/[MITgcm]/manual/s_ecco/text/ecco_costfunction.tex
ViewVC logotype

Annotation of /manual/s_ecco/text/ecco_costfunction.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:19 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.7: +22 -22 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 heimbach 1.1 \section{The ECCO state estimation cost function DRAFT!!!
2     \label{sectioneccocost}}
3 edhill 1.4 \begin{rawhtml}
4     <!-- CMIREDIR:ecco_cost: -->
5     \end{rawhtml}
6 heimbach 1.1
7 heimbach 1.6 Author: Patrick Heimbach
8    
9 heimbach 1.1 The current ECCO state estimation covers an $nYears = 11$ year
10     model trajectory.
11     A variety of data sets enter a least squares cost function,
12     in addition to penalty terms which constrain deviations
13     of control variables beyound their a priori errors.
14    
15     \subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry}
16    
17     Altimetric SSH contributions from T/P and ERS-1/2 are four-fold:
18     %
19     \begin{enumerate}
20     %
21     \item
22     an $nYears$ time mean SSH misfit between
23     model and T/P
24     %
25     \item
26     daily SSH anomaly misfits between T/P and model
27     %
28     \item
29     daily SSH anomaly misfits between ERS-1/2 and model
30     %
31     \item
32     daily absolute SSH misfit between T/P and model,
33     weighted by the full geoid error covariance.
34     %
35     \end{enumerate}
36    
37     \subsubsection{Input fields}
38     ~
39    
40 jmc 1.8 \begin{table}[!ht]
41 heimbach 1.1 \begin{center}
42     \begin{tabular}{lllc}
43     \hline \hline
44     ~&~&~&~\\
45     field & file name & deccription & unit \\
46     ~&~&~&~\\
47     \hline
48     ~&~&~&~\\
49     {\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\
50     {\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\
51     {\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\
52     {\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\
53     {\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\
54     {\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\
55     ~&~&~&~\\
56     \hline \hline
57     \end{tabular}
58     \end{center}
59     \end{table}
60    
61    
62 heimbach 1.2 \subsubsection{\textit{\textbf{nYears}} time mean SSH misfit}
63 heimbach 1.1
64     \begin{enumerate}
65     %
66     \item
67 heimbach 1.3 Compute $nYears$ model mean spatial distribution
68 heimbach 1.1 %
69     \begin{equation}
70     psmean(i,j)\, =\,
71     \frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec}
72     psbar(i,j)
73     \end{equation}
74     %
75     \item
76 heimbach 1.3 Compute global offset between $nYears$ model and T/P mean:
77 heimbach 1.1 %
78     \begin{equation}
79 jmc 1.8 \begin{aligned}
80 heimbach 1.1 offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\
81     ~ & = \, \frac{1}{normaliz.} \sum_{i,j}
82     \left\{ tpmean(i,j) \, - \, psmean(i,j) \right\}
83     \cdot cosphi(i,j) \cdot tpmeanmask(i,j)
84 jmc 1.8 \end{aligned}
85 heimbach 1.1 \end{equation}
86     %
87     \item
88     Misfits are computed w.r.t. global $offset$.
89     \\
90     First spatial distribution:
91     %
92     \begin{equation}
93 jmc 1.8 \begin{aligned}
94 heimbach 1.1 cost\_ssh\_mean(i,j) & = \,
95     \frac{1}{wp^2} \left\{ \,
96     \left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \,
97     \left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\
98     ~ & = \, \frac{1}{wp^2} \left\{ \,
99     psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2
100 jmc 1.8 \end{aligned}
101 heimbach 1.1 \end{equation}
102    
103     %
104     Finally, sum over all spatial entries:
105     \begin{equation}
106     \overline{cost\_ssh\_mean} \, = \,
107     \sum_{i,j} cost\_ssh\_mean(i,j)
108     \end{equation}
109    
110    
111    
112     \end{enumerate}
113    
114     \subsubsection{Misfit of daily SSH anomalies}
115    
116     Computation is same for T/P and ERS-1/2.
117     Here we write out computation for T/P.
118    
119     \begin{enumerate}
120     %
121     \item
122     Compute difference in anomalies:
123    
124     \begin{equation}
125 jmc 1.8 \begin{aligned}
126 heimbach 1.1 cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \,
127     \left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \,
128     \left[ \, tpobs(i,j,t) \, \right] \,
129     \right\}^2
130 jmc 1.8 \end{aligned}
131 heimbach 1.1 \end{equation}
132     %
133     where $t$ denotes time (day) index, and
134     where it is assumed that $ nYears$ mean T/P spatial distribution
135     $tpmean(i,j)$ has already been removed from data $tpobs(i,j)$!
