
458 |
|
|
\item Lines 8, |
459 |
|
|
\begin{verbatim} |
460 |
|
|
no_slip_sides=.FALSE. |
461 |
|
|
\end{verbatim} |
462 |
|
|
this line selects a free-slip lateral boundary condition for |
463 |
|
|
the horizontal laplacian friction operator |
464 |
|
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
465 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
466 |
|
|
The variable |
467 |
|
|
{\bf |
468 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} |
469 |
|
|
no\_slip\_sides |
470 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
471 |
|
|
} |
472 |
|
|
is read in the routine |
473 |
|
|
{\it |
474 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
475 |
|
|
INI\_PARMS |
476 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
477 |
|
|
}. |
478 |
|
|
|
479 |
|
|
|
480 |
|
|
\fbox{ |
481 |
|
|
\begin{minipage}{5.0in} |
482 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
483 |
|
|
\end{minipage} |
484 |
|
|
} |
485 |
|
|
{\bf |
486 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
487 |
|
|
goto code |
488 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
489 |
|
|
} |
490 |
|
|
|
491 |
|
|
\item Lines 9, |
492 |
|
|
\begin{verbatim} |
493 |
|
|
no_slip_bottom=.TRUE. |
494 |
|
|
\end{verbatim} |
495 |
|
|
this line selects a no-slip boundary condition for bottom |
496 |
|
|
boundary condition in the vertical laplacian friction operator |
497 |
|
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
498 |
|
|
The variable |
499 |
|
|
{\bf |
500 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} |
501 |
|
|
no\_slip\_bottom |
502 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
503 |
|
|
} |
504 |
|
|
is read in the routine |
505 |
|
|
{\it |
506 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
507 |
|
|
INI\_PARMS |
508 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
509 |
|
|
}. |
510 |
|
|
|
511 |
|
|
\fbox{ |
512 |
|
|
\begin{minipage}{5.0in} |
513 |
|
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
514 |
|
|
\end{minipage} |
515 |
|
|
} |
516 |
|
|
{\bf |
517 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} |
518 |
|
|
goto code |
519 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
520 |
|
|
} |
521 |
|
|
|
522 |
|
|
\item Line 10, |
523 |
|
|
\begin{verbatim} |
524 |
|
|
diffKhT=4.E2, |
525 |
|
|
\end{verbatim} |
526 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
527 |
|
|
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
528 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
529 |
|
|
all boundaries. |
530 |
|
|
The variable |
531 |
|
|
{\bf |
532 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} |
533 |
|
|
diffKhT |
534 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
535 |
|
|
} |
536 |
|
|
is read in the routine |
537 |
|
|
{\it |
538 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
539 |
|
|
INI\_PARMS |
540 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
541 |
|
|
}. |
542 |
|
|
|
543 |
|
|
\fbox{ \begin{minipage}{5.0in} |
544 |
|
|
{\it S/R CALC\_GT}({\it calc\_gt.F}) |
545 |
|
|
\end{minipage} |
546 |
|
|
} |
547 |
|
|
{\bf |
548 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/57.htm> \end{rawhtml} |
549 |
|
|
goto code |
550 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
551 |
|
|
} |
552 |
|
|
|
553 |
|
|
\item Line 11, |
554 |
|
|
\begin{verbatim} |
555 |
|
|
diffKzT=1.E-2, |
556 |
|
|
\end{verbatim} |
557 |
|
|
this line sets the vertical diffusion coefficient for temperature |
558 |
|
|
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
559 |
|
|
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
560 |
|
|
The variable |
561 |
|
|
{\bf |
562 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} |
563 |
|
|
diffKzT |
564 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
565 |
|
|
} |
566 |
|
|
is read in the routine |
567 |
|
|
{\it |
568 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
569 |
|
|
INI\_PARMS |
570 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
571 |
|
|
}. |
572 |
|
|
It is copied into model general vertical coordinate variable |
573 |
|
|
{\bf |
574 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} |
575 |
|
|
diffKrT |
576 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
577 |
|
|
}. |
578 |
|
|
|
