/[MITgcm]/manual/s_ecco/text/ecco_costfunction.tex
ViewVC logotype

Contents of /manual/s_ecco/text/ecco_costfunction.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (show annotations) (download) (as text)
Mon Aug 1 22:31:36 2005 UTC (19 years, 11 months ago) by heimbach
Branch: MAIN
Changes since 1.5: +2 -0 lines
File MIME type: application/x-tex
Updating (mostly kpp.tex, and corrections to exf.tex)

1 \section{The ECCO state estimation cost function DRAFT!!!
2 \label{sectioneccocost}}
3 \begin{rawhtml}
4 <!-- CMIREDIR:ecco_cost: -->
5 \end{rawhtml}
6
7 Author: Patrick Heimbach
8
9 The current ECCO state estimation covers an $nYears = 11$ year
10 model trajectory.
11 A variety of data sets enter a least squares cost function,
12 in addition to penalty terms which constrain deviations
13 of control variables beyound their a priori errors.
14
15 \subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry}
16
17 Altimetric SSH contributions from T/P and ERS-1/2 are four-fold:
18 %
19 \begin{enumerate}
20 %
21 \item
22 an $nYears$ time mean SSH misfit between
23 model and T/P
24 %
25 \item
26 daily SSH anomaly misfits between T/P and model
27 %
28 \item
29 daily SSH anomaly misfits between ERS-1/2 and model
30 %
31 \item
32 daily absolute SSH misfit between T/P and model,
33 weighted by the full geoid error covariance.
34 %
35 \end{enumerate}
36
37 \subsubsection{Input fields}
38 ~
39
40 \begin{table}[h!]
41 \begin{center}
42 \begin{tabular}{lllc}
43 \hline \hline
44 ~&~&~&~\\
45 field & file name & deccription & unit \\
46 ~&~&~&~\\
47 \hline
48 ~&~&~&~\\
49 {\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\
50 {\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\
51 {\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\
52 {\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\
53 {\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\
54 {\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\
55 ~&~&~&~\\
56 \hline \hline
57 \end{tabular}
58 \end{center}
59 \end{table}
60
61
62 \subsubsection{\textit{\textbf{nYears}} time mean SSH misfit}
63
64 \begin{enumerate}
65 %
66 \item
67 Compute $nYears$ model mean spatial distribution
68 %
69 \begin{equation}
70 psmean(i,j)\, =\,
71 \frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec}
72 psbar(i,j)
73 \end{equation}
74 %
75 \item
76 Compute global offset between $nYears$ model and T/P mean:
77 %
78 \begin{equation}
79 \begin{split}
80 offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\
81 ~ & = \, \frac{1}{normaliz.} \sum_{i,j}
82 \left\{ tpmean(i,j) \, - \, psmean(i,j) \right\}
83 \cdot cosphi(i,j) \cdot tpmeanmask(i,j)
84 \end{split}
85 \end{equation}
86 %
87 \item
88 Misfits are computed w.r.t. global $offset$.
89 \\
90 First spatial distribution:
91 %
92 \begin{equation}
93 \begin{split}
94 cost\_ssh\_mean(i,j) & = \,
95 \frac{1}{wp^2} \left\{ \,
96 \left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \,
97 \left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\
98 ~ & = \, \frac{1}{wp^2} \left\{ \,
99 psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2
100 \end{split}
101 \end{equation}
102
103 %
104 Finally, sum over all spatial entries:
105 \begin{equation}
106 \overline{cost\_ssh\_mean} \, = \,
107 \sum_{i,j} cost\_ssh\_mean(i,j)
108 \end{equation}
109
110
111
112 \end{enumerate}
113
114 \subsubsection{Misfit of daily SSH anomalies}
115
116 Computation is same for T/P and ERS-1/2.
117 Here we write out computation for T/P.
118
119 \begin{enumerate}
120 %
121 \item
122 Compute difference in anomalies:
123
124 \begin{equation}
125 \begin{split}
126 cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \,
127 \left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \,
128 \left[ \, tpobs(i,j,t) \, \right] \,
129 \right\}^2
130 \end{split}
131 \end{equation}
132 %
133 where $t$ denotes time (day) index, and
134 where it is assumed that $ nYears$ mean T/P spatial distribution
135 $tpmean(i,j)$ has already been removed from data $tpobs(i,j)$!
