/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Contents of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Tue Nov 6 15:07:32 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.7: +2 -2 lines
File MIME type: application/x-tex
Removed some hidden characters.

1 % $Header: /u/gcmpack/mitgcmdoc/part5/doc_ad_2.tex,v 1.7 2001/10/25 18:36:55 cnh Exp $
2 % $Name: $
3
4 {\sf Automatic differentiation} (AD), also referred to as algorithmic
5 (or, more loosely, computational) differentiation, involves
6 automatically deriving code to calculate
7 partial derivatives from an existing fully non-linear prognostic code.
8 (see \cite{gri:00}).
9 A software tool is used that parses and transforms source files
10 according to a set of linguistic and mathematical rules.
11 AD tools are like source-to-source translators in that
12 they parse a program code as input and produce a new program code
13 as output.
14 However, unlike a pure source-to-source translation, the output program
15 represents a new algorithm, such as the evaluation of the
16 Jacobian, the Hessian, or higher derivative operators.
17 In principle, a variety of derived algorithms
18 can be generated automatically in this way.
19
20 The MITGCM has been adapted for use with the
21 Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
22 (Transformation of Algorithms in Fortran), developed
23 by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
24 The first application of the adjoint of the MITGCM for sensitivity
25 studies has been published by \cite{maro-eta:99}.
26 \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
27 for ocean state estimation studies.
28 In the following we shall refer to TAMC and TAF synonymously,
29 except were explicitly stated otherwise.
30
31 TAMC exploits the chain rule for computing the first
32 derivative of a function with
33 respect to a set of input variables.
34 Treating a given forward code as a composition of operations --
35 each line representing a compositional element, the chain rule is
36 rigorously applied to the code, line by line. The resulting
37 tangent linear or adjoint code,
38 then, may be thought of as the composition in
39 forward or reverse order, respectively, of the
40 Jacobian matrices of the forward code's compositional elements.
41
42 %**********************************************************************
43 \section{Some basic algebra}
44 \label{sec_ad_algebra}
45 %**********************************************************************
46
47 Let $ \cal{M} $ be a general nonlinear, model, i.e. a
48 mapping from the $m$-dimensional space
49 $U \subset I\!\!R^m$ of input variables
50 $\vec{u}=(u_1,\ldots,u_m)$
51 (model parameters, initial conditions, boundary conditions
52 such as forcing functions) to the $n$-dimensional space
53 $V \subset I\!\!R^n$ of
54 model output variable $\vec{v}=(v_1,\ldots,v_n)$
55 (model state, model diagnostics, objective function, ...)
56 under consideration,
57 %
58 \begin{equation}
59 \begin{split}
60 {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
61 ~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
62 {\cal M}(\vec{u})
63 \label{fulloperator}
64 \end{split}
65 \end{equation}
66 %
67 The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
68 some given basis vectors
69 $ {\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m} $ and
70 $ {\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n} $ as
71 \[
72 \vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i},
73 \qquad
74 \vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j}
75 \]
76
77 Two routes may be followed to determine the sensitivity of the
78 output variable $\vec{v}$ to its input $\vec{u}$.
79
80 \subsection{Forward or direct sensitivity}
81 %
82 Consider a perturbation to the input variables $\delta \vec{u}$
83 (typically a single component
84 $\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}$).
85 Their effect on the output may be obtained via the linear
86 approximation of the model $ {\cal M}$ in terms of its Jacobian matrix
87 $ M $, evaluated in the point $u^{(0)}$ according to
88 %
89 \begin{equation}
90 \delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u}
91 \label{tangent_linear}
92 \end{equation}
93 with resulting output perturbation $\delta \vec{v}$.
94 In components
95 $M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i} $,
96 it reads
97 %
98 \begin{equation}
99 \delta v_{j} \, = \, \sum_{i}
100 \left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \,
101 \delta u_{i}
102 \label{jacobi_matrix}
103 \end{equation}
104 %
105 Eq. (\ref{tangent_linear}) is the {\sf tangent linear model (TLM)}.
106 In contrast to the full nonlinear model $ {\cal M} $, the operator
107 $ M $ is just a matrix
108 which can readily be used to find the forward sensitivity of $\vec{v}$ to
109 perturbations in $u$,
110 but if there are very many input variables $(\gg O(10^{6})$ for
111 large-scale oceanographic application), it quickly becomes
112 prohibitive to proceed directly as in (\ref{tangent_linear}),
113 if the impact of each component $ {\bf e_{i}} $ is to be assessed.