579 |
|
|
\fbox{ \begin{minipage}{5.0in} |
580 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
581 |
|
|
\end{minipage} |
582 |
|
|
} |
583 |
|
|
{\bf |
584 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} |
585 |
|
|
goto code |
586 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
587 |
|
|
} |
588 |
|
|
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
\item Line 13, |
592 |
|
|
\begin{verbatim} |
593 |
|
|
tAlpha=2.E-4, |
594 |
|
|
\end{verbatim} |
595 |
|
|
This line sets the thermal expansion coefficient for the fluid |
596 |
|
|
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
597 |
|
|
The variable |
598 |
|
|
{\bf |
599 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} |
600 |
|
|
tAlpha |
601 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
602 |
|
|
} |
603 |
|
|
is read in the routine |
604 |
|
|
{\it |
605 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
606 |
|
|
INI\_PARMS |
607 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
608 |
|
|
}. |
609 |
|
|
|
610 |
|
|
\fbox{ |
611 |
|
|
\begin{minipage}{5.0in} |
612 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
613 |
|
|
\end{minipage} |
614 |
|
|
} |
615 |
|
|
{\bf |
616 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
617 |
|
|
goto code |
618 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
619 |
|
|
} |
620 |
|
|
|
621 |
|
|
\item Line 18, |
622 |
|
|
\begin{verbatim} |
623 |
|
|
eosType='LINEAR' |
624 |
|
|
\end{verbatim} |
625 |
|
|
This line selects the linear form of the equation of state. |
626 |
|
|
The variable |
627 |
|
|
{\bf |
628 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/WV.htm> \end{rawhtml} |
629 |
|
|
eosType |
630 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
631 |
|
|
} |
632 |
|
|
is read in the routine |
633 |
|
|
{\it |
634 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
635 |
|
|
INI\_PARMS |
636 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
637 |
|
|
}. |
638 |
|
|
|
639 |
|
|
\fbox{ |
640 |
|
|
\begin{minipage}{5.0in} |
641 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
642 |
|
|
\end{minipage} |
643 |
|
|
} |
644 |
|
|
{\bf |
645 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} |
646 |
|
|
goto code |
647 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
648 |
|
|
} |
649 |
|
|
|
650 |
|
|
|
651 |
|
|
|
652 |
|
|
\item Line 40, |
653 |
|
|
\begin{verbatim} |
654 |
|
|
usingSphericalPolarGrid=.TRUE., |
655 |
|
|
\end{verbatim} |
656 |
|
|
This line requests that the simulation be performed in a |
657 |
|
|
spherical polar coordinate system. It affects the interpretation of |
658 |
|
|
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
659 |
|
|
causes the grid generation routines to initialise an internal grid based |
660 |
|
|
on spherical polar geometry. |
661 |
|
|
The variable |
662 |
|
|
{\bf |
663 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10T.htm> \end{rawhtml} |
664 |
|
|
usingSphericalPolarGrid |
665 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
666 |
|
|
} |
667 |
|
|
is read in the routine |
668 |
|
|
{\it |
669 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
670 |
|
|
INI\_PARMS |
671 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
672 |
|
|
}. |
673 |
|
|
|
674 |
|
|
\fbox{ |
675 |
|
|
\begin{minipage}{5.0in} |
676 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
677 |
|
|
\end{minipage} |
678 |
|
|
} |
679 |
|
|
{\bf |
680 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
681 |
|
|
goto code |
682 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
683 |
|
|
} |
684 |
|
|
|
685 |
|
|
\item Line 41, |
686 |
|
|
\begin{verbatim} |
687 |
|
|
phiMin=0., |
688 |
|
|
\end{verbatim} |
689 |
|
|
This line sets the southern boundary of the modeled |
690 |
|
|
domain to $0^{\circ}$ latitude. This value affects both the |
691 |
|
|
generation of the locally orthogonal grid that the model |
692 |
|
|
uses internally and affects the initialisation of the coriolis force. |
693 |
|
|
Note - it is not required to set |
694 |
|
|
a longitude boundary, since the absolute longitude does |
695 |
|
|
not alter the kernel equation discretisation. |
696 |
|
|
The variable |
697 |
|
|
{\bf |
698 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/110.htm> \end{rawhtml} |
