| 1 |
\section{The ECCO state estimation cost function DRAFT!!! |
\section{The ECCO state estimation cost function DRAFT!!! |
| 2 |
\label{sectioneccocost}} |
\label{sectioneccocost}} |
| 3 |
|
\begin{rawhtml} |
| 4 |
|
<!-- CMIREDIR:ecco_cost: --> |
| 5 |
|
\end{rawhtml} |
| 6 |
|
|
| 7 |
|
Author: Patrick Heimbach |
| 8 |
|
|
| 9 |
The current ECCO state estimation covers an $nYears = 11$ year |
The current ECCO state estimation covers an $nYears = 11$ year |
| 10 |
model trajectory. |
model trajectory. |
| 64 |
\begin{enumerate} |
\begin{enumerate} |
| 65 |
% |
% |
| 66 |
\item |
\item |
| 67 |
Compute 11yr model mean spatial distribution |
Compute $nYears$ model mean spatial distribution |
| 68 |
% |
% |
| 69 |
\begin{equation} |
\begin{equation} |
| 70 |
psmean(i,j)\, =\, |
psmean(i,j)\, =\, |
| 73 |
\end{equation} |
\end{equation} |
| 74 |
% |
% |
| 75 |
\item |
\item |
| 76 |
Compute global offset between 11-yr model and T/P mean: |
Compute global offset between $nYears$ model and T/P mean: |
| 77 |
% |
% |
| 78 |
\begin{equation} |
\begin{equation} |
| 79 |
\begin{split} |
\begin{split} |
| 271 |
\hline |
\hline |
| 272 |
~&~&~&~\\ |
~&~&~&~\\ |
| 273 |
{\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature & |
{\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature & |
| 274 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 275 |
{\it sbar} & {\tt sbarfile} & monthly model mean salinity & |
{\it sbar} & {\tt sbarfile} & monthly model mean salinity & |
| 276 |
[ppt] \\ |
[ppt] \\ |
| 277 |
{\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature & |
{\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature & |
| 278 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 279 |
{\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity & |
{\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity & |
| 280 |
[ppt] \\ |
[ppt] \\ |
| 281 |
{\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature & |
{\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature & |
| 282 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 283 |
{\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity & |
{\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity & |
| 284 |
[ppt] \\ |
[ppt] \\ |
| 285 |
{\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature & |
{\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature & |
| 286 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 287 |
{\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST & |
{\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST & |
| 288 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 289 |
{\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS & |
{\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS & |
| 290 |
[ppt] \\ |
[ppt] \\ |
| 291 |
{\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature & |
{\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature & |
| 292 |
[$^{\circ}$C] \\ |
[$^{\circ}\mathrm{C}$] \\ |
| 293 |
{\it argosobs} & {\tt argosfile} & monthly ARGO salinity & |
{\it argosobs} & {\tt argosfile} & monthly ARGO salinity & |
| 294 |
[ppt] \\ |
[ppt] \\ |
| 295 |
{\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ & |
{\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ & |
| 296 |
~ \\ |
~ \\ |
| 297 |
{\it wtheta2} & {\tt temperrfile} & ~ & [$^{\circ}$C] \\ |
{\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}\mathrm{C}$] \\ |
| 298 |
{\it wsalt2} & {\tt salterrfile} & ~ & [ppt] \\ |
{\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\ |
| 299 |
~&~&~&~\\ |
~&~&~&~\\ |
| 300 |
\hline \hline |
\hline \hline |
| 301 |
\end{tabular} |
\end{tabular} |
| 306 |
|
|
| 307 |
\begin{equation} |
\begin{equation} |
| 308 |
