1 |
heimbach |
1.1 |
\section{The ECCO state estimation cost function DRAFT!!! |
2 |
|
|
\label{sectioneccocost}} |
3 |
|
|
|
4 |
|
|
The current ECCO state estimation covers an $nYears = 11$ year |
5 |
|
|
model trajectory. |
6 |
|
|
A variety of data sets enter a least squares cost function, |
7 |
|
|
in addition to penalty terms which constrain deviations |
8 |
|
|
of control variables beyound their a priori errors. |
9 |
|
|
|
10 |
|
|
\subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry} |
11 |
|
|
|
12 |
|
|
Altimetric SSH contributions from T/P and ERS-1/2 are four-fold: |
13 |
|
|
% |
14 |
|
|
\begin{enumerate} |
15 |
|
|
% |
16 |
|
|
\item |
17 |
|
|
an $nYears$ time mean SSH misfit between |
18 |
|
|
model and T/P |
19 |
|
|
% |
20 |
|
|
\item |
21 |
|
|
daily SSH anomaly misfits between T/P and model |
22 |
|
|
% |
23 |
|
|
\item |
24 |
|
|
daily SSH anomaly misfits between ERS-1/2 and model |
25 |
|
|
% |
26 |
|
|
\item |
27 |
|
|
daily absolute SSH misfit between T/P and model, |
28 |
|
|
weighted by the full geoid error covariance. |
29 |
|
|
% |
30 |
|
|
\end{enumerate} |
31 |
|
|
|
32 |
|
|
\subsubsection{Input fields} |
33 |
|
|
~ |
34 |
|
|
|
35 |
|
|
\begin{table}[h!] |
36 |
|
|
\begin{center} |
37 |
|
|
\begin{tabular}{lllc} |
38 |
|
|
\hline \hline |
39 |
|
|
~&~&~&~\\ |
40 |
|
|
field & file name & deccription & unit \\ |
41 |
|
|
~&~&~&~\\ |
42 |
|
|
\hline |
43 |
|
|
~&~&~&~\\ |
44 |
|
|
{\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\ |
45 |
|
|
{\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\ |
46 |
|
|
{\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\ |
47 |
|
|
{\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\ |
48 |
|
|
{\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\ |
49 |
|
|
{\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\ |
50 |
|
|
~&~&~&~\\ |
51 |
|
|
\hline \hline |
52 |
|
|
\end{tabular} |
53 |
|
|
\end{center} |
54 |
|
|
\end{table} |
55 |
|
|
|
56 |
|
|
|
57 |
|
|
\subsubsection{$nYears$ time mean SSH misfit} |
58 |
|
|
|
59 |
|
|
\begin{enumerate} |
60 |
|
|
% |
61 |
|
|
\item |
62 |
|
|
Compute 11yr model mean spatial distribution |
63 |
|
|
% |
64 |
|
|
\begin{equation} |
65 |
|
|
psmean(i,j)\, =\, |
66 |
|
|
\frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec} |
67 |
|
|
psbar(i,j) |
68 |
|
|
\end{equation} |
69 |
|
|
% |
70 |
|
|
\item |
71 |
|
|
Compute global offset between 11-yr model and T/P mean: |
72 |
|
|
% |
73 |
|
|
\begin{equation} |
74 |
|
|
\begin{split} |
75 |
|
|
offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\ |
76 |
|
|
~ & = \, \frac{1}{normaliz.} \sum_{i,j} |
77 |
|
|
\left\{ tpmean(i,j) \, - \, psmean(i,j) \right\} |
78 |
|
|
\cdot cosphi(i,j) \cdot tpmeanmask(i,j) |
79 |
|
|
\end{split} |
80 |
|
|
\end{equation} |
81 |
|
|
% |
82 |
|
|
\item |
83 |
|
|
Misfits are computed w.r.t. global $offset$. |
84 |
|
|
\\ |
85 |
|
|
First spatial distribution: |
86 |
|
|
% |
87 |
|
|
\begin{equation} |
88 |
|
|
\begin{split} |
89 |
|
|
cost\_ssh\_mean(i,j) & = \, |
90 |
|
|
\frac{1}{wp^2} \left\{ \, |
91 |
|
|
\left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \, |
92 |
|
|
\left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\ |
93 |
|
|
~ & = \, \frac{1}{wp^2} \left\{ \, |
94 |
|
|
psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2 |
95 |
|
|
\end{split} |
96 |
|
|
\end{equation} |
97 |
|
|
|
98 |
|
|
% |
99 |
|
|
Finally, sum over all spatial entries: |
100 |
|
|
\begin{equation} |
101 |
|
|
\overline{cost\_ssh\_mean} \, = \, |
102 |
|
|
\sum_{i,j} cost\_ssh\_mean(i,j) |
103 |
|
|
\end{equation} |
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
\end{enumerate} |
108 |
|
|
|
109 |
|
|
\subsubsection{Misfit of daily SSH anomalies} |
110 |
|
|
|
111 |
|
|
