/[MITgcm]/manual/s_ecco/text/ecco_costfunction.tex
ViewVC logotype

Contents of /manual/s_ecco/text/ecco_costfunction.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download) (as text)
Sat Oct 16 03:40:19 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.3: +3 -0 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 \section{The ECCO state estimation cost function DRAFT!!!
2 \label{sectioneccocost}}
3 \begin{rawhtml}
4 <!-- CMIREDIR:ecco_cost: -->
5 \end{rawhtml}
6
7 The current ECCO state estimation covers an $nYears = 11$ year
8 model trajectory.
9 A variety of data sets enter a least squares cost function,
10 in addition to penalty terms which constrain deviations
11 of control variables beyound their a priori errors.
12
13 \subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry}
14
15 Altimetric SSH contributions from T/P and ERS-1/2 are four-fold:
16 %
17 \begin{enumerate}
18 %
19 \item
20 an $nYears$ time mean SSH misfit between
21 model and T/P
22 %
23 \item
24 daily SSH anomaly misfits between T/P and model
25 %
26 \item
27 daily SSH anomaly misfits between ERS-1/2 and model
28 %
29 \item
30 daily absolute SSH misfit between T/P and model,
31 weighted by the full geoid error covariance.
32 %
33 \end{enumerate}
34
35 \subsubsection{Input fields}
36 ~
37
38 \begin{table}[h!]
39 \begin{center}
40 \begin{tabular}{lllc}
41 \hline \hline
42 ~&~&~&~\\
43 field & file name & deccription & unit \\
44 ~&~&~&~\\
45 \hline
46 ~&~&~&~\\
47 {\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\
48 {\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\
49 {\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\
50 {\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\
51 {\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\
52 {\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\
53 ~&~&~&~\\
54 \hline \hline
55 \end{tabular}
56 \end{center}
57 \end{table}
58
59
60 \subsubsection{\textit{\textbf{nYears}} time mean SSH misfit}
61
62 \begin{enumerate}
63 %
64 \item
65 Compute $nYears$ model mean spatial distribution
66 %
67 \begin{equation}
68 psmean(i,j)\, =\,
69 \frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec}
70 psbar(i,j)
71 \end{equation}
72 %
73 \item
74 Compute global offset between $nYears$ model and T/P mean:
75 %
76 \begin{equation}
77 \begin{split}
78 offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\
79 ~ & = \, \frac{1}{normaliz.} \sum_{i,j}
80 \left\{ tpmean(i,j) \, - \, psmean(i,j) \right\}
81 \cdot cosphi(i,j) \cdot tpmeanmask(i,j)
82 \end{split}
83 \end{equation}
84 %
85 \item
86 Misfits are computed w.r.t. global $offset$.
87 \\
88 First spatial distribution:
89 %
90 \begin{equation}
91 \begin{split}
92 cost\_ssh\_mean(i,j) & = \,
93 \frac{1}{wp^2} \left\{ \,
94 \left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \,
95 \left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\
96 ~ & = \, \frac{1}{wp^2} \left\{ \,
97 psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2
98 \end{split}
99 \end{equation}
100
101 %
102 Finally, sum over all spatial entries:
103 \begin{equation}
104 \overline{cost\_ssh\_mean} \, = \,
105 \sum_{i,j} cost\_ssh\_mean(i,j)
106 \end{equation}
107
108
109
110 \end{enumerate}
111
112 \subsubsection{Misfit of daily SSH anomalies}
113
114 Computation is same for T/P and ERS-1/2.
115 Here we write out computation for T/P.
116
117 \begin{enumerate}
118 %
119 \item
120 Compute difference in anomalies:
121
122 \begin{equation}
123 \begin{split}
124 cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \,
125 \left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \,
126 \left[ \, tpobs(i,j,t) \, \right] \,
127 \right\}^2
128 \end{split}
129 \end{equation}
130 %
131 where $t$ denotes time (day) index, and
132 where it is assumed that $ nYears$ mean T/P spatial distribution
133 $tpmean(i,j)$ has already been removed from data $tpobs(i,j)$!