\begin{split} |
\begin{split} |
| 309 |
cost\_xbt\_t(i,j) & = \, |
cost\_xbt\_t(i,j,k) & = \, |
| 310 |
\left[ \, \frac{cosphi \cdot mask}{wtheta2} \sum_{\tau=1}^{nMonsRec} |
\left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec} |
| 311 |
\left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j) |
\left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k) |
| 312 |
\\ |
\\ |
| 313 |
\end{split} |
\end{split} |
| 314 |
\end{equation} |
\end{equation} |
| 317 |
|
|
| 318 |
\begin{equation} |
\begin{equation} |
| 319 |
\begin{split} |
\begin{split} |
| 320 |
cost\_ctd\_t(i,j) & = \, |
cost\_ctd\_t(i,j,k) & = \, |
| 321 |
\left[ \, \frac{cosphi \cdot mask}{wtheta2} \sum_{\tau=1}^{nMonsRec} |
\left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec} |
| 322 |
\left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j) |
\left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k) |
| 323 |
\\ |
\\ |
| 324 |
cost\_ctd\_s(i,j) & = \, |
cost\_ctd\_s(i,j,k) & = \, |
| 325 |
\left[ \, \frac{cosphi \cdot mask}{wsalt2} \sum_{\tau=1}^{nMonsRec} |
\left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec} |
| 326 |
\left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j) |
\left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k) |
| 327 |
\\ |
\\ |
| 328 |
\end{split} |
\end{split} |
| 329 |
\end{equation} |
\end{equation} |
| 332 |
|
|
| 333 |
\begin{equation} |
\begin{equation} |
| 334 |
\begin{split} |
\begin{split} |
| 335 |
cost\_argo\_t(i,j) & = \, |
cost\_argo\_t(i,j,k) & = \, |
| 336 |
\left[ \, \frac{cosphi \cdot mask}{wtheta2} \sum_{\tau=1}^{nMonsRec} |
\left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec} |
| 337 |
\left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j) |
\left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k) |
| 338 |
\\ |
\\ |
| 339 |
cost\_argo\_s(i,j) & = \, |
cost\_argo\_s(i,j,k) & = \, |
| 340 |
\left[ \, \frac{cosphi \cdot mask}{wsalt2} \sum_{\tau=1}^{nMonsRec} |
\left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec} |
| 341 |
\left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j) |
\left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k) |
| 342 |
\\ |
\\ |
| 343 |
\end{split} |
\end{split} |
| 344 |
\end{equation} |
\end{equation} |
| 348 |
\begin{equation} |
\begin{equation} |
| 349 |
\begin{split} |
\begin{split} |
| 350 |
cost\_sst(i,j) & = \, |
cost\_sst(i,j) & = \, |
| 351 |
\left[ \, \frac{cosphi \cdot mask}{wsst} \sum_{\tau=1}^{nMonsRec} |
\left[ \, wsst \sum_{\tau=1}^{nMonsRec} |
| 352 |
\left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j) |
\left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j) |
| 353 |
\\ |
\\ |
| 354 |
cost\_sss(i,j) & = \, |
cost\_sss(i,j) & = \, |
| 355 |
\left[ \, \frac{cosphi \cdot mask}{wsss} \sum_{\tau=1}^{nMonsRec} |
\left[ \, wsss \sum_{\tau=1}^{nMonsRec} |
| 356 |
\left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j) |
\left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j) |
| 357 |
\\ |
\\ |
| 358 |
\end{split} |
\end{split} |
| 360 |
|
|
| 361 |
\subsubsection{Levitus montly T, S climatological data} |
\subsubsection{Levitus montly T, S climatological data} |
| 362 |
|
|
| 363 |
|
Model vs. data misfits are taken from $nYears$ monthly model means |
| 364 |
|
vs. Levitus monthly data. |
| 365 |
|
The description below is for potential temperature. |
| 366 |
|
Procedure for salinity is fully analogous. |
| 367 |
|
Spatial indices $(i,j,k)$ are omitted throughout. |
| 368 |
|
% |
| 369 |
|
\begin{enumerate} |
| 370 |
|
% |
| 371 |
|
\item |
| 372 |
|
Compute $nYears$ monthly model means for each month $imon$: |
| 373 |
|
\[ |
| 374 |
|
\overline{Tbar}(imon) \, = \, \frac{1}{nYears} |
| 375 |
|
\sum_{iyear=1}^{nYears} Tbar(iyear,imon) |