699 |
|
|
phiMin |
700 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
701 |
|
|
} |
702 |
|
|
is read in the routine |
703 |
|
|
{\it |
704 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
705 |
|
|
INI\_PARMS |
706 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
707 |
|
|
}. |
708 |
|
|
|
709 |
|
|
\fbox{ |
710 |
|
|
\begin{minipage}{5.0in} |
711 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
712 |
|
|
\end{minipage} |
713 |
|
|
} |
714 |
|
|
{\bf |
715 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
716 |
|
|
goto code |
717 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
718 |
|
|
} |
719 |
|
|
|
720 |
|
|
\item Line 42, |
721 |
|
|
\begin{verbatim} |
722 |
|
|
delX=60*1., |
723 |
|
|
\end{verbatim} |
724 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
725 |
|
|
in the discrete grid to $1^{\circ}$ in longitude. |
726 |
|
|
The variable |
727 |
|
|
{\bf |
728 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Z.htm> \end{rawhtml} |
729 |
|
|
delX |
730 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
731 |
|
|
} |
732 |
|
|
is read in the routine |
733 |
|
|
{\it |
734 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
735 |
|
|
INI\_PARMS |
736 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
737 |
|
|
}. |
738 |
|
|
|
739 |
|
|
\fbox{ |
740 |
|
|
\begin{minipage}{5.0in} |
741 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
742 |
|
|
\end{minipage} |
743 |
|
|
} |
744 |
|
|
{\bf |
745 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
746 |
|
|
goto code |
747 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
748 |
|
|
} |
749 |
|
|
|
750 |
|
|
\item Line 43, |
751 |
|
|
\begin{verbatim} |
752 |
|
|
delY=60*1., |
753 |
|
|
\end{verbatim} |
754 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
755 |
|
|
in the discrete grid to $1^{\circ}$ in latitude. |
756 |
|
|
The variable |
757 |
|
|
{\bf |
758 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/UB.htm> \end{rawhtml} |
759 |
|
|
delY |
760 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
761 |
|
|
} |
762 |
|
|
is read in the routine |
763 |
|
|
{\it |
764 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
765 |
|
|
INI\_PARMS |
766 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
767 |
|
|
}. |
768 |
|
|
|
769 |
|
|
\fbox{ |
770 |
|
|
\begin{minipage}{5.0in} |
771 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
772 |
|
|
\end{minipage} |
773 |
|
|
} |
774 |
|
|
{\bf |
775 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} |
776 |
|
|
goto code |
777 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
778 |
|
|
} |
779 |
|
|
|
780 |
|
|
\item Line 44, |
781 |
|
|
\begin{verbatim} |
782 |
|
|
delZ=500.,500.,500.,500., |
783 |
|
|
\end{verbatim} |
784 |
|
|
This line sets the vertical grid spacing between each z-coordinate line |
785 |
|
|
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
786 |
|
|
is $2\,{\rm km}$. |
787 |
|
|
The variable |
788 |
|
|
{\bf |
789 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10W.htm> \end{rawhtml} |
790 |
|
|
delZ |
791 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
792 |
|
|
} |
793 |
|
|
is read in the routine |
794 |
|
|
{\it |
795 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
796 |
|
|
INI\_PARMS |
797 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
798 |
|
|
}. |
799 |
|
|
It is copied into the internal |
800 |
|
|
model coordinate variable |
801 |
|
|
{\bf |
802 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} |
803 |
|
|
delR |
804 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
805 |
|
|
}. |
806 |
|
|
|
807 |
|
|
\fbox{ |
808 |
|
|
\begin{minipage}{5.0in} |
809 |
|
|
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
810 |
|
|
\end{minipage} |
811 |
|
|
} |
812 |
|
|
{\bf |
813 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/100.htm> \end{rawhtml} |
814 |
|
|
goto code |
815 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
816 |
|
|
} |
817 |
|
|
|
818 |
|
|
\item Line 47, |
819 |
|
|
\begin{verbatim} |
820 |
|
|
bathyFile='topog.box' |
821 |
|
|
\end{verbatim} |
822 |
|
|
This line specifies the name of the file from which the domain |
823 |
|
|
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
824 |
|
|
