1 |
heimbach |
1.1 |
\section{The ECCO state estimation cost function DRAFT!!! |
2 |
|
|
\label{sectioneccocost}} |
3 |
edhill |
1.4 |
\begin{rawhtml} |
4 |
|
|
<!-- CMIREDIR:ecco_cost: --> |
5 |
|
|
\end{rawhtml} |
6 |
heimbach |
1.1 |
|
7 |
|
|
The current ECCO state estimation covers an $nYears = 11$ year |
8 |
|
|
model trajectory. |
9 |
|
|
A variety of data sets enter a least squares cost function, |
10 |
|
|
in addition to penalty terms which constrain deviations |
11 |
|
|
of control variables beyound their a priori errors. |
12 |
|
|
|
13 |
|
|
\subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry} |
14 |
|
|
|
15 |
|
|
Altimetric SSH contributions from T/P and ERS-1/2 are four-fold: |
16 |
|
|
% |
17 |
|
|
\begin{enumerate} |
18 |
|
|
% |
19 |
|
|
\item |
20 |
|
|
an $nYears$ time mean SSH misfit between |
21 |
|
|
model and T/P |
22 |
|
|
% |
23 |
|
|
\item |
24 |
|
|
daily SSH anomaly misfits between T/P and model |
25 |
|
|
% |
26 |
|
|
\item |
27 |
|
|
daily SSH anomaly misfits between ERS-1/2 and model |
28 |
|
|
% |
29 |
|
|
\item |
30 |
|
|
daily absolute SSH misfit between T/P and model, |
31 |
|
|
weighted by the full geoid error covariance. |
32 |
|
|
% |
33 |
|
|
\end{enumerate} |
34 |
|
|
|
35 |
|
|
\subsubsection{Input fields} |
36 |
|
|
~ |
37 |
|
|
|
38 |
|
|
\begin{table}[h!] |
39 |
|
|
\begin{center} |
40 |
|
|
\begin{tabular}{lllc} |
41 |
|
|
\hline \hline |
42 |
|
|
~&~&~&~\\ |
43 |
|
|
field & file name & deccription & unit \\ |
44 |
|
|
~&~&~&~\\ |
45 |
|
|
\hline |
46 |
|
|
~&~&~&~\\ |
47 |
|
|
{\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\ |
48 |
|
|
{\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\ |
49 |
|
|
{\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\ |
50 |
|
|
{\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\ |
51 |
|
|
{\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\ |
52 |
|
|
{\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\ |
53 |
|
|
~&~&~&~\\ |
54 |
|
|
\hline \hline |
55 |
|
|
\end{tabular} |
56 |
|
|
\end{center} |
57 |
|
|
\end{table} |
58 |
|
|
|
59 |
|
|
|
60 |
heimbach |
1.2 |
\subsubsection{\textit{\textbf{nYears}} time mean SSH misfit} |
61 |
heimbach |
1.1 |
|
62 |
|
|
\begin{enumerate} |
63 |
|
|
% |
64 |
|
|
\item |
65 |
heimbach |
1.3 |
Compute $nYears$ model mean spatial distribution |
66 |
heimbach |
1.1 |
% |
67 |
|
|
\begin{equation} |
68 |
|
|
psmean(i,j)\, =\, |
69 |
|
|
\frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec} |
70 |
|
|
psbar(i,j) |
71 |
|
|
\end{equation} |
72 |
|
|
% |
73 |
|
|
\item |
74 |
heimbach |
1.3 |
Compute global offset between $nYears$ model and T/P mean: |
75 |
heimbach |
1.1 |
% |
76 |
|
|
\begin{equation} |
77 |
|
|
\begin{split} |
78 |
|
|
offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\ |
79 |
|
|
~ & = \, \frac{1}{normaliz.} \sum_{i,j} |
80 |
|
|
\left\{ tpmean(i,j) \, - \, psmean(i,j) \right\} |
81 |
|
|
\cdot cosphi(i,j) \cdot tpmeanmask(i,j) |
82 |
|
|
\end{split} |
83 |
|
|
\end{equation} |
84 |
|
|
% |
85 |
|
|
\item |
86 |
|
|
Misfits are computed w.r.t. global $offset$. |
87 |
|
|
\\ |
88 |
|
|
First spatial distribution: |
89 |
|
|
% |
90 |
|
|
\begin{equation} |
91 |
|
|
\begin{split} |
92 |
|
|
cost\_ssh\_mean(i,j) & = \, |
93 |
|
|
\frac{1}{wp^2} \left\{ \, |
94 |
|
|