114
115 \subsection{Reverse or adjoint sensitivity}
116 %
117 Let us consider the special case of a
118 scalar objective function ${\cal J}(\vec{v})$ of the model output (e.g.
119 the total meridional heat transport,
120 the total uptake of $CO_{2}$ in the Southern
121 Ocean over a time interval,
122 or a measure of some model-to-data misfit)
123 %
124 \begin{eqnarray}
125 \begin{array}{cccccc}
126 {\cal J} \, : & U &
127 \longrightarrow & V &
128 \longrightarrow & I \!\! R \\
129 ~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) &
130 \longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u}))
131 \end{array}
132 \label{compo}
133 \end{eqnarray}
134 %
135 The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
136 \[
137 {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
138 \]
139 can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
140 w.r.t. their corresponding inner product
141 $\left\langle \,\, , \,\, \right\rangle $
142 %
143 \begin{equation}
144 \begin{split}
145 {\cal J} & = \,
146 {\cal J} |_{\vec{u}^{(0)}} \, + \,
147 \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
148 \, + \, O(\delta \vec{u}^2) \\
149 ~ & = \,
150 {\cal J} |_{\vec{v}^{(0)}} \, + \,
151 \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
152 \, + \, O(\delta \vec{v}^2)
153 \end{split}
154 \label{deljidentity}
155 \end{equation}
156 %
157 (note, that the gradient $ \nabla f $ is a co-vector, therefore
158 its transpose is required in the above inner product).
159 Then, using the representation of
160 $ \delta {\cal J} =
161 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle $,
162 the definition
163 of an adjoint operator $ A^{\ast} $ of a given operator $ A $,
164 \[
165 \left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle =
166 \left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle
167 \]
168 which for finite-dimensional vector spaces is just the
169 transpose of $ A $,
170 \[
171 A^{\ast} \, = \, A^T
172 \]
173 and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
174 we note that
175 (omitting $|$'s):
176 %
177 \begin{equation}
178 \delta {\cal J}
179 \, = \,
180 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle
181 \, = \,
182 \left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle
183 \, = \,
184 \left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \,
185 \delta \vec{u} \, \right\rangle
186 \label{inner}
187 \end{equation}
188 %
189 With the identity (\ref{deljidentity}), we then find that
190 the gradient $ \nabla _{u}{\cal J} $ can be readily inferred by
191 invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
192 %
193 \begin{equation}
194 \begin{split}
195 \nabla _{u}{\cal J}^T |_{\vec{u}} &
196 = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\
197 ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
198 ~ & = \, \delta \vec{u}^{\ast}
199 \end{split}
200 \label{adjoint}
201 \end{equation}
202 %
203 Eq. (\ref{adjoint}) is the {\sf adjoint model (ADM)},
204 in which $M^T$ is the adjoint (here, the transpose) of the
205 tangent linear operator $M$, $ \delta \vec{v}^{\ast} $
206 the adjoint variable of the model state $ \vec{v} $, and
207 $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
208
209 The {\sf reverse} nature of the adjoint calculation can be readily
210 seen as follows.
211 Consider a model integration which consists of $ \Lambda $
212 consecutive operations
213 $ {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
214 ...... ( {\cal M}_{\lambda} (
215 ......
216 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
217 where the ${\cal M}$'s could be the elementary steps, i.e. single lines
218 in the code of the model, or successive time steps of the
219 model integration,
220 starting at step 0 and moving up to step $\Lambda$, with intermediate
221 ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
222 ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
223 Let ${\cal J}$ be a cost function which explicitly depends on the
224 final state $\vec{v}$ only
225 (this restriction is for clarity reasons only).
