/[MITgcm]/manual/s_ecco/text/ecco_costfunction.tex
ViewVC logotype

Annotation of /manual/s_ecco/text/ecco_costfunction.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Thu Jul 8 23:18:08 2004 UTC (21 years ago) by heimbach
Branch: MAIN
Changes since 1.2: +61 -33 lines
File MIME type: application/x-tex
updating.

1 heimbach 1.1 \section{The ECCO state estimation cost function DRAFT!!!
2     \label{sectioneccocost}}
3    
4     The current ECCO state estimation covers an $nYears = 11$ year
5     model trajectory.
6     A variety of data sets enter a least squares cost function,
7     in addition to penalty terms which constrain deviations
8     of control variables beyound their a priori errors.
9    
10     \subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry}
11    
12     Altimetric SSH contributions from T/P and ERS-1/2 are four-fold:
13     %
14     \begin{enumerate}
15     %
16     \item
17     an $nYears$ time mean SSH misfit between
18     model and T/P
19     %
20     \item
21     daily SSH anomaly misfits between T/P and model
22     %
23     \item
24     daily SSH anomaly misfits between ERS-1/2 and model
25     %
26     \item
27     daily absolute SSH misfit between T/P and model,
28     weighted by the full geoid error covariance.
29     %
30     \end{enumerate}
31    
32     \subsubsection{Input fields}
33     ~
34    
35     \begin{table}[h!]
36     \begin{center}
37     \begin{tabular}{lllc}
38     \hline \hline
39     ~&~&~&~\\
40     field & file name & deccription & unit \\
41     ~&~&~&~\\
42     \hline
43     ~&~&~&~\\
44     {\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\
45     {\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\
46     {\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\
47     {\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\
48     {\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\
49     {\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\
50     ~&~&~&~\\
51     \hline \hline
52     \end{tabular}
53     \end{center}
54     \end{table}
55    
56    
57 heimbach 1.2 \subsubsection{\textit{\textbf{nYears}} time mean SSH misfit}
58 heimbach 1.1
59     \begin{enumerate}
60     %
61     \item
62 heimbach 1.3 Compute $nYears$ model mean spatial distribution
63 heimbach 1.1 %
64     \begin{equation}
65     psmean(i,j)\, =\,
66     \frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec}
67     psbar(i,j)
68     \end{equation}
69     %
70     \item
71 heimbach 1.3 Compute global offset between $nYears$ model and T/P mean:
72 heimbach 1.1 %
73     \begin{equation}
74     \begin{split}
75     offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\
76     ~ & = \, \frac{1}{normaliz.} \sum_{i,j}
77     \left\{ tpmean(i,j) \, - \, psmean(i,j) \right\}
78     \cdot cosphi(i,j) \cdot tpmeanmask(i,j)
79     \end{split}
80     \end{equation}
81     %
82     \item
83     Misfits are computed w.r.t. global $offset$.
84     \\
85     First spatial distribution:
86     %
87     \begin{equation}
88     \begin{split}
89     cost\_ssh\_mean(i,j) & = \,
90     \frac{1}{wp^2} \left\{ \,
91     \left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \,
92     \left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\
93     ~ & = \, \frac{1}{wp^2} \left\{ \,
94     psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2
95     \end{split}
96     \end{equation}
97    
98     %
99     Finally, sum over all spatial entries:
100     \begin{equation}
101     \overline{cost\_ssh\_mean} \, = \,
102     \sum_{i,j} cost\_ssh\_mean(i,j)
103     \end{equation}
104    
105    
106    
107     \end{enumerate}
108    
109     \subsubsection{Misfit of daily SSH anomalies}
110    
111     Computation is same for T/P and ERS-1/2.
112     Here we write out computation for T/P.
113    
114     \begin{enumerate}
115     %
116     \item
117     Compute difference in anomalies:
118    
119     \begin{equation}
120     \begin{split}
121     cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \,
122     \left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \,
123     \left[ \, tpobs(i,j,t) \, \right] \,
124     \right\}^2
125     \end{split}
126     \end{equation}
127     %
128     where $t$ denotes time (day) index, and
129     where it is assumed that $ nYears$ mean T/P spatial distribution
130     $tpmean(i,j)$ has already been removed from data $tpobs(i,j)$!