depths. This file is assumed to contain 64-bit binary numbers |
825 |
|
|
giving the depth of the model at each grid cell, ordered with the x |
826 |
|
|
coordinate varying fastest. The points are ordered from low coordinate |
827 |
|
|
to high coordinate for both axes. The units and orientation of the |
828 |
|
|
depths in this file are the same as used in the MITgcm code. In this |
829 |
|
|
experiment, a depth of $0m$ indicates a solid wall and a depth |
830 |
|
|
of $-2000m$ indicates open ocean. The matlab program |
831 |
|
|
{\it input/gendata.m} shows an example of how to generate a |
832 |
|
|
bathymetry file. |
833 |
|
|
The variable |
834 |
|
|
{\bf |
835 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} |
836 |
|
|
bathyFile |
837 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
838 |
|
|
} |
839 |
|
|
is read in the routine |
840 |
|
|
{\it |
841 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
842 |
|
|
INI\_PARMS |
843 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
844 |
|
|
}. |
845 |
|
|
|
846 |
|
|
\fbox{ |
847 |
|
|
\begin{minipage}{5.0in} |
848 |
|
|
{\it S/R INI\_DEPTHS}({\it ini\_depths.F}) |
849 |
|
|
\end{minipage} |
850 |
|
|
} |
851 |
|
|
{\bf |
852 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/88.htm> \end{rawhtml} |
853 |
|
|
goto code |
854 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
855 |
|
|
} |
856 |
|
|
|
857 |
|
|
|
858 |
|
|
\item Line 50, |
859 |
|
|
\begin{verbatim} |
860 |
|
|
zonalWindFile='windx.sin_y' |
861 |
|
|
\end{verbatim} |
862 |
|
|
This line specifies the name of the file from which the x-direction |
863 |
|
|
surface wind stress is read. This file is also a two-dimensional |
864 |
|
|
($x,y$) map and is enumerated and formatted in the same manner as the |
865 |
|
|
bathymetry file. The matlab program {\it input/gendata.m} includes example |
866 |
|
|
code to generate a valid |
867 |
|
|
{\bf zonalWindFile} |
868 |
|
|
file. |
869 |
|
|
The variable |
870 |
|
|
{\bf |
871 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/names/13W.htm> \end{rawhtml} |
872 |
|
|
zonalWindFile |
873 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
874 |
|
|
} |
875 |
|
|
is read in the routine |
876 |
|
|
{\it |
877 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} |
878 |
|
|
INI\_PARMS |
879 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
880 |
|
|
}. |
881 |
|
|
|
882 |
|
|
\fbox{ |
883 |
|
|
\begin{minipage}{5.0in} |
884 |
|
|
{\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) |
885 |
|
|
\end{minipage} |
886 |
|
|
} |
887 |
|
|
{\bf |
888 |
|
|
\begin{rawhtml} <A href=../../../code_reference/vdb/code/75.htm> \end{rawhtml} |
889 |
|
|
goto code |
890 |
|
|
\begin{rawhtml} </A>\end{rawhtml} |
891 |
|
|
} |
892 |
|
|
|
893 |
|
|
\end{itemize} |
894 |
|
|
|
895 |
|
|
\noindent other lines in the file {\it input/data} are standard values |
896 |
|
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
897 |
|
|
notes. |
898 |
|
|
|
899 |
|
|
\begin{rawhtml}<PRE>\end{rawhtml} |
900 |
|
|
\begin{small} |
901 |
|
|
\input{part3/case_studies/fourlayer_gyre/input/data} |
902 |
|
|
\end{small} |
903 |
|
|
\begin{rawhtml}</PRE>\end{rawhtml} |
904 |
|
|
|
905 |
|
|
\subsubsection{File {\it input/data.pkg}} |
906 |
|
|
|
907 |
|
|
This file uses standard default values and does not contain |
908 |
|
|
customisations for this experiment. |
909 |
|
|
|
910 |
|
|
\subsubsection{File {\it input/eedata}} |
911 |
|
|
|
912 |
|
|
This file uses standard default values and does not contain |
913 |
|
|
customisations for this experiment. |
914 |
|
|
|
915 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
916 |
|
|
|
917 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
918 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
919 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
920 |
|
|
this file must still define a complete two-dimensional map in order |
921 |
|
|
to be compatible with the standard code for loading forcing fields |
922 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
923 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
924 |
|
|
|
925 |
|
|
\subsubsection{File {\it input/topog.box}} |
926 |
|
|
|
927 |
|
|
|
928 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
929 |