136    
137     \item
138     Sum over all spatial points and all times
139    
140     \begin{equation}
141 jmc 1.8 \begin{aligned}
142 heimbach 1.1 \overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j}
143     cost\_ssh\_anom(i,j,t)
144 jmc 1.8 \end{aligned}
145 heimbach 1.1 \end{equation}
146    
147     \end{enumerate}
148    
149     \subsubsection{Flow chart}
150    
151     \begin{verbatim}
152    
153     cost_ssh
154     |
155     |- < compute nYears model mean >
156     |
157     |- < read nYears T/P mean >
158     | CALL COST_READTOPEXMEAN
159     |
160     |- < compute global T/P vs. model offset >
161     |
162     |- < compute cost_hmean >
163     | CALL COST_SSH_MEAN
164     |
165     |- < ... >
166    
167     \end{verbatim}
168    
169 heimbach 1.2 \subsubsection{Weights and notes}
170 heimbach 1.1
171     \begin{itemize}
172     %
173     \item
174     All data are currently masked to zero where less than 13 depth levels,
175     mimicing no contribution for depth less than 1000m.
176     %
177     \item
178     $cosphi$ term in weights is set to 1.
179     %
180     \item
181     bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $
182     %
183     \item
184     T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values
185     %
186     \item
187     $wp$ is read from {\tt geoid\_errfile}
188     and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}
189     %
190     \end{itemize}
191    
192     \paragraph{$wp$ for SSH mean misfit} ~
193    
194     $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\
195     $wp$ is read from {\tt geoid\_errfile};
196    
197     \paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~
198    
199     $1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\
200     %
201     \begin{itemize}
202     %
203     \item
204     $wtp$, $wers$ are read from single {\tt ssh\_errfile}
205     %
206     \item
207     both are converted to meters and halved \\
208     $ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $
209     %
210     \item
211     ERS error is set to T/P error + 5cm \\
212     $ wers \, = \, wtp \, + 0.5cm $
213     %
214     \end{itemize}
215    
216     \subsubsection{Cost diagnostics}
217    
218     \begin{itemize}
219     %
220     \item
221     Map out $ cost\_ssh\_mean(i,j) $
222     %
223     \item
224     Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e.
225     \[
226     \frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t)
227     \]
228     %
229     \item
230     sum over daily entries and plot daily average as function of time. i.e.
231     \[
232     \frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t)
233     \]
234     \end{itemize}
235 heimbach 1.2
236     \subsection{Hydrographic constraints}
237    
238     Observation of temperature and salinity from various sources are
239     used to constrain the model. These are:
240     %
241     \begin{enumerate}
242     %
243     \item
244     CTD obs. for $T$, $S$ from various WOCE sections
245     %
246     \item
247     XBT obs. for $T$
248     %
249     \item
250     Sea surface temperature (SST) and salinity (SSS) from
251     Reynolds et al. (???)
252     %
253     \item
254     $T$, $S$ from ARGO floats
255     %
256     \item
257     $T$, $S$ from fields from Levitus (???)
258     %
259     \end{enumerate}
260    
261     \subsubsection{Input fields}
262     ~
263    
264 jmc 1.8 \begin{table}[!ht]
265 heimbach 1.2 \begin{center}
266     \begin{tabular}{lllc}
267     \hline \hline
268     ~&~&~&~\\
269     field & file name & deccription & unit \\
270     ~&~&~&~\\
271     \hline
272     ~&~&~&~\\
273     {\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature &
274 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
275 heimbach 1.2 {\it sbar} & {\tt sbarfile} & monthly model mean salinity &
276     [ppt] \\
277     {\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature &
278 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
279 heimbach 1.2 {\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity &
280     [ppt] \\
281     {\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature &
282 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
283 heimbach 1.2 {\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity &
284     [ppt] \\
285     {\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature &
286 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
287 heimbach 1.2 {\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST &
288 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
289 heimbach 1.2 {\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS &
290     [ppt] \\
291     {\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature &
292 edhill 1.7 [$^{\circ}\mathrm{C}$] \\
293 heimbach 1.2 {\it argosobs} & {\tt argosfile} & monthly ARGO salinity &
294     [ppt] \\
295     {\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ &
296     ~ \\
297 edhill 1.7 {\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}\mathrm{C}$] \\
298 heimbach 1.3 {\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\
299 heimbach 1.2 ~&~&~&~\\
300     \hline \hline
301     \end{tabular}
302     \end{center}
303     \end{table}
304    
305     \subsubsection{XBT data}
306    
307     \begin{equation}
308 jmc 1.8 \begin{aligned}
309 heimbach 1.3 cost\_xbt\_t(i,j,k) & = \,
