| 1 | adcroft | 1.13 | % $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/fourlayer_gyre/fourlayer.tex,v 1.12 2002/02/28 19:32:19 cnh Exp $ | 
| 2 | cnh | 1.2 | % $Name:  $ | 
| 3 | adcroft | 1.1 |  | 
| 4 | cnh | 1.12 | \section{Four Layer Baroclinic Ocean Gyre In Spherical Coordinates} | 
| 5 | adcroft | 1.13 | \label{www:tutorials} | 
| 6 | adcroft | 1.11 | \label{sect:eg-fourlayer} | 
| 7 | adcroft | 1.1 |  | 
| 8 |  |  | \bodytext{bgcolor="#FFFFFFFF"} | 
| 9 |  |  |  | 
| 10 |  |  | %\begin{center} | 
| 11 |  |  | %{\Large \bf Using MITgcm to Simulate a Baroclinic Ocean Gyre In Spherical | 
| 12 |  |  | %Polar Coordinates} | 
| 13 |  |  | % | 
| 14 |  |  | %\vspace*{4mm} | 
| 15 |  |  | % | 
| 16 |  |  | %\vspace*{3mm} | 
| 17 |  |  | %{\large May 2001} | 
| 18 |  |  | %\end{center} | 
| 19 |  |  |  | 
| 20 | cnh | 1.3 | This document describes an example experiment using MITgcm | 
| 21 |  |  | to simulate a baroclinic ocean gyre in spherical | 
| 22 |  |  | polar coordinates. The barotropic | 
| 23 | adcroft | 1.11 | example experiment in section \ref{sect:eg-baro} | 
| 24 | cnh | 1.9 | illustrated how to configure the code for a single layer | 
| 25 |  |  | simulation in a Cartesian grid. In this example a similar physical problem | 
| 26 | adcroft | 1.1 | is simulated, but the code is now configured | 
| 27 |  |  | for four layers and in a spherical polar coordinate system. | 
| 28 |  |  |  | 
| 29 |  |  | \subsection{Overview} | 
| 30 | adcroft | 1.13 | \label{www:tutorials} | 
| 31 | adcroft | 1.1 |  | 
| 32 |  |  | This example experiment demonstrates using the MITgcm to simulate | 
| 33 |  |  | a baroclinic, wind-forced, ocean gyre circulation. The experiment | 
| 34 | cnh | 1.9 | is a numerical rendition of the gyre circulation problem similar | 
| 35 | adcroft | 1.1 | to the problems described analytically by Stommel in 1966 | 
| 36 |  |  | \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. | 
| 37 |  |  | \\ | 
| 38 |  |  |  | 
| 39 |  |  | In this experiment the model is configured to represent a mid-latitude | 
| 40 |  |  | enclosed sector of fluid on a sphere, $60^{\circ} \times 60^{\circ}$ in | 
| 41 |  |  | lateral extent. The fluid is $2$~km deep and is forced | 
| 42 | cnh | 1.5 | by a constant in time zonal wind stress, $\tau_{\lambda}$, that varies | 
| 43 |  |  | sinusoidally in the north-south direction. Topologically the simulated | 
| 44 | adcroft | 1.1 | domain is a sector on a sphere and the coriolis parameter, $f$, is defined | 
| 45 | cnh | 1.3 | according to latitude, $\varphi$ | 
| 46 | adcroft | 1.1 |  | 
| 47 |  |  | \begin{equation} | 
| 48 | cnh | 1.12 | \label{EQ:eg-fourlayer-fcori} | 
| 49 | cnh | 1.3 | f(\varphi) = 2 \Omega \sin( \varphi ) | 
| 50 | adcroft | 1.1 | \end{equation} | 
| 51 |  |  |  | 
| 52 |  |  | \noindent with the rotation rate, $\Omega$ set to $\frac{2 \pi}{86400s}$. | 
| 53 |  |  | \\ | 
| 54 |  |  |  | 
| 55 |  |  | The sinusoidal wind-stress variations are defined according to | 
| 56 |  |  |  | 
| 57 |  |  | \begin{equation} | 
| 58 |  |  | \label{EQ:taux} | 
| 59 | cnh | 1.5 | \tau_{\lambda}(\varphi) = \tau_{0}\sin(\pi \frac{\varphi}{L_{\varphi}}) | 
| 60 | adcroft | 1.1 | \end{equation} | 
| 61 |  |  |  | 
| 62 | cnh | 1.3 | \noindent where $L_{\varphi}$ is the lateral domain extent ($60^{\circ}$) and | 
| 63 | adcroft | 1.1 | $\tau_0$ is set to $0.1N m^{-2}$. | 
| 64 |  |  | \\ | 
| 65 |  |  |  | 
| 66 | cnh | 1.12 | Figure \ref{FIG:eg-fourlayer-simulation_config} | 
| 67 | cnh | 1.9 | summarizes the configuration simulated. | 
| 68 | adcroft | 1.11 | In contrast to the example in section \ref{sect:eg-baro}, the | 
| 69 | cnh | 1.5 | current experiment simulates a spherical polar domain. As indicated | 
| 70 | adcroft | 1.1 | by the axes in the lower left of the figure the model code works internally | 
| 71 | cnh | 1.9 | in a locally orthogonal coordinate $(x,y,z)$. For this experiment description | 
| 72 |  |  | the local orthogonal model coordinate $(x,y,z)$ is synonymous | 
| 73 | cnh | 1.8 | with the coordinates $(\lambda,\varphi,r)$ shown in figure | 
| 74 | cnh | 1.3 | \ref{fig:spherical-polar-coord} | 
| 75 | adcroft | 1.1 | \\ | 
| 76 |  |  |  | 
| 77 |  |  | The experiment has four levels in the vertical, each of equal thickness, | 
| 78 |  |  | $\Delta z = 500$~m. Initially the fluid is stratified with a reference | 
| 79 |  |  | potential temperature profile, | 
| 80 |  |  | $\theta_{250}=20^{\circ}$~C, | 
| 81 |  |  | $\theta_{750}=10^{\circ}$~C, | 
| 82 |  |  | $\theta_{1250}=8^{\circ}$~C, | 
| 83 |  |  | $\theta_{1750}=6^{\circ}$~C. The equation of state used in this experiment is | 
| 84 |  |  | linear | 
| 85 |  |  |  | 
| 86 |  |  | \begin{equation} | 
| 87 | cnh | 1.12 | \label{EQ:eg-fourlayer-linear1_eos} | 
| 88 | adcroft | 1.1 | \rho = \rho_{0} ( 1 - \alpha_{\theta}\theta^{'} ) | 
| 89 |  |  | \end{equation} | 
| 90 |  |  |  | 
| 91 |  |  | \noindent which is implemented in the model as a density anomaly equation | 
| 92 |  |  |  | 
| 93 |  |  | \begin{equation} | 
| 94 | cnh | 1.12 | \label{EQ:eg-fourlayer-linear1_eos_pert} | 
| 95 | adcroft | 1.1 | \rho^{'} = -\rho_{0}\alpha_{\theta}\theta^{'} | 
| 96 |  |  | \end{equation} | 
| 97 |  |  |  | 
| 98 |  |  | \noindent with $\rho_{0}=999.8\,{\rm kg\,m}^{-3}$ and | 
| 99 |  |  | $\alpha_{\theta}=2\times10^{-4}\,{\rm degrees}^{-1} $. Integrated forward in | 
| 100 | cnh | 1.5 | this configuration the model state variable {\bf theta} is equivalent to | 
| 101 | adcroft | 1.1 | either in-situ temperature, $T$, or potential temperature, $\theta$. For | 
| 102 |  |  | consistency with later examples, in which the equation of state is | 
| 103 |  |  | non-linear, we use $\theta$ to represent temperature here. This is | 
| 104 |  |  | the quantity that is carried in the model core equations. | 
| 105 |  |  |  | 
| 106 |  |  | \begin{figure} | 
| 107 | cnh | 1.2 | \begin{center} | 
| 108 | adcroft | 1.1 | \resizebox{7.5in}{5.5in}{ | 
| 109 |  |  | \includegraphics*[0.2in,0.7in][10.5in,10.5in] | 
| 110 |  |  | {part3/case_studies/fourlayer_gyre/simulation_config.eps} } | 
| 111 | cnh | 1.2 | \end{center} | 
| 112 | adcroft | 1.1 | \caption{Schematic of simulation domain and wind-stress forcing function | 
| 113 |  |  | for the four-layer gyre numerical experiment. The domain is enclosed by solid | 
| 114 |  |  | walls at $0^{\circ}$~E, $60^{\circ}$~E, $0^{\circ}$~N and $60^{\circ}$~N. | 
| 115 | cnh | 1.5 | An initial stratification is | 
| 116 | adcroft | 1.1 | imposed by setting the potential temperature, $\theta$, in each layer. | 
| 117 |  |  | The vertical spacing, $\Delta z$, is constant and equal to $500$m. | 