226 %
227 ${\cal J}(u)$ may be decomposed according to:
228 %
229 \begin{equation}
230 {\cal J}({\cal M}(\vec{u})) \, = \,
231 {\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
232 ...... ( {\cal M}_{\lambda} (
233 ......
234 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))))
235 \label{compos}
236 \end{equation}
237 %
238 Then, according to the chain rule, the forward calculation reads,
239 in terms of the Jacobi matrices
240 (we've omitted the $ | $'s which, nevertheless are important
241 to the aspect of {\it tangent} linearity;
242 note also that by definition
243 $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
244 = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
245 %
246 \begin{equation}
247 \begin{split}
248 \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
249 \nabla_v {\cal J} \cdot M_{\Lambda}
250 \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
251 M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
252 ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
253 \end{split}
254 \label{forward}
255 \end{equation}
256 %
257 whereas in reverse mode we have
258 %
259 \begin{equation}
260 \boxed{
261 \begin{split}
262 M^T ( \nabla_v {\cal J}^T) & = \,
263 M_{0}^T \cdot M_{1}^T
264 \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
265 M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\
266 ~ & = \, M_{0}^T \cdot M_{1}^T
267 \cdot ...... \cdot
268 \nabla_{v^{(\lambda)}} {\cal J}^T \\
269 ~ & = \, \nabla_u {\cal J}^T
270 \end{split}
271 }
272 \label{reverse}
273 \end{equation}
274 %
275 clearly expressing the reverse nature of the calculation.
276 Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
277 If the intermediate steps $\lambda$ in
278 eqn. (\ref{compos}) -- (\ref{reverse})
279 represent the model state (forward or adjoint) at each
280 intermediate time step as noted above, then correspondingly,
281 $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
282 \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
283 It thus becomes evident that the adjoint calculation also
284 yields the adjoint of each model state component
285 $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
286 %
287 \begin{equation}
288 \boxed{
289 \begin{split}
290 \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
291 & = \,
292 M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
293 M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
294 ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
295 \end{split}
296 }
297 \end{equation}
298 %
299 in close analogy to eq. (\ref{adjoint})
300 We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
301 are the Lagrange multipliers of the model equations which determine
302 $ \vec{v}^{(\lambda)}$.
303
304 In components, eq. (\ref{adjoint}) reads as follows.
305 Let
306 \[
307 \begin{array}{rclcrcl}
308 \delta \vec{u} & = &
309 \left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad &
310 \delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = &
311 \left(
312 \frac{\partial {\cal J}}{\partial u_1},\ldots,
313 \frac{\partial {\cal J}}{\partial u_m}
314 \right)^T \\
315 \delta \vec{v} & = &
316 \left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad &
317 \delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = &
318 \left(
319 \frac{\partial {\cal J}}{\partial v_1},\ldots,
320 \frac{\partial {\cal J}}{\partial v_n}
321 \right)^T \\
322 \end{array}
323 \]
324 denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
325 and their adjoint variables;
326 further
327 \[
328 M \, = \, \left(
329 \begin{array}{ccc}
330 \frac{\partial {\cal M}_1}{\partial u_1} & \ldots &
331 \frac{\partial {\cal M}_1}{\partial u_m} \\
332 \vdots & ~ & \vdots \\
333 \frac{\partial {\cal M}_n}{\partial u_1} & \ldots &
334 \frac{\partial {\cal M}_n}{\partial u_m} \\
335 \end{array}
336 \right)
337 \]
338 is the Jacobi matrix of $ {\cal M} $
339 (an $ n \times m $ matrix)
340 such that $ \delta \vec{v} = M \cdot \delta \vec{u} $, or
341 \[
342 \delta v_{j}
343 \, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i}
344 \, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
345 \delta u_{i}
346 \]
347 %
348 Then eq. (\ref{adjoint}) takes the form
349 \[
350 \delta u_{i}^{\ast}
351 \, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast}
352 \, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
353 \delta v_{j}^{\ast}
354 \]
355 %
356 or
357 %
358 \[
359 \left(
360 \begin{array}{c}
361 \left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\
362 \vdots \\
363 \left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\
364 \end{array}
365 \right)
366 \, = \,
367 \left(
368 \begin{array}{ccc}
