/[MITgcm]/manual/s_ecco/text/ecco_costfunction.tex
ViewVC logotype

Annotation of /manual/s_ecco/text/ecco_costfunction.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Sat Oct 16 03:40:19 2004 UTC (20 years, 9 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.3: +3 -0 lines
File MIME type: application/x-tex
 o add HTML comments as a step towards "URL permanence" which will help
   solve:
   - stale links from the CMI web site
   - rotten indexing by bonniefy.pl
 o also cleanup a merge-mangle in diagnostics.tex

1 heimbach 1.1 \section{The ECCO state estimation cost function DRAFT!!!
2     \label{sectioneccocost}}
3 edhill 1.4 \begin{rawhtml}
4     <!-- CMIREDIR:ecco_cost: -->
5     \end{rawhtml}
6 heimbach 1.1
7     The current ECCO state estimation covers an $nYears = 11$ year
8     model trajectory.
9     A variety of data sets enter a least squares cost function,
10     in addition to penalty terms which constrain deviations
11     of control variables beyound their a priori errors.
12    
13     \subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry}
14    
15     Altimetric SSH contributions from T/P and ERS-1/2 are four-fold:
16     %
17     \begin{enumerate}
18     %
19     \item
20     an $nYears$ time mean SSH misfit between
21     model and T/P
22     %
23     \item
24     daily SSH anomaly misfits between T/P and model
25     %
26     \item
27     daily SSH anomaly misfits between ERS-1/2 and model
28     %
29     \item
30     daily absolute SSH misfit between T/P and model,
31     weighted by the full geoid error covariance.
32     %
33     \end{enumerate}
34    
35     \subsubsection{Input fields}
36     ~
37    
38     \begin{table}[h!]
39     \begin{center}
40     \begin{tabular}{lllc}
41     \hline \hline
42     ~&~&~&~\\
43     field & file name & deccription & unit \\
44     ~&~&~&~\\
45     \hline
46     ~&~&~&~\\
47     {\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\
48     {\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\
49     {\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\
50     {\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\
51     {\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\
52     {\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\
53     ~&~&~&~\\
54     \hline \hline
55     \end{tabular}
56     \end{center}
57     \end{table}
58    
59    
60 heimbach 1.2 \subsubsection{\textit{\textbf{nYears}} time mean SSH misfit}
61 heimbach 1.1
62     \begin{enumerate}
63     %
64     \item
65 heimbach 1.3 Compute $nYears$ model mean spatial distribution
66 heimbach 1.1 %
67     \begin{equation}
68     psmean(i,j)\, =\,
69     \frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec}
70     psbar(i,j)
71     \end{equation}
72     %
73     \item
74 heimbach 1.3 Compute global offset between $nYears$ model and T/P mean:
75 heimbach 1.1 %
76     \begin{equation}
77     \begin{split}
78     offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\
79     ~ & = \, \frac{1}{normaliz.} \sum_{i,j}
80     \left\{ tpmean(i,j) \, - \, psmean(i,j) \right\}
81     \cdot cosphi(i,j) \cdot tpmeanmask(i,j)
82     \end{split}
83     \end{equation}
84     %
85     \item
86     Misfits are computed w.r.t. global $offset$.
87     \\
88     First spatial distribution:
89     %
90     \begin{equation}
91     \begin{split}
92     cost\_ssh\_mean(i,j) & = \,
93     \frac{1}{wp^2} \left\{ \,
94     \left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \,
95     \left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\
96     ~ & = \, \frac{1}{wp^2} \left\{ \,
97     psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2
98     \end{split}
99     \end{equation}
100    
101     %
102     Finally, sum over all spatial entries:
103     \begin{equation}
104     \overline{cost\_ssh\_mean} \, = \,
105     \sum_{i,j} cost\_ssh\_mean(i,j)
106     \end{equation}
107    
108    
109    
110     \end{enumerate}
111    
112     \subsubsection{Misfit of daily SSH anomalies}
113    
114     Computation is same for T/P and ERS-1/2.
115     Here we write out computation for T/P.
116    
117     \begin{enumerate}
118     %
119     \item
120     Compute difference in anomalies:
121    
122     \begin{equation}
123     \begin{split}
124     cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \,
125     \left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \,
126     \left[ \, tpobs(i,j,t) \, \right] \,
127     \right\}^2
128     \end{split}
129     \end{equation}
130     %
131     where $t$ denotes time (day) index, and
132     where it is assumed that $ nYears$ mean T/P spatial distribution
133     $tpmean(i,j)$ has already been removed from data $tpobs(i,j)$!