| 118 |  |  | } | 
| 119 | cnh | 1.12 | \label{FIG:eg-fourlayer-simulation_config} | 
| 120 | adcroft | 1.1 | \end{figure} | 
| 121 |  |  |  | 
| 122 | cnh | 1.3 | \subsection{Equations solved} | 
| 123 | adcroft | 1.13 | \label{www:tutorials} | 
| 124 | cnh | 1.8 | For this problem | 
| 125 | adcroft | 1.11 | the implicit free surface, {\bf HPE} (see section \ref{sect:hydrostatic_and_quasi-hydrostatic_forms}) form of the | 
| 126 | adcroft | 1.10 | equations described in Marshall et. al \cite{marshall:97a} are | 
| 127 | cnh | 1.5 | employed. The flow is three-dimensional with just temperature, $\theta$, as | 
| 128 |  |  | an active tracer.  The equation of state is linear. | 
| 129 | cnh | 1.9 | A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous | 
| 130 | cnh | 1.5 | dissipation and provides a diffusive sub-grid scale closure for the | 
| 131 |  |  | temperature equation. A wind-stress momentum forcing is added to the momentum | 
| 132 |  |  | equation for the zonal flow, $u$. Other terms in the model | 
| 133 | cnh | 1.9 | are explicitly switched off for this experiment configuration (see section | 
| 134 | cnh | 1.5 | \ref{SEC:eg_fourl_code_config} ). This yields an active set of equations | 
| 135 | cnh | 1.3 | solved in this configuration, written in spherical polar coordinates as | 
| 136 |  |  | follows | 
| 137 | adcroft | 1.1 |  | 
| 138 |  |  | \begin{eqnarray} | 
| 139 | cnh | 1.12 | \label{EQ:eg-fourlayer-model_equations} | 
| 140 | adcroft | 1.1 | \frac{Du}{Dt} - fv + | 
| 141 | cnh | 1.4 | \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \lambda} - | 
| 142 | adcroft | 1.1 | A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} | 
| 143 |  |  | & = & | 
| 144 | cnh | 1.5 | \cal{F}_{\lambda} | 
| 145 | adcroft | 1.1 | \\ | 
| 146 |  |  | \frac{Dv}{Dt} + fu + | 
| 147 | cnh | 1.4 | \frac{1}{\rho}\frac{\partial p^{\prime}}{\partial \varphi} - | 
| 148 | adcroft | 1.1 | A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} | 
| 149 |  |  | & = & | 
| 150 |  |  | 0 | 
| 151 |  |  | \\ | 
| 152 | cnh | 1.5 | \frac{\partial \eta}{\partial t} + \frac{\partial H \widehat{u}}{\partial \lambda} + | 
| 153 |  |  | \frac{\partial H \widehat{v}}{\partial \varphi} | 
| 154 | adcroft | 1.1 | &=& | 
| 155 |  |  | 0 | 
| 156 | cnh | 1.5 | \label{eq:fourl_example_continuity} | 
| 157 | adcroft | 1.1 | \\ | 
| 158 |  |  | \frac{D\theta}{Dt} - | 
| 159 |  |  | K_{h}\nabla_{h}^2\theta  - K_{z}\frac{\partial^{2}\theta}{\partial z^{2}} | 
| 160 |  |  | & = & | 
| 161 |  |  | 0 | 
| 162 | cnh | 1.5 | \label{eq:eg_fourl_theta} | 
| 163 | adcroft | 1.1 | \\ | 
| 164 | cnh | 1.4 | p^{\prime} & = & | 
| 165 |  |  | g\rho_{0} \eta + \int^{0}_{-z}\rho^{\prime} dz | 
| 166 | cnh | 1.3 | \\ | 
| 167 | cnh | 1.4 | \rho^{\prime} & = &- \alpha_{\theta}\rho_{0}\theta^{\prime} | 
| 168 | adcroft | 1.1 | \\ | 
| 169 | cnh | 1.5 | {\cal F}_{\lambda} |_{s} & = & \frac{\tau_{\lambda}}{\rho_{0}\Delta z_{s}} | 
| 170 | adcroft | 1.1 | \\ | 
| 171 | cnh | 1.5 | {\cal F}_{\lambda} |_{i} & = & 0 | 
| 172 | adcroft | 1.1 | \end{eqnarray} | 
| 173 |  |  |  | 
| 174 | cnh | 1.3 | \noindent where $u$ and $v$ are the components of the horizontal | 
| 175 |  |  | flow vector $\vec{u}$ on the sphere ($u=\dot{\lambda},v=\dot{\varphi}$). | 
| 176 | cnh | 1.5 | The terms $H\widehat{u}$ and $H\widehat{v}$ are the components of the vertical | 
| 177 |  |  | integral term given in equation \ref{eq:free-surface} and | 
| 178 |  |  | explained in more detail in section \ref{sect:pressure-method-linear-backward}. | 
| 179 |  |  | However, for the problem presented here, the continuity relation (equation | 
| 180 |  |  | \ref{eq:fourl_example_continuity}) differs from the general form given | 
| 181 |  |  | in section \ref{sect:pressure-method-linear-backward}, | 
| 182 |  |  | equation \ref{eq:linear-free-surface=P-E+R}, because the source terms | 
| 183 |  |  | ${\cal P}-{\cal E}+{\cal R}$ | 
| 184 |  |  | are all $0$. | 
| 185 | cnh | 1.4 |  | 
| 186 |  |  | The pressure field, $p^{\prime}$, is separated into a barotropic part | 
| 187 | cnh | 1.3 | due to variations in sea-surface height, $\eta$, and a hydrostatic | 
| 188 | cnh | 1.5 | part due to variations in density, $\rho^{\prime}$, integrated | 
| 189 |  |  | through the water column. | 
| 190 |  |  |  | 
| 191 | cnh | 1.8 | The suffices ${s},{i}$ indicate surface layer and the interior of the domain. | 
| 192 | cnh | 1.5 | The windstress forcing, ${\cal F}_{\lambda}$, is applied in the surface layer | 
| 193 |  |  | by a source term in the zonal momentum equation. In the ocean interior | 
| 194 |  |  | this term is zero. | 
| 195 |  |  |  | 
| 196 |  |  | In the momentum equations | 
| 197 |  |  | lateral and vertical boundary conditions for the $\nabla_{h}^{2}$ | 
| 198 |  |  | and $\frac{\partial^{2}}{\partial z^{2}}$ operators are specified | 
| 199 |  |  | when the numerical simulation is run - see section | 
| 200 |  |  | \ref{SEC:eg_fourl_code_config}. For temperature | 
| 201 |  |  | the boundary condition is ``zero-flux'' | 
| 202 |  |  | e.g. $\frac{\partial \theta}{\partial \varphi}= | 
| 203 |  |  | \frac{\partial \theta}{\partial \lambda}=\frac{\partial \theta}{\partial z}=0$. | 
| 204 |  |  |  | 
| 205 |  |  |  | 
| 206 | cnh | 1.3 |  | 
| 207 |  |  | \subsection{Discrete Numerical Configuration} | 
| 208 | adcroft | 1.13 | \label{www:tutorials} | 
| 209 | cnh | 1.3 |  | 
| 210 | cnh | 1.5 | The domain is discretised with | 
| 211 | cnh | 1.3 | a uniform grid spacing in latitude and longitude | 
| 212 |  |  | $\Delta \lambda=\Delta \varphi=1^{\circ}$, so | 
| 213 |  |  | that there are sixty grid cells in the zonal and meridional directions. | 
| 214 |  |  | Vertically the | 
| 215 | cnh | 1.4 | model is configured with four layers with constant depth, | 
| 216 | cnh | 1.3 | $\Delta z$, of $500$~m. The internal, locally orthogonal, model coordinate | 
| 217 | cnh | 1.9 | variables $x$ and $y$ are initialized from the values of | 
| 218 | cnh | 1.3 | $\lambda$, $\varphi$, $\Delta \lambda$ and $\Delta \varphi$ in | 
| 219 |  |  | radians according to | 
| 220 |  |  |  | 
| 221 |  |  | \begin{eqnarray} | 
| 222 |  |  | x=r\cos(\varphi)\lambda,~\Delta x & = &r\cos(\varphi)\Delta \lambda \\ | 
| 223 |  |  | y=r\varphi,~\Delta y &= &r\Delta \varphi | 
| 224 |  |  | \end{eqnarray} | 
| 225 |  |  |  | 
| 226 |  |  | The procedure for generating a set of internal grid variables from a | 
| 227 |  |  | spherical polar grid specification is discussed in section | 
| 228 | adcroft | 1.11 | \ref{sect:spatial_discrete_horizontal_grid}. | 
| 229 | cnh | 1.3 |  | 