369 \left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}}
370 & \ldots &
371 \left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\
372 \vdots & ~ & \vdots \\
373 \left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}}
374 & \ldots &
375 \left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\
376 \end{array}
377 \right)
378 \cdot
379 \left(
380 \begin{array}{c}
381 \left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\
382 \vdots \\
383 \left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\
384 \end{array}
385 \right)
386 \]
387 %
388 Furthermore, the adjoint $ \delta v^{(\lambda) \, \ast} $
389 of any intermediate state $ v^{(\lambda)} $
390 may be obtained, using the intermediate Jacobian
391 (an $ n_{\lambda+1} \times n_{\lambda} $ matrix)
392 %
393 \[
394 M_{\lambda} \, = \,
395 \left(
396 \begin{array}{ccc}
397 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
398 & \ldots &
399 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
400 \vdots & ~ & \vdots \\
401 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1}
402 & \ldots &
403 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
404 \end{array}
405 \right)
406 \]
407 %
408 and the shorthand notation for the adjoint variables
409 $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
410 {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
411 for intermediate components, yielding
412 \begin{equation}
413 \small
414 \begin{split}
415 \left(
416 \begin{array}{c}
417 \delta v^{(\lambda) \, \ast}_1 \\
418 \vdots \\
419 \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
420 \end{array}
421 \right)
422 \, = &
423 \left(
424 \begin{array}{ccc}
425 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
426 & \ldots \,\, \ldots &
427 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
428 \vdots & ~ & \vdots \\
429 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
430 & \ldots \,\, \ldots &
431 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
432 \end{array}
433 \right)
434 \cdot
435 %
436 \\ ~ & ~
437 \\ ~ &
438 %
439 \left(
440 \begin{array}{ccc}
441 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
442 & \ldots &
443 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\
444 \vdots & ~ & \vdots \\
445 \vdots & ~ & \vdots \\
446 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}}
447 & \ldots &
448 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
449 \end{array}
450 \right)
451 \cdot \, \ldots \, \cdot
452 \left(
453 \begin{array}{c}
454 \delta v^{\ast}_1 \\
455 \vdots \\
456 \delta v^{\ast}_{n} \\
457 \end{array}
458 \right)
459 \end{split}
460 \end{equation}
461
462 Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
463 showing the advantage of the reverse over the forward mode
464 if the gradient $\nabla _{u}{\cal J}$, i.e. the sensitivity of the
465 cost function $ {\cal J} $ with respect to {\it all} input
466 variables $u$
467 (or the sensitivity of the cost function with respect to
468 {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
469 In order to be able to solve for each component of the gradient
470 $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
471 a forward calculation has to be performed for each component separately,
472 i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
473 for the $i$-th forward calculation.
474 Then, (\ref{forward}) represents the
475 projection of $ \nabla_u {\cal J} $ onto the $i$-th component.
476 The full gradient is retrieved from the $ m $ forward calculations.
477 In contrast, eq. (\ref{reverse}) yields the full
478 gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
479 $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
480
481 Note, that if $ {\cal J} $ is a vector-valued function
482 of dimension $ l > 1 $,
483 eq. (\ref{reverse}) has to be modified according to
484 \[
485 M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right)
486 \, = \,
487 \nabla_u {\cal J}^T \cdot \delta \vec{J}
488 \]
489 where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
490 dimension $ l $.
491 In this case $ l $ reverse simulations have to be performed
492 for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
493 Then, the reverse mode is more efficient as long as
494 $ l < n $, otherwise the forward mode is preferable.
495 Strictly, the reverse mode is called adjoint mode only for
496 $ l = 1 $.
497
498 A detailed analysis of the underlying numerical operations
499 shows that the computation of $\nabla _{u}{\cal J}$ in this way
500 requires about 2 to 5 times the computation of the cost function.
501 Alternatively, the gradient vector could be approximated
502 by finite differences, requiring $m$ computations
503 of the perturbed cost function.
