/[MITgcm]/manual/s_examples/advection_in_gyre/adv_gyre.tex
ViewVC logotype

Contents of /manual/s_examples/advection_in_gyre/adv_gyre.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (show annotations) (download) (as text)
Fri Aug 27 13:25:31 2010 UTC (13 years, 8 months ago) by jmc
Branch: MAIN
Changes since 1.14: +3 -3 lines
File MIME type: application/x-tex
changed for new directory path:
 s/\\input part3\/case_studies\/.*$/&}/
 s/\\input part3\/case_studies\//\\input{part3\/case_studies\//
 #-rename  tutorial doc dir to match MITgcm/verification dir:
 s/part3\/case_studies\/advection_in_gyre_circulation\//s_examples\/advection_in_gyre\//
 s/part3\/case_studies\/biogeochem_tutorial\//s_examples\/global_oce_biogeo\//
 s/part3\/case_studies\/climatalogical_ogcm\//s_examples\/global_oce_latlon\//
 s/part3\/case_studies\/doubly_periodic_convection\//s_examples\/deep_convection\//
 s/part3\/case_studies\/fourlayer_gyre\//s_examples\/baroclinic_gyre\//
 s/part3\/case_studies\/global_oce_estimation\//s_examples\/global_oce_optim\//
 s/part3\/case_studies\/offline\//s_examples\/cfc_offline\//
 s/part3\/case_studies\/ogcm_in_pressure\//s_examples\/global_oce_in_p\//
 s/part3\/case_studies\/sens_airsea_tracer\//s_examples\/tracer_adjsens\//
 #----------------------------------------
 s/part3\/case_studies\/barotropic_gyre\//s_examples\/barotropic_gyre\//
 s/\\input{part3\/case_studies\//\\input{s_examples\//g
 /\\include{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g
 /\\includegraphics.*{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g
 /\\epsfbox.*{part3\/case_studies\//s/{part3\/case_studies\//{s_examples\//g

1 % $Header: /u/gcmpack/manual/s_examples/advection_in_gyre/adv_gyre.tex,v 1.14 2009/05/01 17:18:14 jmc Exp $
2 % $Name: $
3
4 \bodytext{bgcolor="#FFFFFFFF"}
5
6
7 \section[Gyre Advection Example]{Ocean Gyre Advection Schemes}
8 \label{www:tutorials}
9 \label{sect:eg-adv-gyre}
10 \begin{rawhtml}
11 <!-- CMIREDIR:eg-adv-gyre: -->
12 \end{rawhtml}
13 \begin{center}
14 (in directory: {\it verification/tutorial\_advection\_in\_gyre/})
15 \end{center}
16
17 Author: Oliver Jahn and Chris Hill
18
19
20
21 This set of examples is based on the barotropic and baroclinic gyre MITgcm configurations,
22 that are described in the tutorial sections \ref{sect:eg-baro} and \ref{sect:eg-fourlayer}.
23 The examples in this section explain how to introduce a passive tracer into the flow
24 field of the barotropic and baroclinic gyre setups and looks at how the time evolution
25 of the passive tracer depends on the advection or transport scheme that is selected
26 for the tracer.
27
28 Passive tracers are useful in many numerical experiments. In some cases tracers are
29 used to track flow pathways, for example in \cite{Dutay02} a passive tracer is used
30 to track pathways of CFC-11 in 13 global ocean models, using a numerical
31 configuration similar to the example described in section \ref{sect:eg-offline-cfc}).
32 In other cases tracers are used as a way
33 to infer bulk mixing coefficients for a turbulent flow field, for example in
34 \cite{marsh06} a tracer is used to infer eddy mixing coefficients in the
35 Antarctic Circumpolar Current region. In biogeochemical and ecological simulations large numbers
36 of tracers are used that carry the concentrations of biological nutrients and concentrations of
37 biological species, for example in ....
38 When using tracers for these and other purposes it is useful to have a feel for the role
39 that the advection scheme employed plays in determining properties of the tracer distribution.
40 In particular, in a discrete numerical model tracer advection only approximates the
41 continuum behavior in space and time and different advection schemes introduce diferent
42 approximations so that the resulting tracer distributions vary. In the following
43 text we illustrate how
44 to use the different advection schemes available in MITgcm here, and discuss which properties
45 are well represented by each one. The advection schemes selections also apply to active
46 tracers (e.g. $T$ and $S$) and the character of the schemes also affect their distributions
47 and behavior.
48
49 \subsection{Advection and tracer transport}
50
51 In general, the tracer problem we want to solve can be written
52
53 \begin{equation}
54 \label{EQ:eg-adv-gyre-generic-tracer}
55 \frac{\partial C}{partial t} = -U \cdot \nabla C + S
56 \end{equation}
57
58 where $C$ is the tracer concentration in a model cell, $U$ is the model three-dimensional
59 flow field ( $U=(u,v,w)$ ). In (\ref{EQ:eg-adv-gyre-generic-tracer}) $S$ represents source, sink
60 and tendency terms not associated with advective transport. Example of terms in $S$ include
61 (i) air-sea fluxes for a dissolved gas, (ii) biological grazing and growth terms (for a
62 biogeochemical problem) or (iii) convective mixing and other sub-grid parameterizations of
63 mixing. In this section we are primarily concerned with
64 \begin{enumerate}
65 \item how to introduce the tracer term, $C$, into an integration
66 \item the different discretized forms of
67 the $-U \cdot \nabla C$ term that are available
68 \end{enumerate}
69
70
71 \subsection{Introducing a tracer into the flow}
72
73 The MITgcm ptracers package (see section \ref{sec:pkg:ptracers} for a more complete discussion
74 of the ptracers package and section \ref{sec:pkg:using} for a general introduction to MITgcm
75 packages) provides pre-coded support for a simple passive tracer with an initial
76 distribution at simulation time $t=0$ of $C_0(x,y,z)$. The steps required to use this capability
77 are
78 \begin{enumerate}
79 \item{\bf Activating the ptracers package.} This simply requires adding the line {\tt ptracers} to
80 the {\tt packages.conf} file in the {\it code/} directory for the experiment.
81 \item{\bf Setting an initial tracer distribution.}
82 \end{enumerate}
83
84 Once the two steps above are complete we can proceed to examine how the tracer we have created is
85 carried by the flow field and what properties of the tracer distribution are preserved under
86 different advection schemes.
87
88 \subsection{Selecting an advection scheme}
89
90 - flags in data and data.ptracers
91
92 - overlap width
93
94 - CPP GAD\_ALLOW\_SOM\_ADVECT required for SOM case
95
96 \subsection{Comparison of different advection schemes}
97
98 \begin{enumerate}
99 \item{Conservation}
100 \item{Dispersion}
101 \item{Diffusion}
102 \item{Positive definite}
103 \end{enumerate}
104
105 \input{s_examples/advection_in_gyre/adv_gyre_figure.tex}
106
107 \begin{figure}
108 \begin{center}
109 \includegraphics*[width=\textwidth]{s_examples/advection_in_gyre/stats.eps}
110 \end{center}
111 \caption{Maxima, minima and standard deviation (from left) as a function of time (in months)
112 for the gyre circulation experiment from figure~\ref{fig:adv-gyre-all}.}
113 \label{fig:adv-gyre-stats}
114 \end{figure}
115
116 \subsection{Code and Parameters files for this tutorial}
117
118 The code and parameters for the experiments can be found in the MITgcm example experiments
119 directory {\it verification/tutorial\_advection\_in\_gyre/}.
120
121
122
123
124
125
126

  ViewVC Help
Powered by ViewVC 1.1.22