131    
132     \item
133     Sum over all spatial points and all times
134    
135     \begin{equation}
136     \begin{split}
137     \overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j}
138     cost\_ssh\_anom(i,j,t)
139     \end{split}
140     \end{equation}
141    
142     \end{enumerate}
143    
144     \subsubsection{Flow chart}
145    
146     \begin{verbatim}
147    
148     cost_ssh
149     |
150     |- < compute nYears model mean >
151     |
152     |- < read nYears T/P mean >
153     | CALL COST_READTOPEXMEAN
154     |
155     |- < compute global T/P vs. model offset >
156     |
157     |- < compute cost_hmean >
158     | CALL COST_SSH_MEAN
159     |
160     |- < ... >
161    
162     \end{verbatim}
163    
164 heimbach 1.2 \subsubsection{Weights and notes}
165 heimbach 1.1
166     \begin{itemize}
167     %
168     \item
169     All data are currently masked to zero where less than 13 depth levels,
170     mimicing no contribution for depth less than 1000m.
171     %
172     \item
173     $cosphi$ term in weights is set to 1.
174     %
175     \item
176     bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $
177     %
178     \item
179     T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values
180     %
181     \item
182     $wp$ is read from {\tt geoid\_errfile}
183     and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}
184     %
185     \end{itemize}
186    
187     \paragraph{$wp$ for SSH mean misfit} ~
188    
189     $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\
190     $wp$ is read from {\tt geoid\_errfile};
191    
192     \paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~
193    
194     $1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\
195     %
196     \begin{itemize}
197     %
198     \item
199     $wtp$, $wers$ are read from single {\tt ssh\_errfile}
200     %
201     \item
202     both are converted to meters and halved \\
203     $ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $
204     %
205     \item
206     ERS error is set to T/P error + 5cm \\
207     $ wers \, = \, wtp \, + 0.5cm $
208     %
209     \end{itemize}
210    
211     \subsubsection{Cost diagnostics}
212    
213     \begin{itemize}
214     %
215     \item
216     Map out $ cost\_ssh\_mean(i,j) $
217     %
218     \item
219     Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e.
220     \[
221     \frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t)
222     \]
223     %
224     \item
225     sum over daily entries and plot daily average as function of time. i.e.
226     \[
227     \frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t)
228     \]
229     \end{itemize}
230 heimbach 1.2
231     \subsection{Hydrographic constraints}
232    
233     Observation of temperature and salinity from various sources are
234     used to constrain the model. These are:
235     %
236     \begin{enumerate}
237     %
238     \item
239     CTD obs. for $T$, $S$ from various WOCE sections
240     %
241     \item
242     XBT obs. for $T$
243     %
244     \item
245     Sea surface temperature (SST) and salinity (SSS) from
246     Reynolds et al. (???)
247     %
248     \item
249     $T$, $S$ from ARGO floats
250     %
251     \item
252     $T$, $S$ from fields from Levitus (???)
253     %
254     \end{enumerate}
255    
256     \subsubsection{Input fields}
257     ~
258    
259     \begin{table}[h!]