134    
135     \item
136     Sum over all spatial points and all times
137    
138     \begin{equation}
139     \begin{split}
140     \overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j}
141     cost\_ssh\_anom(i,j,t)
142     \end{split}
143     \end{equation}
144    
145     \end{enumerate}
146    
147     \subsubsection{Flow chart}
148    
149     \begin{verbatim}
150    
151     cost_ssh
152     |
153     |- < compute nYears model mean >
154     |
155     |- < read nYears T/P mean >
156     | CALL COST_READTOPEXMEAN
157     |
158     |- < compute global T/P vs. model offset >
159     |
160     |- < compute cost_hmean >
161     | CALL COST_SSH_MEAN
162     |
163     |- < ... >
164    
165     \end{verbatim}
166    
167 heimbach 1.2 \subsubsection{Weights and notes}
168 heimbach 1.1
169     \begin{itemize}
170     %
171     \item
172     All data are currently masked to zero where less than 13 depth levels,
173     mimicing no contribution for depth less than 1000m.
174     %
175     \item
176     $cosphi$ term in weights is set to 1.
177     %
178     \item
179     bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $
180     %
181     \item
182     T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values
183     %
184     \item
185     $wp$ is read from {\tt geoid\_errfile}
186     and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}
187     %
188     \end{itemize}
189    
190     \paragraph{$wp$ for SSH mean misfit} ~
191    
192     $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\
193     $wp$ is read from {\tt geoid\_errfile};
194    
195     \paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~
196    
197     $1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\
198     %
199     \begin{itemize}
200     %
201     \item
202     $wtp$, $wers$ are read from single {\tt ssh\_errfile}
203     %
204     \item
205     both are converted to meters and halved \\
206     $ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $
207     %
208     \item
209     ERS error is set to T/P error + 5cm \\
210     $ wers \, = \, wtp \, + 0.5cm $
211     %
212     \end{itemize}
213    
214     \subsubsection{Cost diagnostics}
215    
216     \begin{itemize}
217     %
218     \item
219     Map out $ cost\_ssh\_mean(i,j) $
220     %
221     \item
222     Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e.
223     \[
224     \frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t)
225     \]
226     %
227     \item
228     sum over daily entries and plot daily average as function of time. i.e.
229     \[
230     \frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t)
231     \]
232     \end{itemize}
233 heimbach 1.2
234     \subsection{Hydrographic constraints}
235    
236     Observation of temperature and salinity from various sources are
237     used to constrain the model. These are:
238     %
239     \begin{enumerate}
240     %
241     \item
242     CTD obs. for $T$, $S$ from various WOCE sections
243     %
244     \item
245     XBT obs. for $T$
246     %
247     \item
248     Sea surface temperature (SST) and salinity (SSS) from
249     Reynolds et al. (???)
250     %
251     \item
252     $T$, $S$ from ARGO floats
253     %
254     \item
255     $T$, $S$ from fields from Levitus (???)
256     %
257     \end{enumerate}
258    
259     \subsubsection{Input fields}
260     ~
261    
262     \begin{table}[h!]
263     \begin{center}
264     \begin{tabular}{lllc}
265     \hline \hline
266     ~&~&~&~\\
267     field & file name & deccription & unit \\
268     ~&~&~&~\\
269     \hline
270     ~&~&~&~\\
271     {\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature &
272     [$^{\circ}$C] \\
273     {\it sbar} & {\tt sbarfile} & monthly model mean salinity &
274     [ppt] \\
275     {\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature &
276     [$^{\circ}$C] \\
277     {\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity &
278     [ppt] \\
279     {\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature &
280     [$^{\circ}$C] \\
281     {\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity &
282     [ppt] \\
283     {\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature &
284     [$^{\circ}$C] \\
285     {\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST &
286     [$^{\circ}$C] \\
287     {\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS &
288     [ppt] \\
289     {\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature &
290     [$^{\circ}$C] \\
291     {\it argosobs} & {\tt argosfile} & monthly ARGO salinity &
292     [ppt] \\
293     {\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ &
294     ~ \\
295 heimbach 1.3 {\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}$C] \\
296     {\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\
297 heimbach 1.2 ~&~&~&~\\
298     \hline \hline
299     \end{tabular}
300     \end{center}
301     \end{table}
302    
303     \subsubsection{XBT data}
304    
305     \begin{equation}
306     \begin{split}
307 heimbach 1.3 cost\_xbt\_t(i,j,k) & = \,
308     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