\left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \, |
95 |
|
|
\left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\ |
96 |
|
|
~ & = \, \frac{1}{wp^2} \left\{ \, |
97 |
|
|
psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2 |
98 |
|
|
\end{split} |
99 |
|
|
\end{equation} |
100 |
|
|
|
101 |
|
|
% |
102 |
|
|
Finally, sum over all spatial entries: |
103 |
|
|
\begin{equation} |
104 |
|
|
\overline{cost\_ssh\_mean} \, = \, |
105 |
|
|
\sum_{i,j} cost\_ssh\_mean(i,j) |
106 |
|
|
\end{equation} |
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
|
|
\end{enumerate} |
111 |
|
|
|
112 |
|
|
\subsubsection{Misfit of daily SSH anomalies} |
113 |
|
|
|
114 |
|
|
Computation is same for T/P and ERS-1/2. |
115 |
|
|
Here we write out computation for T/P. |
116 |
|
|
|
117 |
|
|
\begin{enumerate} |
118 |
|
|
% |
119 |
|
|
\item |
120 |
|
|
Compute difference in anomalies: |
121 |
|
|
|
122 |
|
|
\begin{equation} |
123 |
|
|
\begin{split} |
124 |
|
|
cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \, |
125 |
|
|
\left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \, |
126 |
|
|
\left[ \, tpobs(i,j,t) \, \right] \, |
127 |
|
|
\right\}^2 |
128 |
|
|
\end{split} |
129 |
|
|
\end{equation} |
130 |
|
|
% |
131 |
|
|
where $t$ denotes time (day) index, and |
132 |
|
|
where it is assumed that $ nYears$ mean T/P spatial distribution |
133 |
|
|
$tpmean(i,j)$ has already been removed from data $tpobs(i,j)$! |
134 |
|
|
|
135 |
|
|
\item |
136 |
|
|
Sum over all spatial points and all times |
137 |
|
|
|
138 |
|
|
\begin{equation} |
139 |
|
|
\begin{split} |
140 |
|
|
\overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j} |
141 |
|
|
cost\_ssh\_anom(i,j,t) |
142 |
|
|
\end{split} |
143 |
|
|
\end{equation} |
144 |
|
|
|
145 |
|
|
\end{enumerate} |
146 |
|
|
|
147 |
|
|
\subsubsection{Flow chart} |
148 |
|
|
|
149 |
|
|
\begin{verbatim} |
150 |
|
|
|
151 |
|
|
cost_ssh |
152 |
|
|
| |
153 |
|
|
|- < compute nYears model mean > |
154 |
|
|
| |
155 |
|
|
|- < read nYears T/P mean > |
156 |
|
|
| CALL COST_READTOPEXMEAN |
157 |
|
|
| |
158 |
|
|
|- < compute global T/P vs. model offset > |
159 |
|
|
| |
160 |
|
|
|- < compute cost_hmean > |
161 |
|
|
| CALL COST_SSH_MEAN |
162 |
|
|
| |
163 |
|
|
|- < ... > |
164 |
|
|
|
165 |
|
|
\end{verbatim} |
166 |
|
|
|
167 |
heimbach |
1.2 |
\subsubsection{Weights and notes} |
168 |
heimbach |
1.1 |
|
169 |
|
|
\begin{itemize} |
170 |
|
|
% |
171 |
|
|
\item |
172 |
|
|
All data are currently masked to zero where less than 13 depth levels, |
173 |
|
|
mimicing no contribution for depth less than 1000m. |
174 |
|
|
% |
175 |
|
|
\item |
176 |
|
|
$cosphi$ term in weights is set to 1. |
177 |
|
|
% |
178 |
|
|
\item |
179 |
|
|
bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $ |
180 |
|
|
% |
181 |
|
|
\item |
182 |
|
|
T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values |
183 |
|
|
% |
184 |
|
|
\item |
185 |
|
|
$wp$ is read from {\tt geoid\_errfile} |
186 |
|
|
and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights} |
187 |
|
|
% |
188 |
|
|
\end{itemize} |
189 |
|
|
|
190 |
|
|
\paragraph{$wp$ for SSH mean misfit} ~ |
191 |
|
|
|
192 |
|
|
$1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\ |
193 |
|
|
$wp$ is read from {\tt geoid\_errfile}; |
194 |
|
|
|
195 |
|
|
\paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~ |
196 |
|
|
|
197 |
|
|
$1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\ |
198 |
|
|
% |
199 |
|
|
\begin{itemize} |
200 |
|
|
% |
201 |
|
|
\item |
202 |
|
|
$wtp$, $wers$ are read from single {\tt ssh\_errfile} |
203 |
|
|
% |
204 |
|
|
\item |
205 |
|
|
both are converted to meters and halved \\ |
206 |
|
|
$ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $ |
207 |
|
|
% |
208 |
|
|
\item |
209 |
|
|
ERS error is set to T/P error + 5cm \\ |
210 |
|
|
$ wers \, = \, wtp \, + 0.5cm $ |
211 |
|
|
% |
212 |
|
|
\end{itemize} |
213 |
|
|
|
214 |
|
|
\subsubsection{Cost diagnostics} |
215 |
|
|
|
216 |
|
|
\begin{itemize} |
217 |
|
|
% |
218 |
|
|
\item |
219 |
|
|
Map out $ cost\_ssh\_mean(i,j) $ |
220 |
|
|
% |
221 |
|
|
\item |
222 |
|
|
Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e. |
223 |
|
|
\[ |
224 |
|
|
\frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t) |
225 |
|
|
\] |
226 |
|
|
% |
227 |
|
|
\item |
228 |
|
|
sum over daily entries and plot daily average as function of time. i.e. |
229 |
|
|
\[ |
230 |
|
|
\frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t) |
231 |
|
|
\] |
232 |
|
|
\end{itemize} |
233 |
heimbach |
1.2 |
|
234 |
|
|
\subsection{Hydrographic constraints} |
235 |
|
|
|
236 |
|
|
Observation of temperature and salinity from various sources are |
237 |
|
|
used to constrain the model. These are: |
238 |
|
|
% |
239 |
|
|
\begin{enumerate} |
240 |
|
|
% |
241 |
|
|
\item |
242 |
|
|
CTD obs. for $T$, $S$ from various WOCE sections |
243 |
|
|
% |
244 |
|
|
\item |
245 |
|
|
XBT obs. for $T$ |
246 |
|
|
% |
247 |
|
|
\item |
248 |
|
|
Sea surface temperature (SST) and salinity (SSS) from |
249 |
|
|
Reynolds et al. (???) |
250 |
|
|
% |
251 |
|
|
\item |
252 |
|
|
$T$, $S$ from ARGO floats |
253 |
|
|
% |
254 |
|
|
\item |
255 |
|
|
$T$, $S$ from fields from Levitus (???) |
256 |
|
|
% |
257 |
|
|
\end{enumerate} |
258 |
|
|
|
259 |
|
|
\subsubsection{Input fields} |
260 |
|
|
~ |
261 |
|
|
|
262 |
|
|
\begin{table}[h!] |
263 |
|
|
\begin{center} |
264 |
|
|
\begin{tabular}{lllc} |
265 |
|
|
\hline \hline |
266 |
|
|
~&~&~&~\\ |
267 |
|
|
field & file name & deccription & unit \\ |
268 |
|
|
~&~&~&~\\ |
269 |
|
|
\hline |
270 |
|
|
~&~&~&~\\ |
271 |
|
|
{\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature & |
272 |
|
|
[$^{\circ}$C] \\ |
273 |
|
|
{\it sbar} & {\tt sbarfile} & monthly model mean salinity & |
274 |
|
|
[ppt] \\ |
275 |
|
|
{\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature & |
276 |
|
|
[$^{\circ}$C] \\ |
277 |
|
|
{\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity & |
278 |
|
|
[ppt] \\ |
279 |
|
|
{\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature & |
280 |
|
|
[$^{\circ}$C] \\ |
281 |
|
|
{\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity & |
282 |
|
|
[ppt] \\ |
283 |
|
|
{\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature & |
284 |
|
|
[$^{\circ}$C] \\ |
285 |
|
|
{\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST & |
286 |
|
|
[$^{\circ}$C] \\ |
287 |
|
|
{\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS & |
288 |
|
|
[ppt] \\ |
289 |
|
|
{\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature & |
290 |
|
|
[$^{\circ}$C] \\ |
291 |
|
|