260     \begin{center}
261     \begin{tabular}{lllc}
262     \hline \hline
263     ~&~&~&~\\
264     field & file name & deccription & unit \\
265     ~&~&~&~\\
266     \hline
267     ~&~&~&~\\
268     {\it tbar} & {\tt tbarfile} & monthly model mean pot. temperature &
269     [$^{\circ}$C] \\
270     {\it sbar} & {\tt sbarfile} & monthly model mean salinity &
271     [ppt] \\
272     {\it tdat} & {\tt tdatfile} & monthly mean Levitus pot. temperature &
273     [$^{\circ}$C] \\
274     {\it sdat} & {\tt sdatfile} & monthly mean Levitus salinity &
275     [ppt] \\
276     {\it ctdtobs} & {\tt ctdtfile} & monthly WOCE CTD pot. temperature &
277     [$^{\circ}$C] \\
278     {\it ctdsobs} & {\tt ctdsfile} & monthly WOCE CTD salinity &
279     [ppt] \\
280     {\it xbtobs} & {\tt xbtfile} & monthly XBT in-situ(!) temperature &
281     [$^{\circ}$C] \\
282     {\it sstdat} & {\tt sstdatfile} & monthly Reynolds pot. SST &
283     [$^{\circ}$C] \\
284     {\it sssdat} & {\tt sssdatfile} & monthly Reynolds SSS &
285     [ppt] \\
286     {\it argotobs} & {\tt argotfile} & monthly ARGO in-situ(!) temperature &
287     [$^{\circ}$C] \\
288     {\it argosobs} & {\tt argosfile} & monthly ARGO salinity &
289     [ppt] \\
290     {\it wti, wsi} & {\tt data\_errfile} & vert. stdev. profile for $T$, $S$ &
291     ~ \\
292 heimbach 1.3 {\it wtvar} & {\tt temperrfile} & spatially varying stdev. & [$^{\circ}$C] \\
293     {\it wsvar} & {\tt salterrfile} & spatially varying stdev. & [ppt] \\
294 heimbach 1.2 ~&~&~&~\\
295     \hline \hline
296     \end{tabular}
297     \end{center}
298     \end{table}
299    
300     \subsubsection{XBT data}
301    
302     \begin{equation}
303     \begin{split}
304 heimbach 1.3 cost\_xbt\_t(i,j,k) & = \,
305     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
306     \left\{ Tbar(\tau) \, - \, T2\theta[xbtobs(\tau)] \right\}^2 \, \right](i,j,k)
307 heimbach 1.2 \\
308     \end{split}
309     \end{equation}
310    
311     \subsubsection{WOCE CTD data}
312    
313     \begin{equation}
314     \begin{split}
315 heimbach 1.3 cost\_ctd\_t(i,j,k) & = \,
316     \left[ \, \frac{fac \cdot ratio}{wti^2 + wtvar^2} \sum_{\tau=1}^{nMonsRec}
317     \left\{ Tbar(\tau) \, - \, ctdTobs(\tau) \right\}^2 \, \right](i,j,k)
318 heimbach 1.2 \\
319 heimbach 1.3 cost\_ctd\_s(i,j,k) & = \,
320     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
321     \left\{ Sbar(\tau) \, - \, ctdSobs(\tau) \right\}^2 \, \right](i,j,k)
322 heimbach 1.2 \\
323     \end{split}
324     \end{equation}
325    
326     \subsubsection{ARGO float data}
327    
328     \begin{equation}
329     \begin{split}
330 heimbach 1.3 cost\_argo\_t(i,j,k) & = \,
331     \left[ \, \frac{fac \cdot ratio}{wti^2 + wvar^2} \sum_{\tau=1}^{nMonsRec}
332     \left\{ Tbar(\tau) \, - \, T2\theta[argoTobs(\tau)] \right\}^2 \, \right](i,j,k)
333 heimbach 1.2 \\
334 heimbach 1.3 cost\_argo\_s(i,j,k) & = \,
335     \left[ \, \frac{fac \cdot ratio}{wsi^2 + wsvar^2} \sum_{\tau=1}^{nMonsRec}
336     \left\{ Sbar(\tau) \, - \, argoSobs(\tau) \right\}^2 \, \right](i,j,k)
337 heimbach 1.2 \\
338     \end{split}
339     \end{equation}
340    
341     \subsubsection{Reynolds sea surface T, S data}
342    
343     \begin{equation}
344     \begin{split}
345     cost\_sst(i,j) & = \,
346 heimbach 1.3 \left[ \, wsst \sum_{\tau=1}^{nMonsRec}
347 heimbach 1.2 \left\{ Tbar(\tau) \, - \, sstDat(\tau) \right\}^2 \, \right](i,j)
348     \\
349     cost\_sss(i,j) & = \,
350 heimbach 1.3 \left[ \, wsss \sum_{\tau=1}^{nMonsRec}
351 heimbach 1.2 \left\{ Sbar(\tau) \, - \, sssDat(\tau) \right\}^2 \, \right](i,j)
352     \\
353     \end{split}
354     \end{equation}
355    
356     \subsubsection{Levitus montly T, S climatological data}
357    
358 heimbach 1.3 Model vs. data misfits are taken from $nYears$ monthly model means
359     vs. Levitus monthly data.
