| 1 |
heimbach |
1.1 |
\section{The ECCO state estimation cost function DRAFT!!! |
| 2 |
|
|
\label{sectioneccocost}} |
| 3 |
|
|
|
| 4 |
|
|
The current ECCO state estimation covers an $nYears = 11$ year |
| 5 |
|
|
model trajectory. |
| 6 |
|
|
A variety of data sets enter a least squares cost function, |
| 7 |
|
|
in addition to penalty terms which constrain deviations |
| 8 |
|
|
of control variables beyound their a priori errors. |
| 9 |
|
|
|
| 10 |
|
|
\subsection{Sea surface height from TOPEX/Poseidon and ERS-1/2 altimetry} |
| 11 |
|
|
|
| 12 |
|
|
Altimetric SSH contributions from T/P and ERS-1/2 are four-fold: |
| 13 |
|
|
% |
| 14 |
|
|
\begin{enumerate} |
| 15 |
|
|
% |
| 16 |
|
|
\item |
| 17 |
|
|
an $nYears$ time mean SSH misfit between |
| 18 |
|
|
model and T/P |
| 19 |
|
|
% |
| 20 |
|
|
\item |
| 21 |
|
|
daily SSH anomaly misfits between T/P and model |
| 22 |
|
|
% |
| 23 |
|
|
\item |
| 24 |
|
|
daily SSH anomaly misfits between ERS-1/2 and model |
| 25 |
|
|
% |
| 26 |
|
|
\item |
| 27 |
|
|
daily absolute SSH misfit between T/P and model, |
| 28 |
|
|
weighted by the full geoid error covariance. |
| 29 |
|
|
% |
| 30 |
|
|
\end{enumerate} |
| 31 |
|
|
|
| 32 |
|
|
\subsubsection{Input fields} |
| 33 |
|
|
~ |
| 34 |
|
|
|
| 35 |
|
|
\begin{table}[h!] |
| 36 |
|
|
\begin{center} |
| 37 |
|
|
\begin{tabular}{lllc} |
| 38 |
|
|
\hline \hline |
| 39 |
|
|
~&~&~&~\\ |
| 40 |
|
|
field & file name & deccription & unit \\ |
| 41 |
|
|
~&~&~&~\\ |
| 42 |
|
|
\hline |
| 43 |
|
|
~&~&~&~\\ |
| 44 |
|
|
{\it psbar} & {\tt psbarfile} & daily model mean SSH fields & [m] \\ |
| 45 |
|
|
{\it tpmean} & {\tt topexmeanfile} & $nYears$ T/P mean & [cm] \\ |
| 46 |
|
|
{\it tpobs} & {\tt topexfile} & daily T/P SSH anomalies & [cm] \\ |
| 47 |
|
|
{\it erspobs} & {\tt ersfile} & daily ERS-1/2 SSH anomalies & [cm] \\ |
| 48 |
|
|
{\it wp} & {\tt geoid\_errfile} & diagonal of geoid error covariance & [m] \\ |
| 49 |
|
|
{\it wtp, wers} & {\tt ssh\_errfile} & rms of SSH anomalies & [cm] \\ |
| 50 |
|
|
~&~&~&~\\ |
| 51 |
|
|
\hline \hline |
| 52 |
|
|
\end{tabular} |
| 53 |
|
|
\end{center} |
| 54 |
|
|
\end{table} |
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
|
|
\subsubsection{$nYears$ time mean SSH misfit} |
| 58 |
|
|
|
| 59 |
|
|
\begin{enumerate} |
| 60 |
|
|
% |
| 61 |
|
|
\item |
| 62 |
|
|
Compute 11yr model mean spatial distribution |
| 63 |
|
|
% |
| 64 |
|
|
\begin{equation} |
| 65 |
|
|
psmean(i,j)\, =\, |
| 66 |
|
|
\frac{1}{nDaysRec} \sum_{i=1}^{nDaysRec} |
| 67 |
|
|
psbar(i,j) |
| 68 |
|
|
\end{equation} |
| 69 |
|
|
% |
| 70 |
|
|
\item |
| 71 |
|
|
Compute global offset between 11-yr model and T/P mean: |
| 72 |
|
|
% |
| 73 |
|
|
\begin{equation} |