| 230 |  |  | \noindent\fbox{ \begin{minipage}{5.5in} | 
| 231 |  |  | {\em S/R INI\_SPHERICAL\_POLAR\_GRID} ({\em | 
| 232 |  |  | model/src/ini\_spherical\_polar\_grid.F}) | 
| 233 |  |  |  | 
| 234 |  |  | $A_c$, $A_\zeta$, $A_w$, $A_s$: {\bf rAc}, {\bf rAz}, {\bf rAw}, {\bf rAs} | 
| 235 |  |  | ({\em GRID.h}) | 
| 236 |  |  |  | 
| 237 |  |  | $\Delta x_g$, $\Delta y_g$: {\bf DXg}, {\bf DYg} ({\em GRID.h}) | 
| 238 |  |  |  | 
| 239 |  |  | $\Delta x_c$, $\Delta y_c$: {\bf DXc}, {\bf DYc} ({\em GRID.h}) | 
| 240 |  |  |  | 
| 241 |  |  | $\Delta x_f$, $\Delta y_f$: {\bf DXf}, {\bf DYf} ({\em GRID.h}) | 
| 242 |  |  |  | 
| 243 |  |  | $\Delta x_v$, $\Delta y_u$: {\bf DXv}, {\bf DYu} ({\em GRID.h}) | 
| 244 |  |  |  | 
| 245 |  |  | \end{minipage} }\\ | 
| 246 |  |  |  | 
| 247 |  |  |  | 
| 248 |  |  |  | 
| 249 | adcroft | 1.11 | As described in \ref{sect:tracer_equations}, the time evolution of potential | 
| 250 | cnh | 1.3 | temperature, | 
| 251 | cnh | 1.5 | $\theta$, (equation \ref{eq:eg_fourl_theta}) | 
| 252 |  |  | is evaluated prognostically. The centered second-order scheme with | 
| 253 |  |  | Adams-Bashforth time stepping described in section | 
| 254 | adcroft | 1.11 | \ref{sect:tracer_equations_abII} is used to step forward the temperature | 
| 255 | cnh | 1.8 | equation. Prognostic terms in | 
| 256 |  |  | the momentum equations are solved using flux form as | 
| 257 | adcroft | 1.11 | described in section \ref{sect:flux-form_momentum_eqautions}. | 
| 258 | cnh | 1.8 | The pressure forces that drive the fluid motions, ( | 
| 259 | cnh | 1.3 | $\frac{\partial p^{'}}{\partial \lambda}$ and $\frac{\partial p^{'}}{\partial \varphi}$), are found by summing pressure due to surface | 
| 260 | cnh | 1.5 | elevation $\eta$ and the hydrostatic pressure. The hydrostatic part of the | 
| 261 | cnh | 1.8 | pressure is diagnosed explicitly by integrating density. The sea-surface | 
| 262 |  |  | height, $\eta$, is diagnosed using an implicit scheme. The pressure | 
| 263 |  |  | field solution method is described in sections | 
| 264 |  |  | \ref{sect:pressure-method-linear-backward} and | 
| 265 | adcroft | 1.11 | \ref{sect:finding_the_pressure_field}. | 
| 266 | adcroft | 1.1 |  | 
| 267 |  |  | \subsubsection{Numerical Stability Criteria} | 
| 268 | adcroft | 1.13 | \label{www:tutorials} | 
| 269 | adcroft | 1.1 |  | 
| 270 | cnh | 1.9 | The Laplacian viscosity coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 271 | cnh | 1.8 | This value is chosen to yield a Munk layer width, | 
| 272 | adcroft | 1.1 |  | 
| 273 |  |  | \begin{eqnarray} | 
| 274 | cnh | 1.12 | \label{EQ:eg-fourlayer-munk_layer} | 
| 275 | adcroft | 1.1 | M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 276 |  |  | \end{eqnarray} | 
| 277 |  |  |  | 
| 278 |  |  | \noindent  of $\approx 100$km. This is greater than the model | 
| 279 | cnh | 1.8 | resolution in mid-latitudes | 
| 280 |  |  | $\Delta x=r \cos(\varphi) \Delta \lambda \approx 80~{\rm km}$ at | 
| 281 |  |  | $\varphi=45^{\circ}$, ensuring that the frictional | 
| 282 | adcroft | 1.1 | boundary layer is well resolved. | 
| 283 |  |  | \\ | 
| 284 |  |  |  | 
| 285 |  |  | \noindent The model is stepped forward with a | 
| 286 |  |  | time step $\delta t=1200$secs. With this time step the stability | 
| 287 | cnh | 1.9 | parameter to the horizontal Laplacian friction | 
| 288 | adcroft | 1.1 |  | 
| 289 |  |  | \begin{eqnarray} | 
| 290 | cnh | 1.12 | \label{EQ:eg-fourlayer-laplacian_stability} | 
| 291 | adcroft | 1.1 | S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
| 292 |  |  | \end{eqnarray} | 
| 293 |  |  |  | 
| 294 |  |  | \noindent evaluates to 0.012, which is well below the 0.3 upper limit | 
| 295 | cnh | 1.8 | for stability for this term under ABII time-stepping. | 
| 296 | adcroft | 1.1 | \\ | 
| 297 |  |  |  | 
| 298 |  |  | \noindent The vertical dissipation coefficient, $A_{z}$, is set to | 
| 299 |  |  | $1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
| 300 |  |  |  | 
| 301 |  |  | \begin{eqnarray} | 
| 302 | cnh | 1.12 | \label{EQ:eg-fourlayer-laplacian_stability_z} | 
| 303 | adcroft | 1.1 | S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} | 
| 304 |  |  | \end{eqnarray} | 
| 305 |  |  |  | 
| 306 |  |  | \noindent evaluates to $4.8 \times 10^{-5}$ which is again well below | 
| 307 |  |  | the upper limit. | 
| 308 |  |  | The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) | 
| 309 |  |  | and vertical ($K_{z}$) diffusion coefficients for temperature respectively. | 
| 310 |  |  | \\ | 
| 311 |  |  |  | 
| 312 |  |  | \noindent The numerical stability for inertial oscillations | 
| 313 |  |  |  | 
| 314 |  |  | \begin{eqnarray} | 
| 315 | cnh | 1.12 | \label{EQ:eg-fourlayer-inertial_stability} | 
| 316 | adcroft | 1.1 | S_{i} = f^{2} {\delta t}^2 | 
| 317 |  |  | \end{eqnarray} | 
| 318 |  |  |  | 
| 319 |  |  | \noindent evaluates to $0.0144$, which is well below the $0.5$ upper | 
| 320 |  |  | limit for stability. | 
| 321 |  |  | \\ | 
| 322 |  |  |  | 
| 323 | cnh | 1.8 | \noindent The advective CFL for a extreme maximum | 
| 324 | adcroft | 1.1 | horizontal flow | 
| 325 |  |  | speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 326 |  |  |  | 
| 327 |  |  | \begin{eqnarray} | 
| 328 | cnh | 1.12 | \label{EQ:eg-fourlayer-cfl_stability} | 
| 329 | cnh | 1.8 | C_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
| 330 | adcroft | 1.1 | \end{eqnarray} | 
| 331 |  |  |  | 
| 332 |  |  | \noindent evaluates to $5 \times 10^{-2}$. This is well below the stability | 
| 333 |  |  | limit of 0.5. | 
| 334 |  |  | \\ | 
| 335 |  |  |  | 
| 336 | cnh | 1.8 | \noindent The stability parameter for internal gravity waves | 
| 337 | cnh | 1.9 | propagating at $2~{\rm m}~{\rm s}^{-1}$ | 
| 338 | adcroft | 1.1 |  | 
| 339 |  |  | \begin{eqnarray} | 
| 340 | cnh | 1.12 | \label{EQ:eg-fourlayer-igw_stability} | 
| 341 | adcroft | 1.1 | S_{c} = \frac{c_{g} \delta t}{ \Delta x} | 
| 342 |  |  | \end{eqnarray} | 
| 343 |  |  |  | 
| 344 | cnh | 1.8 | \noindent evaluates to $\approx 5 \times 10^{-2}$. This is well below the linear | 
| 345 | adcroft | 1.1 | stability limit of 0.25. | 
| 346 |  |  |  | 
| 347 |  |  | \subsection{Code Configuration} | 
| 348 | adcroft | 1.13 | \label{www:tutorials} | 
| 349 | cnh | 1.5 | \label{SEC:eg_fourl_code_config} | 
| 350 | adcroft | 1.1 |  | 
| 351 |  |  | The model configuration for this experiment resides under the | 
| 352 | cnh | 1.8 | directory {\it verification/exp2/}.  The experiment files | 
| 353 | adcroft | 1.1 | \begin{itemize} | 
| 354 |  |  | \item {\it input/data} | 
| 355 |  |  | \item {\it input/data.pkg} | 