360     The description below is for potential temperature.
361     Procedure for salinity is fully analogous.
362     Spatial indices $(i,j,k)$ are omitted throughout.
363     %
364     \begin{enumerate}
365     %
366     \item
367     Compute $nYears$ monthly model means for each month $imon$:
368     \[
369     \overline{Tbar}(imon) \, = \, \frac{1}{nYears}
370     \sum_{iyear=1}^{nYears} Tbar(iyear,imon)
371     \]
372     %
373     \item
374     Compute misfit:
375     \[
376     cost\_theta(i,j,k) \, = \, \left[
377     \frac{fac \cdot ratio}{wti^2} \sum_{imon=1}^{12}
378     \left\{ \overline{Tbar}(imon) \, - \, Tdat(imon) \right\}^2 \right] (i,j,k)
379     \]
380    
381     \end{enumerate}
382    
383 heimbach 1.2
384     \subsubsection{Weights and notes}
385    
386     \begin{itemize}
387     %
388     \item
389     $T2\theta$ is an operator mapping in-situ to potential temperatures
390     %
391     \item
392     Latitudinal weight not used:
393     \[
394     cosphi(i,j) \, = \, 1
395     \]
396     %
397     \item
398 heimbach 1.3 $ fac \, = \, cosphi \cdot mask $
399     %
400     \item
401     Spatially {\it constant} weights:
402 heimbach 1.2 %
403     \begin{enumerate}
404     %
405     \item
406 heimbach 1.3 Read standard deviation vertical profiles for $T$, $S$ \\
407 heimbach 1.2 $ {\tt data\_errfile} \, \longrightarrow \,
408     wti(k), \,\, wsi(k) $ \\
409     $ {\tt data\_errfile} \, \longrightarrow \,
410     ratio = 0.25 = \left( \frac{1}{2} \right)^2 $
411     %
412     \item
413     Take inverse squares:
414     \[
415     \begin{split}
416 heimbach 1.3 wtheta(k) & = \, \frac{ratio}{wti(k)^2} \\
417     wsalt(k) & = \, \frac{ratio}{wsi(k)^2} \\
418 heimbach 1.2 \end{split}
419     \]
420     %
421     \end{enumerate}
422     %
423     \item
424 heimbach 1.3 Spatially {\it varying} weights:
425 heimbach 1.2 %
426     \begin{enumerate}
427     %
428     \item
429     Read standard deviation fields \\
430 heimbach 1.3 $ {\tt temperrfile} \, \longrightarrow \, wtvar(i,j,k) $ \\
431     $ {\tt salterrfile} \, \longrightarrow \, wsvar(i,j,k) $ \\
432 heimbach 1.2 %
433     \item
434     Weights are combination of spatially constant and varying parts:
435     \[
436     \begin{split}
437     wtheta2(i,j,k) & = \, \frac{ratio}
438 heimbach 1.3 {wti(k)^2 \, + \,wtvar(i,j,k)^2 } \\
439 heimbach 1.2 wsalt2(i,j,k) & = \,
440     \frac{ratio}
441 heimbach 1.3 {wsi(k)^2 \, + \,wsvar(i,j,k)^2 } \\
442 heimbach 1.2 \end{split}
443     \]
444     %
445     \end{enumerate}
446     %
447     \item
448     Sea surface $T$, $S$ weights:
449     \begin{itemize}
450     \item
451 heimbach 1.3 SST: $ wsst \, = \, fac \cdot wtheta(1)$: horizontally constant
452 heimbach 1.2 \item
453 heimbach 1.3 SSS: $ wsss \, = \, fac \cdot wsalt2(i,j,1)$: horizontally varying
454 heimbach 1.2 \end{itemize}
455     (Why this difference? I don't know.)
456     %
457     \end{itemize}
458    
459    
460     \subsubsection{Diagnostics}
461    
462     \begin{itemize}
463     %
464     \item
465 heimbach 1.3 Map out $wtheta2(i,j,k)$, $wsalt2(i,j,k)$.
466 heimbach 1.2
467     %
468     \end{itemize}
469    

  ViewVC Help
Powered by ViewVC 1.1.22