Computation is same for T/P and ERS-1/2. |
112 |
|
|
Here we write out computation for T/P. |
113 |
|
|
|
114 |
|
|
\begin{enumerate} |
115 |
|
|
% |
116 |
|
|
\item |
117 |
|
|
Compute difference in anomalies: |
118 |
|
|
|
119 |
|
|
\begin{equation} |
120 |
|
|
\begin{split} |
121 |
|
|
cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \, |
122 |
|
|
\left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \, |
123 |
|
|
\left[ \, tpobs(i,j,t) \, \right] \, |
124 |
|
|
\right\}^2 |
125 |
|
|
\end{split} |
126 |
|
|
\end{equation} |
127 |
|
|
% |
128 |
|
|
where $t$ denotes time (day) index, and |
129 |
|
|
where it is assumed that $ nYears$ mean T/P spatial distribution |
130 |
|
|
$tpmean(i,j)$ has already been removed from data $tpobs(i,j)$! |
131 |
|
|
|
132 |
|
|
\item |
133 |
|
|
Sum over all spatial points and all times |
134 |
|
|
|
135 |
|
|
\begin{equation} |
136 |
|
|
\begin{split} |
137 |
|
|
\overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j} |
138 |
|
|
cost\_ssh\_anom(i,j,t) |
139 |
|
|
\end{split} |
140 |
|
|
\end{equation} |
141 |
|
|
|
142 |
|
|
\end{enumerate} |
143 |
|
|
|
144 |
|
|
\subsubsection{Flow chart} |
145 |
|
|
|
146 |
|
|
\begin{verbatim} |
147 |
|
|
|
148 |
|
|
cost_ssh |
149 |
|
|
| |
150 |
|
|
|- < compute nYears model mean > |
151 |
|
|
| |
152 |
|
|
|- < read nYears T/P mean > |
153 |
|
|
| CALL COST_READTOPEXMEAN |
154 |
|
|
| |
155 |
|
|
|- < compute global T/P vs. model offset > |
156 |
|
|
| |
157 |
|
|
|- < compute cost_hmean > |
158 |
|
|
| CALL COST_SSH_MEAN |
159 |
|
|
| |
160 |
|
|
|- < ... > |
161 |
|
|
|
162 |
|
|
\end{verbatim} |
163 |
|
|
|
164 |
|
|
\subsubsection{Weights} |
165 |
|
|
|
166 |
|
|
\begin{itemize} |
167 |
|
|
% |
168 |
|
|
\item |
169 |
|
|
All data are currently masked to zero where less than 13 depth levels, |
170 |
|
|
mimicing no contribution for depth less than 1000m. |
171 |
|
|
% |
172 |
|
|
\item |
173 |
|
|
$cosphi$ term in weights is set to 1. |
174 |
|
|
% |
175 |
|
|
\item |
176 |
|
|
bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $ |
177 |
|
|
% |
178 |
|
|
\item |
179 |
|
|
T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values |
180 |
|
|
% |
181 |
|
|
\item |
182 |
|
|
$wp$ is read from {\tt geoid\_errfile} |
183 |
|
|
and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights} |
184 |
|
|
% |
185 |
|
|
\end{itemize} |
186 |
|
|
|
187 |
|
|
\paragraph{$wp$ for SSH mean misfit} ~ |
188 |
|
|
|
189 |
|
|
$1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\ |
190 |
|
|
$wp$ is read from {\tt geoid\_errfile}; |
191 |
|
|
|
192 |
|
|
\paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~ |
193 |
|
|
|
194 |
|
|
$1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\ |
195 |
|
|
% |
196 |
|
|
\begin{itemize} |
197 |
|
|
% |
198 |
|
|
\item |
199 |
|
|
$wtp$, $wers$ are read from single {\tt ssh\_errfile} |
200 |
|
|
% |
201 |
|
|
\item |
202 |
|
|
both are converted to meters and halved \\ |
203 |
|
|
$ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $ |
204 |
|
|
% |
205 |
|
|
\item |
206 |
|
|
ERS error is set to T/P error + 5cm \\ |
207 |
|
|
$ wers \, = \, wtp \, + 0.5cm $ |
208 |
|
|
% |
209 |
|
|
\end{itemize} |
210 |
|
|
|
211 |
|
|
\subsubsection{Cost diagnostics} |
212 |
|
|
|
213 |
|
|
\begin{itemize} |
214 |
|
|
% |
215 |
|
|
\item |
216 |
|
|
Map out $ cost\_ssh\_mean(i,j) $ |
217 |
|
|
% |
218 |
|
|
\item |
219 |
|
|
Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e. |
220 |
|
|
\[ |
221 |
|
|
\frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t) |
222 |
|
|
\] |
223 |
|
|
% |
224 |
|
|
\item |
225 |
|
|
sum over daily entries and plot daily average as function of time. i.e. |
226 |
|
|
\[ |
227 |
|
|
\frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t) |
228 |
|
|
\] |
229 |
|
|
\end{itemize} |