| 74 |
|
|
\begin{split} |
| 75 |
|
|
offset & = \, \overline{tpmean} \, - \, \overline{psmean} \\ |
| 76 |
|
|
~ & = \, \frac{1}{normaliz.} \sum_{i,j} |
| 77 |
|
|
\left\{ tpmean(i,j) \, - \, psmean(i,j) \right\} |
| 78 |
|
|
\cdot cosphi(i,j) \cdot tpmeanmask(i,j) |
| 79 |
|
|
\end{split} |
| 80 |
|
|
\end{equation} |
| 81 |
|
|
% |
| 82 |
|
|
\item |
| 83 |
|
|
Misfits are computed w.r.t. global $offset$. |
| 84 |
|
|
\\ |
| 85 |
|
|
First spatial distribution: |
| 86 |
|
|
% |
| 87 |
|
|
\begin{equation} |
| 88 |
|
|
\begin{split} |
| 89 |
|
|
cost\_ssh\_mean(i,j) & = \, |
| 90 |
|
|
\frac{1}{wp^2} \left\{ \, |
| 91 |
|
|
\left[ \, psmean(i,j) - \overline{psmean} \, \right] \, - \, |
| 92 |
|
|
\left[ \, tpmean(i,j) - \overline{tpmean} \, \right] \, \right\}^2 \\ |
| 93 |
|
|
~ & = \, \frac{1}{wp^2} \left\{ \, |
| 94 |
|
|
psmean(i,j) \, - \, tpmean(i,j) \, + \, offset \, \right\}^2 |
| 95 |
|
|
\end{split} |
| 96 |
|
|
\end{equation} |
| 97 |
|
|
|
| 98 |
|
|
% |
| 99 |
|
|
Finally, sum over all spatial entries: |
| 100 |
|
|
\begin{equation} |
| 101 |
|
|
\overline{cost\_ssh\_mean} \, = \, |
| 102 |
|
|
\sum_{i,j} cost\_ssh\_mean(i,j) |
| 103 |
|
|
\end{equation} |
| 104 |
|
|
|
| 105 |
|
|
|
| 106 |
|
|
|
| 107 |
|
|
\end{enumerate} |
| 108 |
|
|
|
| 109 |
|
|
\subsubsection{Misfit of daily SSH anomalies} |
| 110 |
|
|
|
| 111 |
|
|
Computation is same for T/P and ERS-1/2. |
| 112 |
|
|
Here we write out computation for T/P. |
| 113 |
|
|
|
| 114 |
|
|
\begin{enumerate} |
| 115 |
|
|
% |
| 116 |
|
|
\item |
| 117 |
|
|
Compute difference in anomalies: |
| 118 |
|
|
|
| 119 |
|
|
\begin{equation} |
| 120 |
|
|
\begin{split} |
| 121 |
|
|
cost\_ssh\_anom(i,j,t) & = \, \frac{1}{wtp^2} \left\{ \, |
| 122 |
|
|
\left[ \, psbar(i,j,t) - psmean(i,j) \, \right] \, - \, |
| 123 |
|
|
\left[ \, tpobs(i,j,t) \, \right] \, |
| 124 |
|
|
\right\}^2 |
| 125 |
|
|
\end{split} |
| 126 |
|
|
\end{equation} |
| 127 |
|
|
% |
| 128 |
|
|
where $t$ denotes time (day) index, and |
| 129 |
|
|
where it is assumed that $ nYears$ mean T/P spatial distribution |
| 130 |
|
|
$tpmean(i,j)$ has already been removed from data $tpobs(i,j)$! |
| 131 |
|
|
|
| 132 |
|
|
\item |
| 133 |
|
|
Sum over all spatial points and all times |
| 134 |
|
|
|
| 135 |
|
|
\begin{equation} |
| 136 |
|
|
\begin{split} |
| 137 |
|
|
\overline{cost\_ssh\_anom} & = \, \sum_{t} \sum_{i,j} |
| 138 |
|
|
cost\_ssh\_anom(i,j,t) |
| 139 |
|
|
\end{split} |
| 140 |
|
|
\end{equation} |
| 141 |
|
|
|
| 142 |
|
|
\end{enumerate} |
| 143 |
|
|
|
| 144 |
|
|
\subsubsection{Flow chart} |
| 145 |
|
|
|
| 146 |
|
|
\begin{verbatim} |
| 147 |
|
|
|
| 148 |
|
|
cost_ssh |
| 149 |
|
|
| |
| 150 |
|
|
|- < compute nYears model mean > |