{\it argosobs} & {\tt argosfile} & monthly ARGO salinity & |
292 |
|
|
[ppt] \\ |
293 |
|
|
{\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ & |
294 |
|
|
~ \\ |
295 |
heimbach |
1.3 |
{\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}$C] \\ |
296 |
|
|
{\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\ |
297 |
heimbach |
1.2 |
~&~&~&~\\ |
298 |
|
|
\hline \hline |
299 |
|
|
\end{tabular} |
300 |
|
|
\end{center} |
301 |
|
|
\end{table} |
302 |
|
|
|
303 |
|
|
\subsubsection{XBT data} |
304 |
|
|
|
305 |
|
|
\begin{equation} |
306 |
|
|
\begin{split} |
307 |
heimbach |
1.3 |
cost\_xbt\_t(i,j,k) & = \, |
308 |
|
|
\left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec} |
309 |
|
|
\left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k) |
310 |
heimbach |
1.2 |
\\ |
311 |
|
|
\end{split} |
312 |
|
|
\end{equation} |
313 |
|
|
|
314 |
|
|
\subsubsection{WOCE CTD data} |
315 |
|
|
|
316 |
|
|
\begin{equation} |
317 |
|
|
\begin{split} |
318 |
heimbach |
1.3 |
cost\_ctd\_t(i,j,k) & = \, |
319 |
|
|
\left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec} |
320 |
|
|
\left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k) |
321 |
heimbach |
1.2 |
\\ |
322 |
heimbach |
1.3 |
cost\_ctd\_s(i,j,k) & = \, |
323 |
|
|
\left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec} |
324 |
|
|
\left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k) |
325 |
heimbach |
1.2 |
\\ |
326 |
|
|
\end{split} |
327 |
|
|
\end{equation} |
328 |
|
|
|
329 |
|
|
\subsubsection{ARGO float data} |
330 |
|
|
|
331 |
|
|
\begin{equation} |
332 |
|
|
\begin{split} |
333 |
heimbach |
1.3 |
cost\_argo\_t(i,j,k) & = \, |
334 |
|
|
\left[ \, \frac{fac \cdot ratio}{wti^2 + wvar^2} \sum_{\tau=1}^{nMonsRec} |
335 |
|
|
\left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k) |
336 |
heimbach |
1.2 |
\\ |
337 |
heimbach |
1.3 |
cost\_argo\_s(i,j,k) & = \, |
338 |
|
|
\left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec} |
339 |
|
|
\left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k) |
340 |
heimbach |
1.2 |
\\ |
341 |
|
|
\end{split} |
342 |
|
|
\end{equation} |
343 |
|
|
|
344 |
|
|
\subsubsection{Reynolds sea surface T, S data} |
345 |
|
|
|
346 |
|
|
\begin{equation} |
347 |
|
|
\begin{split} |
348 |
|
|
cost\_sst(i,j) & = \, |
349 |
heimbach |
1.3 |
\left[ \, wsst \sum_{\tau=1}^{nMonsRec} |
350 |
heimbach |
1.2 |
\left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j) |
351 |
|
|
\\ |
352 |
|
|
cost\_sss(i,j) & = \, |
353 |
heimbach |
1.3 |
\left[ \, wsss \sum_{\tau=1}^{nMonsRec} |
354 |
heimbach |
1.2 |
\left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j) |
355 |
|
|
\\ |
356 |
|
|
\end{split} |
357 |
|
|
\end{equation} |
358 |
|
|
|
359 |
|
|
\subsubsection{Levitus montly T, S climatological data} |
360 |
|
|
|
361 |
heimbach |
1.3 |
Model vs. data misfits are taken from $nYears$ monthly model means |
362 |
|
|
vs. Levitus monthly data. |
363 |
|
|
The description below is for potential temperature. |
364 |
|
|
Procedure for salinity is fully analogous. |
365 |
|
|
Spatial indices $(i,j,k)$ are omitted throughout. |
366 |
|
|
% |
367 |
|
|
\begin{enumerate} |
368 |
|
|
% |
369 |
|
|
\item |
370 |
|
|
Compute $nYears$ monthly model means for each month $imon$: |
371 |
|
|
\[ |
372 |
|
|
\overline{Tbar}(imon) \, = \, \frac{1}{nYears} |
373 |
|