310     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
311     \left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k)
312 heimbach 1.2 \\
313 jmc 1.8 \end{aligned}
314 heimbach 1.2 \end{equation}
315    
316     \subsubsection{WOCE CTD data}
317    
318     \begin{equation}
319 jmc 1.8 \begin{aligned}
320 heimbach 1.3 cost\_ctd\_t(i,j,k) & = \,
321     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
322     \left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k)
323 heimbach 1.2 \\
324 heimbach 1.3 cost\_ctd\_s(i,j,k) & = \,
325     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
326     \left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k)
327 heimbach 1.2 \\
328 jmc 1.8 \end{aligned}
329 heimbach 1.2 \end{equation}
330    
331     \subsubsection{ARGO float data}
332    
333     \begin{equation}
334 jmc 1.8 \begin{aligned}
335 heimbach 1.3 cost\_argo\_t(i,j,k) & = \,
336 heimbach 1.5 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
337 heimbach 1.3 \left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k)
338 heimbach 1.2 \\
339 heimbach 1.3 cost\_argo\_s(i,j,k) & = \,
340     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
341     \left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k)
342 heimbach 1.2 \\
343 jmc 1.8 \end{aligned}
344 heimbach 1.2 \end{equation}
345    
346     \subsubsection{Reynolds sea surface T, S data}
347    
348     \begin{equation}
349 jmc 1.8 \begin{aligned}
350 heimbach 1.2 cost\_sst(i,j) & = \,
351 heimbach 1.3 \left[ \, wsst \sum_{\tau=1}^{nMonsRec}
352 heimbach 1.2 \left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j)
353     \\
354     cost\_sss(i,j) & = \,
355 heimbach 1.3 \left[ \, wsss \sum_{\tau=1}^{nMonsRec}
356 heimbach 1.2 \left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j)
357     \\
358 jmc 1.8 \end{aligned}
359 heimbach 1.2 \end{equation}
360    
361     \subsubsection{Levitus montly T, S climatological data}
362    
363 heimbach 1.3 Model vs. data misfits are taken from $nYears$ monthly model means
364     vs. Levitus monthly data.
365     The description below is for potential temperature.
366     Procedure for salinity is fully analogous.
367     Spatial indices $(i,j,k)$ are omitted throughout.
368     %
369     \begin{enumerate}
370     %
371     \item
372     Compute $nYears$ monthly model means for each month $imon$:
373     \[
374     \overline{Tbar}(imon) \, = \, \frac{1}{nYears}
375     \sum_{iyear=1}^{nYears} Tbar(iyear,imon)
376     \]
377     %
378     \item
379     Compute misfit:
380     \[
381     cost\_theta(i,j,k) \, = \, \left[
382     \frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12}
383     \left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k)
384     \]
385    
386     \end{enumerate}
387    
388 heimbach 1.2
389     \subsubsection{Weights and notes}
390    
391     \begin{itemize}
392     %
393     \item
394     $T2\theta$ is an operator mapping in-situ to potential temperatures
395     %
396     \item
397     Latitudinal weight not used:
398     \[
399     cosphi(i,j) \, = \, 1
400     \]
401     %
402     \item
403 heimbach 1.3 $ fac \, = \, cosphi \cdot mask $
404     %
405     \item
406     Spatially {\it constant} weights:
407 heimbach 1.2 %
408     \begin{enumerate}
409     %
410     \item
411 heimbach 1.3 Read standard deviation vertical profiles for $T$, $S$ \\
412 heimbach 1.2 $ {\tt data\_errfile} \, \longrightarrow \,
413     wti(k), \,\, wsi(k) $ \\
414     $ {\tt data\_errfile} \, \longrightarrow \,
415     ratio = 0.25 = \left( \frac{1}{2} \right)^2 $
416     %
417     \item
418     Take inverse squares:
419     \[
420 jmc 1.8 \begin{aligned}
421 heimbach 1.3 wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\
422     wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\
423 jmc 1.8 \end{aligned}
424 heimbach 1.2 \]
425     %
426     \end{enumerate}
427     %
428     \item
429 heimbach 1.3 Spatially {\it varying} weights:
430 heimbach 1.2 %
431     \begin{enumerate}
432     %
433     \item
434     Read standard deviation fields \\
435 heimbach 1.3 $ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\
436     $ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\
437 heimbach 1.2 %
438     \item
439     Weights are combination of spatially constant and varying parts:
440     \[
441 jmc 1.8 \begin{aligned}
442 heimbach 1.2 wtheta2(i,j,k) & = \, \frac{ratio}
443 heimbach 1.3 {wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\
444 heimbach 1.2 wsalt2(i,j,k) & = \,
445     \frac{ratio}
446 heimbach 1.3 {wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\
447 jmc 1.8 \end{aligned}
448 heimbach 1.2 \]
449     %
450     \end{enumerate}
451     %
452     \item
453     Sea surface $T$, $S$ weights:
454     \begin{itemize}
455     \item
456 heimbach 1.3 SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant
457 heimbach 1.2 \item
458 heimbach 1.3 SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying
459 heimbach 1.2 \end{itemize}
460     (Why this difference? I don't know.)
461     %
462     \end{itemize}
463    
464    
465     \subsubsection{Diagnostics}
466    
467     \begin{itemize}
468     %
469     \item
470 heimbach 1.3 Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$.
471 heimbach 1.2
472     %
473     \end{itemize}
474    

  ViewVC Help
Powered by ViewVC 1.1.22