504
505 To conclude we give two examples of commonly used types
506 of cost functions:
507
508 \paragraph{Example 1:
509 $ {\cal J} = v_{j} (T) $} ~ \\
510 The cost function consists of the $j$-th component of the model state
511 $ \vec{v} $ at time $T$.
512 Then $ \nabla_v {\cal J}^T = {\vec{f}_{j}} $ is just the $j$-th
513 unit vector. The $ \nabla_u {\cal J}^T $
514 is the projection of the adjoint
515 operator onto the $j$-th component ${\bf f_{j}}$,
516 \[
517 \nabla_u {\cal J}^T
518 \, = \, M^T \cdot \nabla_v {\cal J}^T
519 \, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}}
520 \]
521
522 \paragraph{Example 2:
523 $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
524 \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
525 The cost function represents the quadratic model vs. data misfit.
526 Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
527 operator which maps the model state space onto the data space.
528 Then, $ \nabla_v {\cal J} $ takes the form
529 %
530 \begin{equation*}
531 \begin{split}
532 \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
533 \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
534 ~ & = \, 2 \sum_{j} \left\{ \sum_k
535 \frac{\partial {\cal H}_k}{\partial v_{j}}
536 \left( {\cal H}_k (\vec{v}) - d_k \right)
537 \right\} \, {\vec{f}_{j}} \\
538 \end{split}
539 \end{equation*}
540 %
541 where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
542 Jacobi matrix of the data projection operator.
543 Thus, the gradient $ \nabla_u {\cal J} $ is given by the
544 adjoint operator,
545 driven by the model vs. data misfit:
546 \[
547 \nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot
548 H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right)
549 \]
550
551 \subsection{Storing vs. recomputation in reverse mode}
552 \label{checkpointing}
553
554 We note an important aspect of the forward vs. reverse
555 mode calculation.
556 Because of the local character of the derivative
557 (a derivative is defined w.r.t. a point along the trajectory),
558 the intermediate results of the model trajectory
559 $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560 are needed to evaluate the intermediate Jacobian
561 $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562 In the forward mode, the intermediate results are required
563 in the same order as computed by the full forward model ${\cal M}$,
564 but in the reverse mode they are required in the reverse order.
565 Thus, in the reverse mode the trajectory of the forward model
566 integration ${\cal M}$ has to be stored to be available in the reverse
567 calculation. Alternatively, the complete model state up to the
568 point of evaluation has to be recomputed whenever its value is required.
569
570 A method to balance the amount of recomputations vs.
571 storage requirements is called {\sf checkpointing}
572 (e.g. \cite{res-eta:98}).
573 It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
574 [as an example, we give explicit numbers for a 3-day
575 integration with a 1-hourly timestep in square brackets].
576 \begin{itemize}
577 %
578 \item [$lev3$]
579 In a first step, the model trajectory is subdivided into
580 $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
581 with the label $lev3$ for this outermost loop.
582 The model is then integrated along the full trajectory,
583 and the model state stored only at every $ k_{i}^{lev3} $-th timestep
584 [i.e. 3 times, at
585 $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
586 %
587 \item [$lev2$]
588 In a second step each subsection itself is divided into
589 $ {n}^{lev2} $ sub-subsections
590 [$ {n}^{lev2} $=4 6-hour intervals per subsection].
591 The model picks up at the last outermost dumped state
592 $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
593 the last subsection, with the label $lev2$ for this
594 intermediate loop.
595 The model state is now stored at every $ k_{i}^{lev2} $-th
596 timestep
597 [i.e. 4 times, at
598 $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
599 %
600 \item [$lev1$]
601 Finally, the model picks up at the last intermediate dump state
602 $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
603 the last sub-subsection, with the label $lev1$ for this
604 intermediate loop.
605 Within this sub-subsection only, the model state is stored
606 at every timestep
607 [i.e. every hour $ i=0,...,5$ corresponding to
608 $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
609 Thus, the final state $ v_n = v_{k_{n}^{lev1}} $ is reached
610 and the model state of all proceeding timesteps along the last
611 sub-subsections are available, enabling integration backwards
612 in time along the last sub-subsection.
613 Thus, the adjoint can be computed along this last
614 sub-subsection $k_{n}^{lev2}$.