| 356 |  |  | \item {\it input/eedata}, | 
| 357 |  |  | \item {\it input/windx.sin\_y}, | 
| 358 |  |  | \item {\it input/topog.box}, | 
| 359 |  |  | \item {\it code/CPP\_EEOPTIONS.h} | 
| 360 |  |  | \item {\it code/CPP\_OPTIONS.h}, | 
| 361 |  |  | \item {\it code/SIZE.h}. | 
| 362 |  |  | \end{itemize} | 
| 363 |  |  | contain the code customisations and parameter settings for this | 
| 364 | cnh | 1.9 | experiments. Below we describe the customisations | 
| 365 | adcroft | 1.1 | to these files associated with this experiment. | 
| 366 |  |  |  | 
| 367 |  |  | \subsubsection{File {\it input/data}} | 
| 368 | adcroft | 1.13 | \label{www:tutorials} | 
| 369 | adcroft | 1.1 |  | 
| 370 |  |  | This file, reproduced completely below, specifies the main parameters | 
| 371 |  |  | for the experiment. The parameters that are significant for this configuration | 
| 372 |  |  | are | 
| 373 |  |  |  | 
| 374 |  |  | \begin{itemize} | 
| 375 |  |  |  | 
| 376 |  |  | \item Line 4, | 
| 377 |  |  | \begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} | 
| 378 |  |  | this line sets | 
| 379 |  |  | the initial and reference values of potential temperature at each model | 
| 380 |  |  | level in units of $^{\circ}$C. | 
| 381 |  |  | The entries are ordered from surface to depth. For each | 
| 382 | cnh | 1.9 | depth level the initial and reference profiles will be uniform in | 
| 383 | adcroft | 1.1 | $x$ and $y$. The values specified here are read into the | 
| 384 |  |  | variable | 
| 385 |  |  | {\bf | 
| 386 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 387 |  |  | tRef | 
| 388 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 389 |  |  | } | 
| 390 |  |  | in the model code, by procedure | 
| 391 |  |  | {\it | 
| 392 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 393 |  |  | INI\_PARMS | 
| 394 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 395 |  |  | }. | 
| 396 |  |  |  | 
| 397 |  |  | %% \codelink{var:tref} tRef \endlink | 
| 398 |  |  | %% \codelink{file:ini_parms} {\it INI\_PARMS } \endlink | 
| 399 |  |  | %% \codelink{proc:ini_parms} {\it INI\_PARMS } \endlink | 
| 400 |  |  | %% \var{tref} | 
| 401 |  |  | %% \proc{ini_parms} | 
| 402 |  |  | %% \file{ini_parms} | 
| 403 |  |  | \newcommand{\VARtref}{ | 
| 404 |  |  | {\bf | 
| 405 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/OK.htm> \end{rawhtml} | 
| 406 |  |  | tRef | 
| 407 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 408 |  |  | } | 
| 409 |  |  | } | 
| 410 |  |  |  | 
| 411 |  |  |  | 
| 412 |  |  |  | 
| 413 |  |  | \fbox{ | 
| 414 |  |  | \begin{minipage}{5.0in} | 
| 415 |  |  | {\it S/R INI\_THETA} | 
| 416 |  |  | ({\it ini\_theta.F}) | 
| 417 |  |  | \end{minipage} | 
| 418 |  |  | } | 
| 419 |  |  | {\bf | 
| 420 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/98.htm> \end{rawhtml} | 
| 421 |  |  | goto code | 
| 422 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 423 |  |  | } | 
| 424 |  |  |  | 
| 425 |  |  |  | 
| 426 |  |  | \item Line 6, | 
| 427 |  |  | \begin{verbatim} viscAz=1.E-2, \end{verbatim} | 
| 428 | cnh | 1.9 | this line sets the vertical Laplacian dissipation coefficient to | 
| 429 | adcroft | 1.1 | $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 430 |  |  | for this operator are specified later. | 
| 431 |  |  | The variable | 
| 432 |  |  | {\bf | 
| 433 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZQ.htm> \end{rawhtml} | 
| 434 |  |  | viscAz | 
| 435 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 436 |  |  | } | 
| 437 |  |  | is read in the routine | 
| 438 |  |  | {\it | 
| 439 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 440 |  |  | INI\_PARMS | 
| 441 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 442 |  |  | } | 
| 443 |  |  | and is copied into model general vertical coordinate variable | 
| 444 |  |  | {\bf | 
| 445 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/PF.htm> \end{rawhtml} | 
| 446 |  |  | viscAr | 
| 447 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 448 | cnh | 1.9 | }. At each time step, the viscous term contribution to the momentum equations | 
| 449 | cnh | 1.8 | is calculated in routine | 
| 450 |  |  | {\it S/R CALC\_DIFFUSIVITY}. | 
| 451 | adcroft | 1.1 |  | 
| 452 |  |  | \fbox{ | 
| 453 |  |  | \begin{minipage}{5.0in} | 
| 454 |  |  | {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 455 |  |  | \end{minipage} | 
| 456 |  |  | } | 
| 457 |  |  | {\bf | 
| 458 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} | 
| 459 |  |  | goto code | 
| 460 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 461 |  |  | } | 
| 462 |  |  |  | 
| 463 |  |  | \item Line 7, | 
| 464 |  |  | \begin{verbatim} | 
| 465 |  |  | viscAh=4.E2, | 
| 466 |  |  | \end{verbatim} | 
| 467 |  |  | this line sets the horizontal laplacian frictional dissipation coefficient to | 
| 468 |  |  | $1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 469 |  |  | for this operator are specified later. | 
| 470 |  |  | The variable | 
| 471 |  |  | {\bf | 
| 472 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/SI.htm> \end{rawhtml} | 
| 473 |  |  | viscAh | 
| 474 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 475 |  |  | } | 
| 476 |  |  | is read in the routine | 
| 477 |  |  | {\it | 
| 478 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 479 |  |  | INI\_PARMS | 
| 480 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 481 | cnh | 1.8 | } and applied in routines {\it CALC\_MOM\_RHS} and {\it CALC\_GW}. | 
| 482 | adcroft | 1.1 |  | 
| 483 |  |  | \fbox{ | 
| 484 |  |  | \begin{minipage}{5.0in} | 
| 485 |  |  | {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
| 486 |  |  | \end{minipage} | 
| 487 |  |  | } | 
| 488 |  |  | {\bf | 
| 489 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
| 490 |  |  | goto code | 
| 491 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 492 |  |  | } | 
| 493 |  |  |  | 
| 494 |  |  | \fbox{ | 
| 495 |  |  | \begin{minipage}{5.0in} | 
| 496 |  |  | {\it S/R CALC\_GW}({\it calc\_gw.F}) | 
| 497 |  |  | \end{minipage} | 
| 498 |  |  | } | 
| 499 |  |  | {\bf | 
| 500 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/58.htm> \end{rawhtml} | 
| 501 |  |  | goto code | 
| 502 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 503 |  |  | } | 
| 504 |  |  |  | 
| 505 |  |  | \item Lines 8, | 
| 506 |  |  | \begin{verbatim} | 
| 507 |  |  | no_slip_sides=.FALSE. | 
| 508 |  |  | \end{verbatim} | 
| 509 |  |  | this line selects a free-slip lateral boundary condition for | 
| 510 |  |  | the horizontal laplacian friction operator | 