|
\sum_{iyear=1}^{nYears} Tbar(iyear,imon) |
374 |
|
|
\] |
375 |
|
|
% |
376 |
|
|
\item |
377 |
|
|
Compute misfit: |
378 |
|
|
\[ |
379 |
|
|
cost\_theta(i,j,k) \, = \, \left[ |
380 |
|
|
\frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12} |
381 |
|
|
\left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k) |
382 |
|
|
\] |
383 |
|
|
|
384 |
|
|
\end{enumerate} |
385 |
|
|
|
386 |
heimbach |
1.2 |
|
387 |
|
|
\subsubsection{Weights and notes} |
388 |
|
|
|
389 |
|
|
\begin{itemize} |
390 |
|
|
% |
391 |
|
|
\item |
392 |
|
|
$T2\theta$ is an operator mapping in-situ to potential temperatures |
393 |
|
|
% |
394 |
|
|
\item |
395 |
|
|
Latitudinal weight not used: |
396 |
|
|
\[ |
397 |
|
|
cosphi(i,j) \, = \, 1 |
398 |
|
|
\] |
399 |
|
|
% |
400 |
|
|
\item |
401 |
heimbach |
1.3 |
$ fac \, = \, cosphi \cdot mask $ |
402 |
|
|
% |
403 |
|
|
\item |
404 |
|
|
Spatially {\it constant} weights: |
405 |
heimbach |
1.2 |
% |
406 |
|
|
\begin{enumerate} |
407 |
|
|
% |
408 |
|
|
\item |
409 |
heimbach |
1.3 |
Read standard deviation vertical profiles for $T$, $S$ \\ |
410 |
heimbach |
1.2 |
$ {\tt data\_errfile} \, \longrightarrow \, |
411 |
|
|
wti(k), \,\, wsi(k) $ \\ |
412 |
|
|
$ {\tt data\_errfile} \, \longrightarrow \, |
413 |
|
|
ratio = 0.25 = \left( \frac{1}{2} \right)^2 $ |
414 |
|
|
% |
415 |
|
|
\item |
416 |
|
|
Take inverse squares: |
417 |
|
|
\[ |
418 |
|
|
\begin{split} |
419 |
heimbach |
1.3 |
wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\ |
420 |
|
|
wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\ |
421 |
heimbach |
1.2 |
\end{split} |
422 |
|
|
\] |
423 |
|
|
% |
424 |
|
|
\end{enumerate} |
425 |
|
|
% |
426 |
|
|
\item |
427 |
heimbach |
1.3 |
Spatially {\it varying} weights: |
428 |
heimbach |
1.2 |
% |
429 |
|
|
\begin{enumerate} |
430 |
|
|
% |
431 |
|
|
\item |
432 |
|
|
Read standard deviation fields \\ |
433 |
heimbach |
1.3 |
$ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\ |
434 |
|
|
$ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\ |
435 |
heimbach |
1.2 |
% |
436 |
|
|
\item |
437 |
|
|
Weights are combination of spatially constant and varying parts: |
438 |
|
|
\[ |
439 |
|
|
\begin{split} |
440 |
|
|
wtheta2(i,j,k) & = \, \frac{ratio} |
441 |
heimbach |
1.3 |
{wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\ |
442 |
heimbach |
1.2 |
wsalt2(i,j,k) & = \, |
443 |
|
|
\frac{ratio} |
444 |
heimbach |
1.3 |
{wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\ |
445 |
heimbach |
1.2 |
\end{split} |
446 |
|
|
\] |
447 |
|
|
% |
448 |
|
|
\end{enumerate} |
449 |
|
|
% |
450 |
|
|
\item |
451 |
|
|
Sea surface $T$, $S$ weights: |
452 |
|
|
\begin{itemize} |
453 |
|
|
\item |
454 |
heimbach |
1.3 |
SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant |
455 |
heimbach |
1.2 |
\item |
456 |
heimbach |
1.3 |
SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying |
457 |
heimbach |
1.2 |
\end{itemize} |
458 |
|
|
(Why this difference? I don't know.) |
459 |
|
|
% |
460 |
|
|
\end{itemize} |
461 |
|
|
|
462 |
|
|
|
463 |
|
|
\subsubsection{Diagnostics} |
464 |
|
|
|
465 |
|
|
\begin{itemize} |
466 |
|
|
% |
467 |
|
|
\item |
468 |
heimbach |
1.3 |
Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$. |
469 |
heimbach |
1.2 |
|
470 |
|
|
% |
471 |
|
|
\end{itemize} |
472 |
|
|
|