134
135 \item
136 Sum over all spatial points and all times
137
138 \begin{equation}
139 \begin{split}
140 \overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j}
141 cost\_ssh\_anom(i,j,t)
142 \end{split}
143 \end{equation}
144
145 \end{enumerate}
146
147 \subsubsection{Flow chart}
148
149 \begin{verbatim}
150
151 cost_ssh
152 |
153 |- < compute nYears model mean >
154 |
155 |- < read nYears T/P mean >
156 | CALL COST_READTOPEXMEAN
157 |
158 |- < compute global T/P vs. model offset >
159 |
160 |- < compute cost_hmean >
161 | CALL COST_SSH_MEAN
162 |
163 |- < ... >
164
165 \end{verbatim}
166
167 \subsubsection{Weights and notes}
168
169 \begin{itemize}
170 %
171 \item
172 All data are currently masked to zero where less than 13 depth levels,
173 mimicing no contribution for depth less than 1000m.
174 %
175 \item
176 $cosphi$ term in weights is set to 1.
177 %
178 \item
179 bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $
180 %
181 \item
182 T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values
183 %
184 \item
185 $wp$ is read from {\tt geoid\_errfile}
186 and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}
187 %
188 \end{itemize}
189
190 \paragraph{$wp$ for SSH mean misfit} ~
191
192 $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\
193 $wp$ is read from {\tt geoid\_errfile};
194
195 \paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~
196
197 $1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\
198 %
199 \begin{itemize}
200 %
201 \item
202 $wtp$, $wers$ are read from single {\tt ssh\_errfile}
203 %
204 \item
205 both are converted to meters and halved \\
206 $ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $
207 %
208 \item
209 ERS error is set to T/P error + 5cm \\
210 $ wers \, = \, wtp \, + 0.5cm $
211 %
212 \end{itemize}
213
214 \subsubsection{Cost diagnostics}
215
216 \begin{itemize}
217 %
218 \item
219 Map out $ cost\_ssh\_mean(i,j) $
220 %
221 \item
222 Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e.
223 \[
224 \frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t)
225 \]
226 %
227 \item
228 sum over daily entries and plot daily average as function of time. i.e.
229 \[
230 \frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t)
231 \]
232 \end{itemize}
233
234 \subsection{Hydrographic constraints}
235
236 Observation of temperature and salinity from various sources are
237 used to constrain the model. These are:
238 %
239 \begin{enumerate}
240 %
241 \item
242 CTD obs. for $T$, $S$ from various WOCE sections
243 %
244 \item
245 XBT obs. for $T$
246 %
247 \item
248 Sea surface temperature (SST) and salinity (SSS) from
249 Reynolds et al. (???)
250 %
251 \item
252 $T$, $S$ from ARGO floats
253 %
254 \item
255 $T$, $S$ from fields from Levitus (???)
256 %
257 \end{enumerate}
258
259 \subsubsection{Input fields}
260 ~
261
262 \begin{table}[h!]
263 \begin{center}
264 \begin{tabular}{lllc}
265 \hline \hline
266 ~&~&~&~\\
267 field & file name & deccription & unit \\
268 ~&~&~&~\\
269 \hline
270 ~&~&~&~\\
271 {\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature &
272 [$^{\circ}$C] \\
273 {\it sbar} & {\tt sbarfile} & monthly model mean salinity &
274 [ppt] \\
275 {\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature &
276 [$^{\circ}$C] \\
277 {\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity &
278 [ppt] \\
279 {\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature &
280 [$^{\circ}$C] \\
281 {\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity &
282 [ppt] \\
283 {\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature &
284 [$^{\circ}$C] \\
285 {\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST &
286 [$^{\circ}$C] \\
287 {\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS &
288 [ppt] \\
289 {\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature &
290 [$^{\circ}$C] \\
291 {\it argosobs} & {\tt argosfile} & monthly ARGO salinity &
292 [ppt] \\
293 {\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ &
294 ~ \\
295 {\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}$C] \\
296 {\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\
297 ~&~&~&~\\
298 \hline \hline
299 \end{tabular}
300 \end{center}
301 \end{table}
302
303 \subsubsection{XBT data}
304
305 \begin{equation}
306 \begin{split}