| 511 |  |  | e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 512 |  |  | $\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 513 |  |  | The variable | 
| 514 |  |  | {\bf | 
| 515 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/UT.htm> \end{rawhtml} | 
| 516 |  |  | no\_slip\_sides | 
| 517 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 518 |  |  | } | 
| 519 |  |  | is read in the routine | 
| 520 |  |  | {\it | 
| 521 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 522 |  |  | INI\_PARMS | 
| 523 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 524 | cnh | 1.8 | } and the boundary condition is evaluated in routine | 
| 525 |  |  | {\it S/R CALC\_MOM\_RHS}. | 
| 526 | adcroft | 1.1 |  | 
| 527 |  |  |  | 
| 528 |  |  | \fbox{ | 
| 529 |  |  | \begin{minipage}{5.0in} | 
| 530 |  |  | {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
| 531 |  |  | \end{minipage} | 
| 532 |  |  | } | 
| 533 |  |  | {\bf | 
| 534 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
| 535 |  |  | goto code | 
| 536 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 537 |  |  | } | 
| 538 |  |  |  | 
| 539 |  |  | \item Lines 9, | 
| 540 |  |  | \begin{verbatim} | 
| 541 |  |  | no_slip_bottom=.TRUE. | 
| 542 |  |  | \end{verbatim} | 
| 543 |  |  | this line selects a no-slip boundary condition for bottom | 
| 544 |  |  | boundary condition in the vertical laplacian friction operator | 
| 545 |  |  | e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
| 546 |  |  | The variable | 
| 547 |  |  | {\bf | 
| 548 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/UK.htm> \end{rawhtml} | 
| 549 |  |  | no\_slip\_bottom | 
| 550 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 551 |  |  | } | 
| 552 |  |  | is read in the routine | 
| 553 |  |  | {\it | 
| 554 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 555 |  |  | INI\_PARMS | 
| 556 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 557 | cnh | 1.8 | } and is applied in the routine {\it S/R CALC\_MOM\_RHS}. | 
| 558 | adcroft | 1.1 |  | 
| 559 |  |  | \fbox{ | 
| 560 |  |  | \begin{minipage}{5.0in} | 
| 561 |  |  | {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) | 
| 562 |  |  | \end{minipage} | 
| 563 |  |  | } | 
| 564 |  |  | {\bf | 
| 565 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/60.htm> \end{rawhtml} | 
| 566 |  |  | goto code | 
| 567 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 568 |  |  | } | 
| 569 |  |  |  | 
| 570 |  |  | \item Line 10, | 
| 571 |  |  | \begin{verbatim} | 
| 572 |  |  | diffKhT=4.E2, | 
| 573 |  |  | \end{verbatim} | 
| 574 |  |  | this line sets the horizontal diffusion coefficient for temperature | 
| 575 |  |  | to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 576 |  |  | operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
| 577 |  |  | all boundaries. | 
| 578 |  |  | The variable | 
| 579 |  |  | {\bf | 
| 580 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/RC.htm> \end{rawhtml} | 
| 581 |  |  | diffKhT | 
| 582 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 583 |  |  | } | 
| 584 |  |  | is read in the routine | 
| 585 |  |  | {\it | 
| 586 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 587 |  |  | INI\_PARMS | 
| 588 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 589 | cnh | 1.8 | } and used in routine {\it S/R CALC\_GT}. | 
| 590 | adcroft | 1.1 |  | 
| 591 |  |  | \fbox{ \begin{minipage}{5.0in} | 
| 592 |  |  | {\it S/R CALC\_GT}({\it calc\_gt.F}) | 
| 593 |  |  | \end{minipage} | 
| 594 |  |  | } | 
| 595 |  |  | {\bf | 
| 596 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/57.htm> \end{rawhtml} | 
| 597 |  |  | goto code | 
| 598 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 599 |  |  | } | 
| 600 |  |  |  | 
| 601 |  |  | \item Line 11, | 
| 602 |  |  | \begin{verbatim} | 
| 603 |  |  | diffKzT=1.E-2, | 
| 604 |  |  | \end{verbatim} | 
| 605 |  |  | this line sets the vertical diffusion coefficient for temperature | 
| 606 |  |  | to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 607 |  |  | operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 608 |  |  | The variable | 
| 609 |  |  | {\bf | 
| 610 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZT.htm> \end{rawhtml} | 
| 611 |  |  | diffKzT | 
| 612 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 613 |  |  | } | 
| 614 |  |  | is read in the routine | 
| 615 |  |  | {\it | 
| 616 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 617 |  |  | INI\_PARMS | 
| 618 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 619 |  |  | }. | 
| 620 |  |  | It is copied into model general vertical coordinate variable | 
| 621 |  |  | {\bf | 
| 622 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/PD.htm> \end{rawhtml} | 
| 623 |  |  | diffKrT | 
| 624 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 625 | cnh | 1.8 | } which is used in routine {\it S/R CALC\_DIFFUSIVITY}. | 
| 626 | adcroft | 1.1 |  | 
| 627 |  |  | \fbox{ \begin{minipage}{5.0in} | 
| 628 |  |  | {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 629 |  |  | \end{minipage} | 
| 630 |  |  | } | 
| 631 |  |  | {\bf | 
| 632 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/53.htm> \end{rawhtml} | 
| 633 |  |  | goto code | 
| 634 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 635 |  |  | } | 
| 636 |  |  |  | 
| 637 |  |  |  | 
| 638 |  |  |  | 
| 639 |  |  | \item Line 13, | 
| 640 |  |  | \begin{verbatim} | 
| 641 |  |  | tAlpha=2.E-4, | 
| 642 |  |  | \end{verbatim} | 
| 643 |  |  | This line sets the thermal expansion coefficient for the fluid | 
| 644 |  |  | to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ | 
| 645 |  |  | The variable | 
| 646 |  |  | {\bf | 
| 647 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/ZV.htm> \end{rawhtml} | 
| 648 |  |  | tAlpha | 
| 649 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 650 |  |  | } | 
| 651 |  |  | is read in the routine | 
| 652 |  |  | {\it | 
| 653 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 654 |  |  | INI\_PARMS | 
| 655 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 656 | cnh | 1.8 | }. The routine {\it S/R FIND\_RHO} makes use of {\bf tAlpha}. | 
| 657 | adcroft | 1.1 |  | 
| 658 |  |  | \fbox{ | 
| 659 |  |  | \begin{minipage}{5.0in} | 
| 660 |  |  | {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 661 |  |  | \end{minipage} | 
| 662 |  |  | } | 
| 663 |  |  | {\bf | 
| 664 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} | 
| 665 |  |  | goto code | 
| 666 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 667 |  |  | } | 
| 668 |  |  |  | 
| 669 |  |  | \item Line 18, | 