309     \left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k)
310 heimbach 1.2 \\
311     \end{split}
312     \end{equation}
313    
314     \subsubsection{WOCE CTD data}
315    
316     \begin{equation}
317     \begin{split}
318 heimbach 1.3 cost\_ctd\_t(i,j,k) & = \,
319     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
320     \left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k)
321 heimbach 1.2 \\
322 heimbach 1.3 cost\_ctd\_s(i,j,k) & = \,
323     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
324     \left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k)
325 heimbach 1.2 \\
326     \end{split}
327     \end{equation}
328    
329     \subsubsection{ARGO float data}
330    
331     \begin{equation}
332     \begin{split}
333 heimbach 1.3 cost\_argo\_t(i,j,k) & = \,
334     \left[ \, \frac{fac \cdot ratio}{wti^2 + wvar^2} \sum_{\tau=1}^{nMonsRec}
335     \left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k)
336 heimbach 1.2 \\
337 heimbach 1.3 cost\_argo\_s(i,j,k) & = \,
338     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
339     \left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k)
340 heimbach 1.2 \\
341     \end{split}
342     \end{equation}
343    
344     \subsubsection{Reynolds sea surface T, S data}
345    
346     \begin{equation}
347     \begin{split}
348     cost\_sst(i,j) & = \,
349 heimbach 1.3 \left[ \, wsst \sum_{\tau=1}^{nMonsRec}
350 heimbach 1.2 \left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j)
351     \\
352     cost\_sss(i,j) & = \,
353 heimbach 1.3 \left[ \, wsss \sum_{\tau=1}^{nMonsRec}
354 heimbach 1.2 \left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j)
355     \\
356     \end{split}
357     \end{equation}
358    
359     \subsubsection{Levitus montly T, S climatological data}
360    
361 heimbach 1.3 Model vs. data misfits are taken from $nYears$ monthly model means
362     vs. Levitus monthly data.
363     The description below is for potential temperature.
364     Procedure for salinity is fully analogous.
365     Spatial indices $(i,j,k)$ are omitted throughout.
366     %
367     \begin{enumerate}
368     %
369     \item
370     Compute $nYears$ monthly model means for each month $imon$:
371     \[
372     \overline{Tbar}(imon) \, = \, \frac{1}{nYears}
373     \sum_{iyear=1}^{nYears} Tbar(iyear,imon)
374     \]
375     %
376     \item
377     Compute misfit:
378     \[
379     cost\_theta(i,j,k) \, = \, \left[
380     \frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12}
381     \left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k)
382     \]
383    
384     \end{enumerate}
385    
386 heimbach 1.2
387     \subsubsection{Weights and notes}
388    
389     \begin{itemize}
390     %
391     \item
392     $T2\theta$ is an operator mapping in-situ to potential temperatures
393     %
394     \item
395     Latitudinal weight not used:
396     \[
397     cosphi(i,j) \, = \, 1
398     \]
399     %
400     \item
401 heimbach 1.3 $ fac \, = \, cosphi \cdot mask $
402     %
403     \item
404     Spatially {\it constant} weights:
405 heimbach 1.2 %
406     \begin{enumerate}
407     %
408     \item
409 heimbach 1.3 Read standard deviation vertical profiles for $T$, $S$ \\
410 heimbach 1.2 $ {\tt data\_errfile} \, \longrightarrow \,
411     wti(k), \,\, wsi(k) $ \\
412     $ {\tt data\_errfile} \, \longrightarrow \,
413     ratio = 0.25 = \left( \frac{1}{2} \right)^2 $
414     %
415     \item
416     Take inverse squares:
417     \[
418     \begin{split}
419 heimbach 1.3 wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\
420     wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\
421 heimbach 1.2 \end{split}
422     \]
423     %
424     \end{enumerate}
425     %
426     \item
427 heimbach 1.3 Spatially {\it varying} weights:
428 heimbach 1.2 %
429     \begin{enumerate}
430     %
431     \item
432     Read standard deviation fields \\
433 heimbach 1.3 $ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\
434     $ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\
435 heimbach 1.2 %
436     \item
437     Weights are combination of spatially constant and varying parts:
438     \[
439     \begin{split}
440     wtheta2(i,j,k) & = \, \frac{ratio}
441 heimbach 1.3 {wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\
442 heimbach 1.2 wsalt2(i,j,k) & = \,
443     \frac{ratio}
444 heimbach 1.3 {wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\
445 heimbach 1.2 \end{split}
446     \]
447     %
448     \end{enumerate}
449     %
450     \item
451     Sea surface $T$, $S$ weights:
452     \begin{itemize}
453     \item
454 heimbach 1.3 SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant
455 heimbach 1.2 \item
456 heimbach 1.3 SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying
457 heimbach 1.2 \end{itemize}
458     (Why this difference? I don't know.)
459     %
460     \end{itemize}
461    
462    
463     \subsubsection{Diagnostics}
464    
465     \begin{itemize}
466     %
467     \item
468 heimbach 1.3 Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$.
469 heimbach 1.2
470     %
471     \end{itemize}
472    

  ViewVC Help
Powered by ViewVC 1.1.22