136
137 \item
138 Sum over all spatial points and all times
139
140 \begin{equation}
141 \begin{split}
142 \overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j}
143 cost\_ssh\_anom(i,j,t)
144 \end{split}
145 \end{equation}
146
147 \end{enumerate}
148
149 \subsubsection{Flow chart}
150
151 \begin{verbatim}
152
153 cost_ssh
154 |
155 |- < compute nYears model mean >
156 |
157 |- < read nYears T/P mean >
158 | CALL COST_READTOPEXMEAN
159 |
160 |- < compute global T/P vs. model offset >
161 |
162 |- < compute cost_hmean >
163 | CALL COST_SSH_MEAN
164 |
165 |- < ... >
166
167 \end{verbatim}
168
169 \subsubsection{Weights and notes}
170
171 \begin{itemize}
172 %
173 \item
174 All data are currently masked to zero where less than 13 depth levels,
175 mimicing no contribution for depth less than 1000m.
176 %
177 \item
178 $cosphi$ term in weights is set to 1.
179 %
180 \item
181 bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $
182 %
183 \item
184 T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values
185 %
186 \item
187 $wp$ is read from {\tt geoid\_errfile}
188 and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}
189 %
190 \end{itemize}
191
192 \paragraph{$wp$ for SSH mean misfit} ~
193
194 $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\
195 $wp$ is read from {\tt geoid\_errfile};
196
197 \paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~
198
199 $1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\
200 %
201 \begin{itemize}
202 %
203 \item
204 $wtp$, $wers$ are read from single {\tt ssh\_errfile}
205 %
206 \item
207 both are converted to meters and halved \\
208 $ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $
209 %
210 \item
211 ERS error is set to T/P error + 5cm \\
212 $ wers \, = \, wtp \, + 0.5cm $
213 %
214 \end{itemize}
215
216 \subsubsection{Cost diagnostics}
217
218 \begin{itemize}
219 %
220 \item
221 Map out $ cost\_ssh\_mean(i,j) $
222 %
223 \item
224 Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e.
225 \[
226 \frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t)
227 \]
228 %
229 \item
230 sum over daily entries and plot daily average as function of time. i.e.
231 \[
232 \frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t)
233 \]
234 \end{itemize}
235
236 \subsection{Hydrographic constraints}
237
238 Observation of temperature and salinity from various sources are
239 used to constrain the model. These are:
240 %
241 \begin{enumerate}
242 %
243 \item
244 CTD obs. for $T$, $S$ from various WOCE sections
245 %
246 \item
247 XBT obs. for $T$
248 %
249 \item
250 Sea surface temperature (SST) and salinity (SSS) from
251 Reynolds et al. (???)
252 %
253 \item
254 $T$, $S$ from ARGO floats
255 %
256 \item
257 $T$, $S$ from fields from Levitus (???)
258 %
259 \end{enumerate}
260
261 \subsubsection{Input fields}
262 ~
263
264 \begin{table}[h!]