| 670 |  |  | \begin{verbatim} | 
| 671 |  |  | eosType='LINEAR' | 
| 672 |  |  | \end{verbatim} | 
| 673 |  |  | This line selects the linear form of the equation of state. | 
| 674 |  |  | The variable | 
| 675 |  |  | {\bf | 
| 676 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/WV.htm> \end{rawhtml} | 
| 677 |  |  | eosType | 
| 678 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 679 |  |  | } | 
| 680 |  |  | is read in the routine | 
| 681 |  |  | {\it | 
| 682 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 683 |  |  | INI\_PARMS | 
| 684 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 685 | cnh | 1.8 | }. The values of {\bf eosType} sets which formula in routine | 
| 686 |  |  | {\it FIND\_RHO} is used to calculate density. | 
| 687 | adcroft | 1.1 |  | 
| 688 |  |  | \fbox{ | 
| 689 |  |  | \begin{minipage}{5.0in} | 
| 690 |  |  | {\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 691 |  |  | \end{minipage} | 
| 692 |  |  | } | 
| 693 |  |  | {\bf | 
| 694 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/79.htm> \end{rawhtml} | 
| 695 |  |  | goto code | 
| 696 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 697 |  |  | } | 
| 698 |  |  |  | 
| 699 |  |  |  | 
| 700 |  |  |  | 
| 701 |  |  | \item Line 40, | 
| 702 |  |  | \begin{verbatim} | 
| 703 |  |  | usingSphericalPolarGrid=.TRUE., | 
| 704 |  |  | \end{verbatim} | 
| 705 |  |  | This line requests that the simulation be performed in a | 
| 706 |  |  | spherical polar coordinate system. It affects the interpretation of | 
| 707 | cnh | 1.9 | grid input parameters, for example {\bf delX} and {\bf delY} and | 
| 708 |  |  | causes the grid generation routines to initialize an internal grid based | 
| 709 | adcroft | 1.1 | on spherical polar geometry. | 
| 710 |  |  | The variable | 
| 711 |  |  | {\bf | 
| 712 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/10T.htm> \end{rawhtml} | 
| 713 |  |  | usingSphericalPolarGrid | 
| 714 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 715 |  |  | } | 
| 716 |  |  | is read in the routine | 
| 717 |  |  | {\it | 
| 718 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 719 |  |  | INI\_PARMS | 
| 720 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 721 | cnh | 1.8 | }. When set to {\bf .TRUE.} the settings of {\bf delX} and {\bf delY} are | 
| 722 |  |  | taken to be in degrees. These values are used in the | 
| 723 |  |  | routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
| 724 | adcroft | 1.1 |  | 
| 725 |  |  | \fbox{ | 
| 726 |  |  | \begin{minipage}{5.0in} | 
| 727 |  |  | {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 728 |  |  | \end{minipage} | 
| 729 |  |  | } | 
| 730 |  |  | {\bf | 
| 731 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
| 732 |  |  | goto code | 
| 733 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 734 |  |  | } | 
| 735 |  |  |  | 
| 736 |  |  | \item Line 41, | 
| 737 |  |  | \begin{verbatim} | 
| 738 |  |  | phiMin=0., | 
| 739 |  |  | \end{verbatim} | 
| 740 |  |  | This line sets the southern boundary of the modeled | 
| 741 |  |  | domain to $0^{\circ}$ latitude. This value affects both the | 
| 742 |  |  | generation of the locally orthogonal grid that the model | 
| 743 | cnh | 1.9 | uses internally and affects the initialization of the coriolis force. | 
| 744 | adcroft | 1.1 | Note - it is not required to set | 
| 745 |  |  | a longitude boundary, since the absolute longitude does | 
| 746 |  |  | not alter the kernel equation discretisation. | 
| 747 |  |  | The variable | 
| 748 |  |  | {\bf | 
| 749 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/110.htm> \end{rawhtml} | 
| 750 |  |  | phiMin | 
| 751 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 752 |  |  | } | 
| 753 |  |  | is read in the routine | 
| 754 |  |  | {\it | 
| 755 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 756 |  |  | INI\_PARMS | 
| 757 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 758 | cnh | 1.8 | } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
| 759 | adcroft | 1.1 |  | 
| 760 |  |  | \fbox{ | 
| 761 |  |  | \begin{minipage}{5.0in} | 
| 762 |  |  | {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 763 |  |  | \end{minipage} | 
| 764 |  |  | } | 
| 765 |  |  | {\bf | 
| 766 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
| 767 |  |  | goto code | 
| 768 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 769 |  |  | } | 
| 770 |  |  |  | 
| 771 |  |  | \item Line 42, | 
| 772 |  |  | \begin{verbatim} | 
| 773 |  |  | delX=60*1., | 
| 774 |  |  | \end{verbatim} | 
| 775 |  |  | This line sets the horizontal grid spacing between each y-coordinate line | 
| 776 |  |  | in the discrete grid to $1^{\circ}$ in longitude. | 
| 777 |  |  | The variable | 
| 778 |  |  | {\bf | 
| 779 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/10Z.htm> \end{rawhtml} | 
| 780 |  |  | delX | 
| 781 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 782 |  |  | } | 
| 783 |  |  | is read in the routine | 
| 784 |  |  | {\it | 
| 785 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 786 |  |  | INI\_PARMS | 
| 787 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 788 | cnh | 1.8 | } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
| 789 | adcroft | 1.1 |  | 
| 790 |  |  | \fbox{ | 
| 791 |  |  | \begin{minipage}{5.0in} | 
| 792 |  |  | {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 793 |  |  | \end{minipage} | 
| 794 |  |  | } | 
| 795 |  |  | {\bf | 
| 796 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
| 797 |  |  | goto code | 
| 798 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 799 |  |  | } | 
| 800 |  |  |  | 
| 801 |  |  | \item Line 43, | 
| 802 |  |  | \begin{verbatim} | 
| 803 |  |  | delY=60*1., | 
| 804 |  |  | \end{verbatim} | 
| 805 |  |  | This line sets the horizontal grid spacing between each y-coordinate line | 
| 806 |  |  | in the discrete grid to $1^{\circ}$ in latitude. | 
| 807 |  |  | The variable | 
| 808 |  |  | {\bf | 
| 809 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/UB.htm> \end{rawhtml} | 
| 810 |  |  | delY | 
| 811 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 812 |  |  | } | 
| 813 |  |  | is read in the routine | 
| 814 |  |  | {\it | 
| 815 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 816 |  |  | INI\_PARMS | 
| 817 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 818 | cnh | 1.8 | } and is used in routine {\it INI\_SPEHRICAL\_POLAR\_GRID}. | 
| 819 | adcroft | 1.1 |  | 
| 820 |  |  | \fbox{ | 
| 821 |  |  | \begin{minipage}{5.0in} | 
| 822 |  |  | {\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 823 |  |  | \end{minipage} | 