615 %
616 \end{itemize}
617 %
618 This procedure is repeated consecutively for each previous
619 sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
620 carrying the adjoint computation to the initial time
621 of the subsection $k_{n}^{lev3}$.
622 Then, the procedure is repeated for the previous subsection
623 $k_{n-1}^{lev3}$
624 carrying the adjoint computation to the initial time
625 $k_{1}^{lev3}$.
626
627 For the full model trajectory of
628 $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
629 the required storing of the model state was significantly reduced to
630 $ n^{lev1} + n^{lev2} + n^{lev3} $
631 [i.e. for the 3-day integration with a total oof 72 timesteps
632 the model state was stored 13 times].
633 This saving in memory comes at a cost of a required
634 3 full forward integrations of the model (one for each
635 checkpointing level).
636 The balance of storage vs. recomputation certainly depends
637 on the computing resources available.
638
639 \begin{figure}[t!]
640 \begin{center}
641 %\psdraft
642 %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
643 %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
644 %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
645 %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
646 %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
647 %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
648 %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
649 %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
650 %\mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
651 \resizebox{5.5in}{!}{\includegraphics{part5/checkpointing.eps}}
652 %\psfull
653 \end{center}
654 \caption{
655 Schematic view of intermediate dump and restart for
656 3-level checkpointing.}
657 \label{fig:3levelcheck}
658 \end{figure}
659
660 % \subsection{Optimal perturbations}
661 % \label{sec_optpert}
662
663
664 % \subsection{Error covariance estimate and Hessian matrix}
665 % \label{sec_hessian}
666
667 \newpage
668
669 %**********************************************************************
670 \section{AD-specific setup by example: sensitivity of carbon sequestration}
671 \label{sec_ad_setup_ex}
672 %**********************************************************************
673
674 The MITGCM has been adapted to enable AD using TAMC or TAF.
675 The present description, therefore, is specific to the
676 use of TAMC or TAF as AD tool.
677 The following sections describe the steps which are necessary to
678 generate a tangent linear or adjoint model of the MITGCM.
679 We take as an example the sensitivity of carbon sequestration
680 in the ocean.
681 The AD-relevant hooks in the code are sketched in
682 \ref{fig:adthemodel}, \ref{fig:adthemain}.
683
684 \subsection{Overview of the experiment}
685
686 We describe an adjoint sensitivity analysis of out-gassing from
687 the ocean into the atmosphere of a carbon-like tracer injected
688 into the ocean interior (see \cite{hil-eta:01}).
689
690 \subsubsection{Passive tracer equation}
691
692 For this work the MITGCM was augmented with a thermodynamically
693 inactive tracer, $C$. Tracer residing in the ocean
694 model surface layer is out-gassed according to a relaxation time scale,
695 $\mu$. Within the ocean interior, the tracer is passively advected
696 by the ocean model currents. The full equation for the time evolution
697 %
698 \begin{equation}
699 \label{carbon_ddt}
700 \frac{\partial C}{\partial t} \, = \,
701 -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S
702 \end{equation}
703 %
704 also includes a source term $S$. This term
705 represents interior sources of $C$ such as would arise due to
706 direct injection.
707 The velocity term, $U$, is the sum of the
708 model Eulerian circulation and an eddy-induced velocity, the latter
709 parameterized according to Gent/McWilliams
710 (\cite{gen-mcw:90, gen-eta:95}).
711 The convection function, $\Gamma$, mixes $C$ vertically wherever the
712 fluid is locally statically unstable.
713
714 The out-gassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})
715 is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface
716 ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})
717 is valid as a prognostic equation for small perturbations in oceanic
718 carbon concentrations. This configuration provides a
719 powerful tool for examining the impact of large-scale ocean circulation
720 on $ CO_2 $ out-gassing due to interior injections.
721 As source we choose a constant in time injection of
722 $ S = 1 \,\, {\rm mol / s}$.
723
724 \subsubsection{Model configuration}
725
726 The model configuration employed has a constant
727 $4^\circ \times 4^\circ$ resolution horizontal grid and realistic
728 geography and bathymetry. Twenty vertical layers are used with
729 vertical spacing ranging
730 from 50 m near the surface to 815 m at depth.