265 \begin{center}
266 \begin{tabular}{lllc}
267 \hline \hline
268 ~&~&~&~\\
269 field & file name & deccription & unit \\
270 ~&~&~&~\\
271 \hline
272 ~&~&~&~\\
273 {\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature &
274 [$^{\circ}$C] \\
275 {\it sbar} & {\tt sbarfile} & monthly model mean salinity &
276 [ppt] \\
277 {\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature &
278 [$^{\circ}$C] \\
279 {\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity &
280 [ppt] \\
281 {\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature &
282 [$^{\circ}$C] \\
283 {\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity &
284 [ppt] \\
285 {\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature &
286 [$^{\circ}$C] \\
287 {\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST &
288 [$^{\circ}$C] \\
289 {\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS &
290 [ppt] \\
291 {\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature &
292 [$^{\circ}$C] \\
293 {\it argosobs} & {\tt argosfile} & monthly ARGO salinity &
294 [ppt] \\
295 {\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ &
296 ~ \\
297 {\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}$C] \\
298 {\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\
299 ~&~&~&~\\
300 \hline \hline
301 \end{tabular}
302 \end{center}
303 \end{table}
304
305 \subsubsection{XBT data}
306
307 \begin{equation}
308 \begin{split}
309 cost\_xbt\_t(i,j,k) & = \,
310 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
311 \left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k)
312 \\
313 \end{split}
314 \end{equation}
315
316 \subsubsection{WOCE CTD data}
317
318 \begin{equation}
319 \begin{split}
320 cost\_ctd\_t(i,j,k) & = \,
321 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
322 \left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k)
323 \\
324 cost\_ctd\_s(i,j,k) & = \,
325 \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
326 \left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k)
327 \\
328 \end{split}
329 \end{equation}
330
331 \subsubsection{ARGO float data}
332
333 \begin{equation}
334 \begin{split}
335 cost\_argo\_t(i,j,k) & = \,
336 \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
337 \left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k)
338 \\
339 cost\_argo\_s(i,j,k) & = \,
340 \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
341 \left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k)
342 \\
343 \end{split}
344 \end{equation}
345
346 \subsubsection{Reynolds sea surface T, S data}
347
348 \begin{equation}
349 \begin{split}
350 cost\_sst(i,j) & = \,
351 \left[ \, wsst \sum_{\tau=1}^{nMonsRec}
352 \left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j)
353 \\
354 cost\_sss(i,j) & = \,
355 \left[ \, wsss \sum_{\tau=1}^{nMonsRec}
356 \left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j)
357 \\
358 \end{split}
359 \end{equation}
360
361 \subsubsection{Levitus montly T, S climatological data}
362
363 Model vs. data misfits are taken from $nYears$ monthly model means
364 vs. Levitus monthly data.
365 The description below is for potential temperature.
366 Procedure for salinity is fully analogous.
367 Spatial indices $(i,j,k)$ are omitted throughout.
368 %
369 \begin{enumerate}
370 %
371 \item
372 Compute $nYears$ monthly model means for each month $imon$:
373 \[
374 \overline{Tbar}(imon) \, = \, \frac{1}{nYears}
375 \sum_{iyear=1}^{nYears} Tbar(iyear,imon)
376 \]
377 %
378 \item
379 Compute misfit:
380 \[
381 cost\_theta(i,j,k) \, = \, \left[
382 \frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12}
383 \left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k)
384 \]
385
386 \end{enumerate}
387
388
389 \subsubsection{Weights and notes}
390
391 \begin{itemize}
392 %
393 \item
394 $T2\theta$ is an operator mapping in-situ to potential temperatures
395 %
396 \item
397 Latitudinal weight not used:
398 \[
399 cosphi(i,j) \, = \, 1
400 \]
401 %
402 \item
403 $ fac \, = \, cosphi \cdot mask $
404 %
405 \item
406 Spatially {\it constant} weights:
407 %
408 \begin{enumerate}
409 %
410 \item
411 Read standard deviation vertical profiles for $T$, $S$ \\
412 $ {\tt data\_errfile} \, \longrightarrow \,
413 wti(k), \,\, wsi(k) $ \\
414 $ {\tt data\_errfile} \, \longrightarrow \,
415 ratio = 0.25 = \left( \frac{1}{2} \right)^2 $
416 %
417 \item
418 Take inverse squares:
419 \[
420 \begin{split}
421 wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\
422 wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\
423 \end{split}
424 \]
425 %
426 \end{enumerate}
427 %
428 \item
429 Spatially {\it varying} weights:
430 %
431 \begin{enumerate}
432 %
433 \item
434 Read standard deviation fields \\
435 $ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\
436 $ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\
437 %
438 \item
439 Weights are combination of spatially constant and varying parts:
440 \[
441 \begin{split}
442 wtheta2(i,j,k) & = \, \frac{ratio}
443 {wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\
444 wsalt2(i,j,k) & = \,
445 \frac{ratio}
446 {wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\
447 \end{split}
448 \]
449 %
450 \end{enumerate}
451 %
452 \item
453 Sea surface $T$, $S$ weights:
454 \begin{itemize}
455 \item
456 SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant
457 \item
458 SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying
459 \end{itemize}
460 (Why this difference? I don't know.)
461 %
462 \end{itemize}
463
464
465 \subsubsection{Diagnostics}
466
467 \begin{itemize}
468 %
469 \item
470 Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$.
471
472 %
473 \end{itemize}
474

  ViewVC Help
Powered by ViewVC 1.1.22