| 824 |  |  | } | 
| 825 |  |  | {\bf | 
| 826 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/97.htm> \end{rawhtml} | 
| 827 |  |  | goto code | 
| 828 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 829 |  |  | } | 
| 830 |  |  |  | 
| 831 |  |  | \item Line 44, | 
| 832 |  |  | \begin{verbatim} | 
| 833 |  |  | delZ=500.,500.,500.,500., | 
| 834 |  |  | \end{verbatim} | 
| 835 |  |  | This line sets the vertical grid spacing between each z-coordinate line | 
| 836 |  |  | in the discrete grid to $500\,{\rm m}$, so that the total model depth | 
| 837 |  |  | is $2\,{\rm km}$. | 
| 838 |  |  | The variable | 
| 839 |  |  | {\bf | 
| 840 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/10W.htm> \end{rawhtml} | 
| 841 |  |  | delZ | 
| 842 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 843 |  |  | } | 
| 844 |  |  | is read in the routine | 
| 845 |  |  | {\it | 
| 846 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 847 |  |  | INI\_PARMS | 
| 848 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 849 |  |  | }. | 
| 850 |  |  | It is copied into the internal | 
| 851 |  |  | model coordinate variable | 
| 852 |  |  | {\bf | 
| 853 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/10Y.htm> \end{rawhtml} | 
| 854 |  |  | delR | 
| 855 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 856 | cnh | 1.8 | } which is used in routine {\it INI\_VERTICAL\_GRID}. | 
| 857 | adcroft | 1.1 |  | 
| 858 |  |  | \fbox{ | 
| 859 |  |  | \begin{minipage}{5.0in} | 
| 860 |  |  | {\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) | 
| 861 |  |  | \end{minipage} | 
| 862 |  |  | } | 
| 863 |  |  | {\bf | 
| 864 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/100.htm> \end{rawhtml} | 
| 865 |  |  | goto code | 
| 866 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 867 |  |  | } | 
| 868 |  |  |  | 
| 869 |  |  | \item Line 47, | 
| 870 |  |  | \begin{verbatim} | 
| 871 |  |  | bathyFile='topog.box' | 
| 872 |  |  | \end{verbatim} | 
| 873 |  |  | This line specifies the name of the file from which the domain | 
| 874 |  |  | bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
| 875 |  |  | depths. This file is assumed to contain 64-bit binary numbers | 
| 876 |  |  | giving the depth of the model at each grid cell, ordered with the x | 
| 877 |  |  | coordinate varying fastest. The points are ordered from low coordinate | 
| 878 |  |  | to high coordinate for both axes. The units and orientation of the | 
| 879 |  |  | depths in this file are the same as used in the MITgcm code. In this | 
| 880 |  |  | experiment, a depth of $0m$ indicates a solid wall and a depth | 
| 881 |  |  | of $-2000m$ indicates open ocean. The matlab program | 
| 882 |  |  | {\it input/gendata.m} shows an example of how to generate a | 
| 883 |  |  | bathymetry file. | 
| 884 |  |  | The variable | 
| 885 |  |  | {\bf | 
| 886 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/179.htm> \end{rawhtml} | 
| 887 |  |  | bathyFile | 
| 888 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 889 |  |  | } | 
| 890 |  |  | is read in the routine | 
| 891 |  |  | {\it | 
| 892 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 893 |  |  | INI\_PARMS | 
| 894 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 895 | cnh | 1.8 | }. The bathymetry file is read in the routine {\it INI\_DEPTHS}. | 
| 896 | adcroft | 1.1 |  | 
| 897 |  |  | \fbox{ | 
| 898 |  |  | \begin{minipage}{5.0in} | 
| 899 |  |  | {\it S/R INI\_DEPTHS}({\it ini\_depths.F}) | 
| 900 |  |  | \end{minipage} | 
| 901 |  |  | } | 
| 902 |  |  | {\bf | 
| 903 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/88.htm> \end{rawhtml} | 
| 904 |  |  | goto code | 
| 905 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 906 |  |  | } | 
| 907 |  |  |  | 
| 908 |  |  |  | 
| 909 |  |  | \item Line 50, | 
| 910 |  |  | \begin{verbatim} | 
| 911 |  |  | zonalWindFile='windx.sin_y' | 
| 912 |  |  | \end{verbatim} | 
| 913 |  |  | This line specifies the name of the file from which the x-direction | 
| 914 | cnh | 1.8 | (zonal) surface wind stress is read. This file is also a two-dimensional | 
| 915 | adcroft | 1.1 | ($x,y$) map and is enumerated and formatted in the same manner as the | 
| 916 |  |  | bathymetry file. The matlab program {\it input/gendata.m} includes example | 
| 917 |  |  | code to generate a valid | 
| 918 |  |  | {\bf zonalWindFile} | 
| 919 |  |  | file. | 
| 920 |  |  | The variable | 
| 921 |  |  | {\bf | 
| 922 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/names/13W.htm> \end{rawhtml} | 
| 923 |  |  | zonalWindFile | 
| 924 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 925 |  |  | } | 
| 926 |  |  | is read in the routine | 
| 927 |  |  | {\it | 
| 928 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/94.htm> \end{rawhtml} | 
| 929 |  |  | INI\_PARMS | 
| 930 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 931 | cnh | 1.8 | }.  The wind-stress file is read in the routine | 
| 932 |  |  | {\it EXTERNAL\_FIELDS\_LOAD}. | 
| 933 | adcroft | 1.1 |  | 
| 934 |  |  | \fbox{ | 
| 935 |  |  | \begin{minipage}{5.0in} | 
| 936 |  |  | {\it S/R EXTERNAL\_FIELDS\_LOAD}({\it external\_fields\_load.F}) | 
| 937 |  |  | \end{minipage} | 
| 938 |  |  | } | 
| 939 |  |  | {\bf | 
| 940 |  |  | \begin{rawhtml} <A href=../../../code_reference/vdb/code/75.htm> \end{rawhtml} | 
| 941 |  |  | goto code | 
| 942 |  |  | \begin{rawhtml} </A>\end{rawhtml} | 
| 943 |  |  | } | 
| 944 |  |  |  | 
| 945 |  |  | \end{itemize} | 
| 946 |  |  |  | 
| 947 | cnh | 1.8 | \noindent other lines in the file {\it input/data} are standard values. | 
| 948 | adcroft | 1.1 |  | 
| 949 |  |  | \begin{rawhtml}<PRE>\end{rawhtml} | 
| 950 |  |  | \begin{small} | 
| 951 |  |  | \input{part3/case_studies/fourlayer_gyre/input/data} | 
| 952 |  |  | \end{small} | 
| 953 |  |  | \begin{rawhtml}</PRE>\end{rawhtml} | 
| 954 |  |  |  | 
| 955 |  |  | \subsubsection{File {\it input/data.pkg}} | 
| 956 | adcroft | 1.13 | \label{www:tutorials} | 
| 957 | adcroft | 1.1 |  | 
| 958 |  |  | This file uses standard default values and does not contain | 
| 959 |  |  | customisations for this experiment. | 
| 960 |  |  |  | 
| 961 |  |  | \subsubsection{File {\it input/eedata}} | 
| 962 | adcroft | 1.13 | \label{www:tutorials} | 
| 963 | adcroft | 1.1 |  | 
| 964 |  |  | This file uses standard default values and does not contain | 
| 965 |  |  | customisations for this experiment. | 
| 966 |  |  |  | 
| 967 |  |  | \subsubsection{File {\it input/windx.sin\_y}} | 
| 968 | adcroft | 1.13 | \label{www:tutorials} | 
| 969 | adcroft | 1.1 |  | 