731 Driven to steady-state by climatological wind-stress, heat and
732 fresh-water forcing the model reproduces well known large-scale
733 features of the ocean general circulation.
734
735 \subsubsection{Out-gassing cost function}
736
737 To quantify and understand out-gassing due to injections of $C$
738 in eqn. (\ref{carbon_ddt}),
739 we define a cost function $ {\cal J} $ that measures the total amount of
740 tracer out-gassed at each timestep:
741 %
742 \begin{equation}
743 \label{cost_tracer}
744 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt
745 \end{equation}
746 %
747 Equation(\ref{cost_tracer}) integrates the out-gassing term, $\mu C$,
748 from (\ref{carbon_ddt})
749 over the entire ocean surface area, $A$, and accumulates it
750 up to time $T$.
751 Physically, ${\cal J}$ can be thought of as representing the amount of
752 $CO_2$ that our model predicts would be out-gassed following an
753 injection at rate $S$.
754 The sensitivity of ${\cal J}$ to the spatial location of $S$,
755 $\frac{\partial {\cal J}}{\partial S}$,
756 can be used to identify regions from which circulation
757 would cause $CO_2$ to rapidly out-gas following injection
758 and regions in which $CO_2$ injections would remain effectively
759 sequestered within the ocean.
760
761 \subsection{Code configuration}
762
763 The model configuration for this experiment resides under the
764 directory {\it verification/carbon/}.
765 The code customization routines are in {\it verification/carbon/code/}:
766 %
767 \begin{itemize}
768 %
769 \item {\it .genmakerc}
770 %
771 \item {\it COST\_CPPOPTIONS.h}
772 %
773 \item {\it CPP\_EEOPTIONS.h}
774 %
775 \item {\it CPP\_OPTIONS.h}
776 %
777 \item {\it CTRL\_OPTIONS.h}
778 %
779 \item {\it ECCO\_OPTIONS.h}
780 %
781 \item {\it SIZE.h}
782 %
783 \item {\it adcommon.h}
784 %
785 \item {\it tamc.h}
786 %
787 \end{itemize}
788 %
789 The runtime flag and parameters settings are contained in
790 {\it verification/carbon/input/},
791 together with the forcing fields and and restart files:
792 %
793 \begin{itemize}
794 %
795 \item {\it data}
796 %
797 \item {\it data.cost}
798 %
799 \item {\it data.ctrl}
800 %
801 \item {\it data.gmredi}
802 %
803 \item {\it data.grdchk}
804 %
805 \item {\it data.optim}
806 %
807 \item {\it data.pkg}
808 %
809 \item {\it eedata}
810 %
811 \item {\it topog.bin}
812 %
813 \item {\it windx.bin, windy.bin}
814 %
815 \item {\it salt.bin, theta.bin}
816 %
817 \item {\it SSS.bin, SST.bin}
818 %
819 \item {\it pickup*}
820 %
821 \end{itemize}
822 %
823 Finally, the file to generate the adjoint code resides in
824 $ adjoint/ $:
825 %
826 \begin{itemize}
827 %
828 \item {\it makefile}
829 %
830 \end{itemize}
831 %
832
833 Below we describe the customizations of this files which are
834 specific to this experiment.
835
836 \subsubsection{File {\it .genmakerc}}
837 This file overwrites default settings of {\it genmake}.
838 In the present example it is used to switch on the following
839 packages which are related to automatic differentiation
840 and are disabled by default: \\
841 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco gmredi grdchk kpp )} \\
842 Other packages which are not needed are switched off: \\
843 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}
844
845 \subsubsection{File {\it COST\_CPPOPTIONS.h, CTRL\_OPTIONS.h}}
846
847 These files used to contain package-specific CPP-options
848 (see Section \ref{???}).
849 For technical reasons those options have been grouped together
850 in the file {\it ECCO\_OPTIONS.h}.
851 To retain the modularity, the files have been kept and contain
852 the standard include of the {\it CPP\_OPTIONS.h} file.