| 376 |
|
\] |
| 377 |
|
% |
| 378 |
|
\item |
| 379 |
|
Compute misfit: |
| 380 |
|
\[ |
| 381 |
|
cost\_theta(i,j,k) \, = \, \left[ |
| 382 |
|
\frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12} |
| 383 |
|
\left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k) |
| 384 |
|
\] |
| 385 |
|
|
| 386 |
|
\end{enumerate} |
| 387 |
|
|
| 388 |
|
|
| 389 |
\subsubsection{Weights and notes} |
\subsubsection{Weights and notes} |
| 390 |
|
|
| 400 |
\] |
\] |
| 401 |
% |
% |
| 402 |
\item |
\item |
| 403 |
Spatially constant weights: |
$ fac \, = \, cosphi \cdot mask $ |
| 404 |
|
% |
| 405 |
|
\item |
| 406 |
|
Spatially {\it constant} weights: |
| 407 |
% |
% |
| 408 |
\begin{enumerate} |
\begin{enumerate} |
| 409 |
% |
% |
| 410 |
\item |
\item |
| 411 |
Read standard deviation fields \\ |
Read standard deviation vertical profiles for $T$, $S$ \\ |
| 412 |
$ {\tt data\_errfile} \, \longrightarrow \, |
$ {\tt data\_errfile} \, \longrightarrow \, |
| 413 |
wti(k), \,\, wsi(k) $ \\ |
wti(k), \,\, wsi(k) $ \\ |
| 414 |
$ {\tt data\_errfile} \, \longrightarrow \, |
$ {\tt data\_errfile} \, \longrightarrow \, |
| 418 |
Take inverse squares: |
Take inverse squares: |
| 419 |
\[ |
\[ |
| 420 |
\begin{split} |
\begin{split} |
| 421 |
wtheta(k) & = \, \frac{ratio}{wti(k) \cdot wti(k)} \\ |
wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\ |
| 422 |
wsalt(k) & = \, \frac{ratio}{wsi(k) \cdot wsi(k)} \\ |
wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\ |
| 423 |
\end{split} |
\end{split} |
| 424 |
\] |
\] |
| 425 |
% |
% |
| 426 |
\end{enumerate} |
\end{enumerate} |
| 427 |
% |
% |
| 428 |
\item |
\item |
| 429 |
Spatially varying weights: |
Spatially {\it varying} weights: |
| 430 |
% |
% |
| 431 |
\begin{enumerate} |
\begin{enumerate} |
| 432 |
% |
% |
| 433 |
\item |
\item |
| 434 |
Read standard deviation fields \\ |
Read standard deviation fields \\ |
| 435 |
$ {\tt temperrfile} \, \longrightarrow \, wtheta2(i,j,k) $ \\ |
$ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\ |
| 436 |
$ {\tt salterrfile} \, \longrightarrow \, wsalt2(i,j,k) $ \\ |
$ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\ |
| 437 |
% |
% |
| 438 |
\item |
\item |
| 439 |
Weights are combination of spatially constant and varying parts: |
Weights are combination of spatially constant and varying parts: |
| 440 |
\[ |
\[ |
| 441 |
\begin{split} |
\begin{split} |
| 442 |
wtheta2(i,j,k) & = \, \frac{ratio} |
wtheta2(i,j,k) & = \, \frac{ratio} |
| 443 |
{wti(k) \cdot wti(k) \, + \,wtheta2(i,j,k) \cdot wtheta2(i,j,k) } \\ |
{wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\ |
| 444 |
wsalt2(i,j,k) & = \, |
wsalt2(i,j,k) & = \, |
| 445 |
\frac{ratio} |
\frac{ratio} |
| 446 |
{wsi(k) \cdot wsi(k) \, + \,wsalt2(i,j,k) \cdot wsalt2(i,j,k) } \\ |
{wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\ |
| 447 |
\end{split} |
\end{split} |
| 448 |
\] |
\] |
| 449 |
% |
% |
| 453 |
Sea surface $T$, $S$ weights: |
Sea surface $T$, $S$ weights: |
| 454 |
\begin{itemize} |
\begin{itemize} |
| 455 |
\item |
\item |
| 456 |
SST: $ wsst \, = \, wtheta(1)$: horizontally constant |
SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant |
| 457 |
\item |
\item |
| 458 |
SSS: $ wsss \, = \, wsalt2(i,j,1)$: horizontally varying |
SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying |
| 459 |
\end{itemize} |
\end{itemize} |
| 460 |
(Why this difference? I don't know.) |
(Why this difference? I don't know.) |
| 461 |
% |
% |
| 467 |
\begin{itemize} |
\begin{itemize} |
| 468 |
% |
% |
| 469 |
\item |
\item |
| 470 |
Map out $wtheta2(i,j)$, $wsalt2(i,j)$. |
Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$. |
| 471 |
|
|
| 472 |
% |
% |
| 473 |
\end{itemize} |
\end{itemize} |