| 970 |  |  | The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) | 
| 971 | cnh | 1.8 | map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$ (the | 
| 972 |  |  | default for MITgcm). | 
| 973 | cnh | 1.9 | Although $\tau_{x}$ is only a function of latitude, $y$, | 
| 974 | cnh | 1.8 | in this experiment | 
| 975 | adcroft | 1.1 | this file must still define a complete two-dimensional map in order | 
| 976 |  |  | to be compatible with the standard code for loading forcing fields | 
| 977 | cnh | 1.8 | in MITgcm (routine {\it EXTERNAL\_FIELDS\_LOAD}. | 
| 978 |  |  | The included matlab program {\it input/gendata.m} gives a complete | 
| 979 | adcroft | 1.1 | code for creating the {\it input/windx.sin\_y} file. | 
| 980 |  |  |  | 
| 981 |  |  | \subsubsection{File {\it input/topog.box}} | 
| 982 | adcroft | 1.13 | \label{www:tutorials} | 
| 983 | adcroft | 1.1 |  | 
| 984 |  |  |  | 
| 985 |  |  | The {\it input/topog.box} file specifies a two-dimensional ($x,y$) | 
| 986 |  |  | map of depth values. For this experiment values are either | 
| 987 | cnh | 1.8 | $0~{\rm m}$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep | 
| 988 | adcroft | 1.1 | ocean. The file contains a raw binary stream of data that is enumerated | 
| 989 |  |  | in the same way as standard MITgcm two-dimensional, horizontal arrays. | 
| 990 |  |  | The included matlab program {\it input/gendata.m} gives a complete | 
| 991 |  |  | code for creating the {\it input/topog.box} file. | 
| 992 |  |  |  | 
| 993 |  |  | \subsubsection{File {\it code/SIZE.h}} | 
| 994 | adcroft | 1.13 | \label{www:tutorials} | 
| 995 | adcroft | 1.1 |  | 
| 996 |  |  | Two lines are customized in this file for the current experiment | 
| 997 |  |  |  | 
| 998 |  |  | \begin{itemize} | 
| 999 |  |  |  | 
| 1000 |  |  | \item Line 39, | 
| 1001 |  |  | \begin{verbatim} sNx=60, \end{verbatim} this line sets | 
| 1002 |  |  | the lateral domain extent in grid points for the | 
| 1003 |  |  | axis aligned with the x-coordinate. | 
| 1004 |  |  |  | 
| 1005 |  |  | \item Line 40, | 
| 1006 |  |  | \begin{verbatim} sNy=60, \end{verbatim} this line sets | 
| 1007 |  |  | the lateral domain extent in grid points for the | 
| 1008 |  |  | axis aligned with the y-coordinate. | 
| 1009 |  |  |  | 
| 1010 |  |  | \item Line 49, | 
| 1011 |  |  | \begin{verbatim} Nr=4,   \end{verbatim} this line sets | 
| 1012 |  |  | the vertical domain extent in grid points. | 
| 1013 |  |  |  | 
| 1014 |  |  | \end{itemize} | 
| 1015 |  |  |  | 
| 1016 |  |  | \begin{small} | 
| 1017 |  |  | \include{part3/case_studies/fourlayer_gyre/code/SIZE.h} | 
| 1018 |  |  | \end{small} | 
| 1019 |  |  |  | 
| 1020 |  |  | \subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 1021 | adcroft | 1.13 | \label{www:tutorials} | 
| 1022 | adcroft | 1.1 |  | 
| 1023 |  |  | This file uses standard default values and does not contain | 
| 1024 |  |  | customisations for this experiment. | 
| 1025 |  |  |  | 
| 1026 |  |  |  | 
| 1027 |  |  | \subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 1028 | adcroft | 1.13 | \label{www:tutorials} | 
| 1029 | adcroft | 1.1 |  | 
| 1030 |  |  | This file uses standard default values and does not contain | 
| 1031 |  |  | customisations for this experiment. | 
| 1032 |  |  |  | 
| 1033 |  |  | \subsubsection{Other Files } | 
| 1034 | adcroft | 1.13 | \label{www:tutorials} | 
| 1035 | adcroft | 1.1 |  | 
| 1036 |  |  | Other files relevant to this experiment are | 
| 1037 |  |  | \begin{itemize} | 
| 1038 |  |  | \item {\it model/src/ini\_cori.F}. This file initializes the model | 
| 1039 |  |  | coriolis variables {\bf fCorU} and {\bf fCorV}. | 
| 1040 |  |  | \item {\it model/src/ini\_spherical\_polar\_grid.F} This file | 
| 1041 |  |  | initializes the model grid discretisation variables {\bf | 
| 1042 |  |  | dxF, dyF, dxG, dyG, dxC, dyC}. | 
| 1043 |  |  | \item {\it model/src/ini\_parms.F}. | 
| 1044 |  |  | \end{itemize} | 
| 1045 |  |  |  | 
| 1046 |  |  | \subsection{Running The Example} | 
| 1047 | adcroft | 1.13 | \label{www:tutorials} | 
| 1048 | adcroft | 1.1 | \label{SEC:running_the_example} | 
| 1049 |  |  |  | 
| 1050 |  |  | \subsubsection{Code Download} | 
| 1051 | adcroft | 1.13 | \label{www:tutorials} | 
| 1052 | adcroft | 1.1 |  | 
| 1053 |  |  | In order to run the examples you must first download the code distribution. | 
| 1054 | cnh | 1.8 | Instructions for downloading the code can be found in section | 
| 1055 |  |  | \ref{sect:obtainingCode}. | 
| 1056 | adcroft | 1.1 |  | 
| 1057 |  |  | \subsubsection{Experiment Location} | 
| 1058 | adcroft | 1.13 | \label{www:tutorials} | 
| 1059 | adcroft | 1.1 |  | 
| 1060 |  |  | This example experiments is located under the release sub-directory | 
| 1061 |  |  |  | 
| 1062 |  |  | \vspace{5mm} | 
| 1063 | cnh | 1.8 | {\it verification/exp2/ } | 
| 1064 | adcroft | 1.1 |  | 
| 1065 |  |  | \subsubsection{Running the Experiment} | 
| 1066 | adcroft | 1.13 | \label{www:tutorials} | 
| 1067 | adcroft | 1.1 |  | 
| 1068 |  |  | To run the experiment | 
| 1069 |  |  |  | 
| 1070 |  |  | \begin{enumerate} | 
| 1071 |  |  | \item Set the current directory to {\it input/ } | 
| 1072 |  |  |  | 
| 1073 |  |  | \begin{verbatim} | 
| 1074 |  |  | % cd input | 
| 1075 |  |  | \end{verbatim} | 
| 1076 |  |  |  | 
| 1077 |  |  | \item Verify that current directory is now correct | 
| 1078 |  |  |  | 
| 1079 |  |  | \begin{verbatim} | 
| 1080 |  |  | % pwd | 
| 1081 |  |  | \end{verbatim} | 
| 1082 |  |  |  | 
| 1083 | cnh | 1.9 | You should see a response on the screen ending in | 
| 1084 | adcroft | 1.1 |  | 
| 1085 | cnh | 1.8 | {\it verification/exp2/input } | 
| 1086 | adcroft | 1.1 |  | 
| 1087 |  |  |  | 
| 1088 |  |  | \item Run the genmake script to create the experiment {\it Makefile} | 
| 1089 |  |  |  | 
| 1090 |  |  | \begin{verbatim} | 
| 1091 |  |  | % ../../../tools/genmake -mods=../code | 
| 1092 |  |  | \end{verbatim} | 
| 1093 |  |  |  | 
| 1094 |  |  | \item Create a list of header file dependencies in {\it Makefile} | 
| 1095 |  |  |  | 
| 1096 |  |  | \begin{verbatim} | 
| 1097 |  |  | % make depend | 
| 1098 |  |  | \end{verbatim} | 
| 1099 |  |  |  | 
| 1100 |  |  | \item Build the executable file. | 
| 1101 |  |  |  | 
| 1102 |  |  | \begin{verbatim} | 
| 1103 |  |  | % make | 
| 1104 |  |  | \end{verbatim} | 
| 1105 |  |  |  | 
| 1106 |  |  | \item Run the {\it mitgcmuv} executable | 
| 1107 |  |  |  | 
| 1108 |  |  | \begin{verbatim} | 
| 1109 |  |  | % ./mitgcmuv | 
| 1110 |  |  | \end{verbatim} | 
| 1111 |  |  |  | 
| 1112 |  |  | \end{enumerate} | 
| 1113 |  |  |  | 
| 1114 |  |  |  |