| 151 |
|
|
| |
| 152 |
|
|
|- < read nYears T/P mean > |
| 153 |
|
|
| CALL COST_READTOPEXMEAN |
| 154 |
|
|
| |
| 155 |
|
|
|- < compute global T/P vs. model offset > |
| 156 |
|
|
| |
| 157 |
|
|
|- < compute cost_hmean > |
| 158 |
|
|
| CALL COST_SSH_MEAN |
| 159 |
|
|
| |
| 160 |
|
|
|- < ... > |
| 161 |
|
|
|
| 162 |
|
|
\end{verbatim} |
| 163 |
|
|
|
| 164 |
|
|
\subsubsection{Weights} |
| 165 |
|
|
|
| 166 |
|
|
\begin{itemize} |
| 167 |
|
|
% |
| 168 |
|
|
\item |
| 169 |
|
|
All data are currently masked to zero where less than 13 depth levels, |
| 170 |
|
|
mimicing no contribution for depth less than 1000m. |
| 171 |
|
|
% |
| 172 |
|
|
\item |
| 173 |
|
|
$cosphi$ term in weights is set to 1. |
| 174 |
|
|
% |
| 175 |
|
|
\item |
| 176 |
|
|
bad T/P and ERS-1/2 values are flagged $ \le \, -9990. $ |
| 177 |
|
|
% |
| 178 |
|
|
\item |
| 179 |
|
|
T/P and ERS-1/2 data $ \le \, 1.\exp^{-8}$ cm are flagged as bad values |
| 180 |
|
|
% |
| 181 |
|
|
\item |
| 182 |
|
|
$wp$ is read from {\tt geoid\_errfile} |
| 183 |
|
|
and $1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights} |
| 184 |
|
|
% |
| 185 |
|
|
\end{itemize} |
| 186 |
|
|
|
| 187 |
|
|
\paragraph{$wp$ for SSH mean misfit} ~ |
| 188 |
|
|
|
| 189 |
|
|
$1/wp^2$ is pre-computed in {\tt ecco\_cost\_weights}; \\ |
| 190 |
|
|
$wp$ is read from {\tt geoid\_errfile}; |
| 191 |
|
|
|
| 192 |
|
|
\paragraph{$wtp$ and $wers$ for SSH anomaly misfit} ~ |
| 193 |
|
|
|
| 194 |
|
|
$1/wtp^2$, $1/wers^2$ are pre-computed in {\tt ecco\_cost\_weights}; \\ |
| 195 |
|
|
% |
| 196 |
|
|
\begin{itemize} |
| 197 |
|
|
% |
| 198 |
|
|
\item |
| 199 |
|
|
$wtp$, $wers$ are read from single {\tt ssh\_errfile} |
| 200 |
|
|
% |
| 201 |
|
|
\item |
| 202 |
|
|
both are converted to meters and halved \\ |
| 203 |
|
|
$ wtp \, \longrightarrow \, wtp \cdot 0.01 \cdot 0.5 $ |
| 204 |
|
|
% |
| 205 |
|
|
\item |
| 206 |
|
|
ERS error is set to T/P error + 5cm \\ |
| 207 |
|
|
$ wers \, = \, wtp \, + 0.5cm $ |
| 208 |
|
|
% |
| 209 |
|
|
\end{itemize} |
| 210 |
|
|
|
| 211 |
|
|
\subsubsection{Cost diagnostics} |
| 212 |
|
|
|
| 213 |
|
|
\begin{itemize} |
| 214 |
|
|
% |
| 215 |
|
|
\item |
| 216 |
|
|
Map out $ cost\_ssh\_mean(i,j) $ |
| 217 |
|
|
% |
| 218 |
|
|
\item |
| 219 |
|
|
Map out $ cost\_ssh\_anom(i,j,t) $ averaged over 1 month, i.e. |
| 220 |
|
|
\[ |
| 221 |
|
|
\frac{1}{\text{monthly entries}} \sum_{t}^{monthly} cost\_ssh\_anom(i,j,t) |
| 222 |
|
|
\] |
| 223 |
|
|
% |
| 224 |
|
|
\item |
| 225 |
|
|
sum over daily entries and plot daily average as function of time. i.e. |
| 226 |
|
|
\[ |
| 227 |
|
|
\frac{1}{\text{daily entries}} \sum_{i,j} cost\_ssh\_anom(i,j,t) |
| 228 |
|
|
\] |
| 229 |
|
|
\end{itemize} |