307 cost\_xbt\_t(i,j,k) & = \,
308 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
309 \left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k)
310 \\
311 \end{split}
312 \end{equation}
313
314 \subsubsection{WOCE CTD data}
315
316 \begin{equation}
317 \begin{split}
318 cost\_ctd\_t(i,j,k) & = \,
319 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
320 \left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k)
321 \\
322 cost\_ctd\_s(i,j,k) & = \,
323 \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
324 \left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k)
325 \\
326 \end{split}
327 \end{equation}
328
329 \subsubsection{ARGO float data}
330
331 \begin{equation}
332 \begin{split}
333 cost\_argo\_t(i,j,k) & = \,
334 \left[ \, \frac{fac \cdot ratio}{wti^2 + wvar^2} \sum_{\tau=1}^{nMonsRec}
335 \left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k)
336 \\
337 cost\_argo\_s(i,j,k) & = \,
338 \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
339 \left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k)
340 \\
341 \end{split}
342 \end{equation}
343
344 \subsubsection{Reynolds sea surface T, S data}
345
346 \begin{equation}
347 \begin{split}
348 cost\_sst(i,j) & = \,
349 \left[ \, wsst \sum_{\tau=1}^{nMonsRec}
350 \left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j)
351 \\
352 cost\_sss(i,j) & = \,
353 \left[ \, wsss \sum_{\tau=1}^{nMonsRec}
354 \left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j)
355 \\
356 \end{split}
357 \end{equation}
358
359 \subsubsection{Levitus montly T, S climatological data}
360
361 Model vs. data misfits are taken from $nYears$ monthly model means
362 vs. Levitus monthly data.
363 The description below is for potential temperature.
364 Procedure for salinity is fully analogous.
365 Spatial indices $(i,j,k)$ are omitted throughout.
366 %
367 \begin{enumerate}
368 %
369 \item
370 Compute $nYears$ monthly model means for each month $imon$:
371 \[
372 \overline{Tbar}(imon) \, = \, \frac{1}{nYears}
373 \sum_{iyear=1}^{nYears} Tbar(iyear,imon)
374 \]
375 %
376 \item
377 Compute misfit:
378 \[
379 cost\_theta(i,j,k) \, = \, \left[
380 \frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12}
381 \left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k)
382 \]
383
384 \end{enumerate}
385
386
387 \subsubsection{Weights and notes}
388
389 \begin{itemize}
390 %
391 \item
392 $T2\theta$ is an operator mapping in-situ to potential temperatures
393 %
394 \item
395 Latitudinal weight not used:
396 \[
397 cosphi(i,j) \, = \, 1
398 \]
399 %
400 \item
401 $ fac \, = \, cosphi \cdot mask $
402 %
403 \item
404 Spatially {\it constant} weights:
405 %
406 \begin{enumerate}
407 %
408 \item
409 Read standard deviation vertical profiles for $T$, $S$ \\
410 $ {\tt data\_errfile} \, \longrightarrow \,
411 wti(k), \,\, wsi(k) $ \\
412 $ {\tt data\_errfile} \, \longrightarrow \,
413 ratio = 0.25 = \left( \frac{1}{2} \right)^2 $
414 %
415 \item
416 Take inverse squares:
417 \[
418 \begin{split}
419 wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\
420 wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\
421 \end{split}
422 \]
423 %
424 \end{enumerate}
425 %
426 \item
427 Spatially {\it varying} weights:
428 %
429 \begin{enumerate}
430 %
431 \item
432 Read standard deviation fields \\
433 $ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\
434 $ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\
435 %
436 \item
437 Weights are combination of spatially constant and varying parts:
438 \[
439 \begin{split}
440 wtheta2(i,j,k) & = \, \frac{ratio}
441 {wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\
442 wsalt2(i,j,k) & = \,
443 \frac{ratio}
444 {wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\
445 \end{split}
446 \]
447 %
448 \end{enumerate}
449 %
450 \item
451 Sea surface $T$, $S$ weights:
452 \begin{itemize}
453 \item
454 SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant
455 \item
456 SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying
457 \end{itemize}
458 (Why this difference? I don't know.)
459 %
460 \end{itemize}
461
462
463 \subsubsection{Diagnostics}
464
465 \begin{itemize}
466 %
467 \item
468 Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$.
469
470 %
471 \end{itemize}
472

  ViewVC Help
Powered by ViewVC 1.1.22