|
|
map of depth values. For this experiment values are either |
930 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
931 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
932 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
933 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
934 |
|
|
code for creating the {\it input/topog.box} file. |
935 |
|
|
|
936 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
937 |
|
|
|
938 |
|
|
Two lines are customized in this file for the current experiment |
939 |
|
|
|
940 |
|
|
\begin{itemize} |
941 |
|
|
|
942 |
|
|
\item Line 39, |
943 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
944 |
|
|
the lateral domain extent in grid points for the |
945 |
|
|
axis aligned with the x-coordinate. |
946 |
|
|
|
947 |
|
|
\item Line 40, |
948 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
949 |
|
|
the lateral domain extent in grid points for the |
950 |
|
|
axis aligned with the y-coordinate. |
951 |
|
|
|
952 |
|
|
\item Line 49, |
953 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
954 |
|
|
the vertical domain extent in grid points. |
955 |
|
|
|
956 |
|
|
\end{itemize} |
957 |
|
|
|
958 |
|
|
\begin{small} |
959 |
|
|
\include{part3/case_studies/fourlayer_gyre/code/SIZE.h} |
960 |
|
|
\end{small} |
961 |
|
|
|
962 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
963 |
|
|
|
964 |
|
|
This file uses standard default values and does not contain |
965 |
|
|
customisations for this experiment. |
966 |
|
|
|
967 |
|
|
|
968 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
969 |
|
|
|
970 |
|
|
This file uses standard default values and does not contain |
971 |
|
|
customisations for this experiment. |
972 |
|
|
|
973 |
|
|
\subsubsection{Other Files } |
974 |
|
|
|
975 |
|
|
Other files relevant to this experiment are |
976 |
|
|
\begin{itemize} |
977 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
978 |
|
|
coriolis variables {\bf fCorU} and {\bf fCorV}. |
979 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} This file |
980 |
|
|
initializes the model grid discretisation variables {\bf |
981 |
|
|
dxF, dyF, dxG, dyG, dxC, dyC}. |
982 |
|
|
\item {\it model/src/ini\_parms.F}. |
983 |
|
|
\end{itemize} |
984 |
|
|
|
985 |
|
|
\subsection{Running The Example} |
986 |
|
|
\label{SEC:running_the_example} |
987 |
|
|
|
988 |
|
|
\subsubsection{Code Download} |
989 |
|
|
|
990 |
|
|
In order to run the examples you must first download the code distribution. |
991 |
|
|
Instructions for downloading the code can be found in the Getting Started |
992 |
|
|
Guide \cite{MITgcm_Getting_Started}. |
993 |
|
|
|
994 |
|
|
\subsubsection{Experiment Location} |
995 |
|
|
|
996 |
|
|
This example experiments is located under the release sub-directory |
997 |
|
|
|
998 |
|
|
\vspace{5mm} |
999 |
|
|
{\it verification/exp1/ } |
1000 |
|
|
|
1001 |
|
|
\subsubsection{Running the Experiment} |
1002 |
|
|
|
1003 |
|
|
To run the experiment |
1004 |
|
|
|
1005 |
|
|
\begin{enumerate} |
1006 |
|
|
\item Set the current directory to {\it input/ } |
1007 |
|
|
|
1008 |
|
|
\begin{verbatim} |
1009 |
|
|
% cd input |
1010 |
|
|
\end{verbatim} |
1011 |
|
|
|
1012 |
|
|
\item Verify that current directory is now correct |
1013 |
|
|
|
1014 |
|
|
\begin{verbatim} |
1015 |
|
|
% pwd |
1016 |
|
|
\end{verbatim} |
1017 |
|
|
|
1018 |
|
|
You shold see a response on the screen ending in |
1019 |
|
|
|
1020 |
|
|
{\it verification/exp1/input } |
1021 |
|
|
|
1022 |
|
|
|
1023 |
|
|
\item Run the genmake script to create the experiment {\it Makefile} |
1024 |
|
|
|
1025 |
|
|
\begin{verbatim} |
1026 |
|
|
% ../../../tools/genmake -mods=../code |
1027 |
|
|
\end{verbatim} |
1028 |
|
|
|
1029 |
|
|
\item Create a list of header file dependencies in {\it Makefile} |
1030 |
|
|
|
1031 |
|
|
\begin{verbatim} |
1032 |
|
|
% make depend |
1033 |
|
|
\end{verbatim} |
1034 |
|
|
|
1035 |
|
|
\item Build the executable file. |
1036 |
|
|
|
1037 |
|
|
\begin{verbatim} |
1038 |
|
|
% make |
1039 |
|
|
\end{verbatim} |
1040 |
|
|
|
1041 |
|
|
\item Run the {\it mitgcmuv} executable |
1042 |
|
|
|
1043 |
|
|
\begin{verbatim} |
1044 |
|
|
% ./mitgcmuv |
1045 |
|
|
\end{verbatim} |
1046 |
|
|
|
1047 |
|
|
\end{enumerate} |
1048 |
|
|
|
1049 |
|
|
|