853
854 \subsubsection{File {\it CPP\_EEOPTIONS.h}}
855
856 This file contains 'wrapper'-specific CPP options.
857 It only needs to be changed if the code is to be run
858 in a parallel environment (see Section \ref{???}).
859
860 \subsubsection{File {\it CPP\_OPTIONS.h}}
861
862 This file contains model-specific CPP options
863 (see Section \ref{???}).
864 Most options are related to the forward model setup.
865 They are identical to the global steady circulation setup of
866 {\it verification/exp2/}.
867 The three options specific to this experiment are \\
868 \hspace*{4ex} {\tt \#define ALLOW\_PASSIVE\_TRACER} \\
869 This flag enables the code to carry through the
870 advection/diffusion of a passive tracer along the
871 model integration. \\
872 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\
873 This flag enables the inclusion of some AD-related fields
874 concerning initialization, link between control variables
875 and forward model variables, and the call to the top-level
876 forward/adjoint subroutine {\it adthe\_main\_loop}
877 instead of {\it the\_main\_loop}. \\
878 \hspace*{4ex} {\tt \#define ALLOW\_GRADIENT\_CHECK} \\
879 This flag enables the gradient check package.
880 After computing the unperturbed cost function and its gradient,
881 a series of computations are performed for which \\
882 $\bullet$ an element of the control vector is perturbed \\
883 $\bullet$ the cost function w.r.t. the perturbed element is
884 computed \\
885 $\bullet$ the difference between the perturbed and unperturbed
886 cost function is computed to compute the finite difference gradient \\
887 $\bullet$ the finite difference gradient is compared with the
888 adjoint-generated gradient.
889 The gradient check package is further described in Section ???.
890
891 \subsubsection{File {\it ECCO\_OPTIONS.h}}
892
893 The CPP options of several AD-related packages are grouped
894 in this file:
895 %
896 \begin{itemize}
897 %
898 \item
899 Adjoint support package: {\it pkg/autodiff/} \\
900 This package contains hand-written adjoint code such as
901 active file handling, flow directives for files which must not
902 be differentiated, and TAMC-specific header files. \\
903 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\
904 defines TAMC-related features in the code. \\
905 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\
906 enables the checkpointing feature of TAMC
907 (see Section \ref{???}).
908 In the present example a 3-level checkpointing is implemented.
909 The code contains the relevant store directives, common block
910 and tape initializations, storing key computation,
911 and loop index handling.
912 The checkpointing length at each level is defined in
913 file {\it tamc.h}, cf. below.
914 %
915 \item Cost function package: {\it pkg/cost/} \\
916 This package contains all relevant routines for
917 initializing, accumulating and finalizing the cost function
918 (see Section \ref{???}). \\
919 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\
920 enables all general aspects of the cost function handling,
921 in particular the hooks in the forward code for
922 initializing, accumulating and finalizing the cost function. \\
923 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\
924 includes the call to the cost function for this
925 particular experiment, eqn. (\ref{cost_tracer}).
926 %
927 \item Control variable package: {\it pkg/ctrl/} \\
928 This package contains all relevant routines for
929 the handling of the control vector.
930 Each control variable can be enabled/disabled with its own flag: \\
931 \begin{tabular}{ll}
932 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &
933 initial temperature \\
934 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &
935 initial salinity \\
936 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &
937 initial passive tracer concentration \\
938 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &
939 zonal wind stress \\
940 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &
941 meridional wind stress \\
942 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &
943 freshwater flux \\
944 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &
945 heat flux \\
946 \hspace*{2ex} {\tt \#define ALLOW\_DIFFKR\_CONTROL} &
947 diapycnal diffusivity \\
948 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &
949 isopycnal diffusivity \\
950 \end{tabular}
951 %
952 \end{itemize}
953
954 \subsubsection{File {\it SIZE.h}}
955
956 The file contains the grid point dimensions of the forward
957 model. It is identical to the {\it verification/exp2/}: \\
958 \hspace*{4ex} {\tt sNx = 90} \\
959 \hspace*{4ex} {\tt sNy = 40} \\
960 \hspace*{4ex} {\tt Nr = 20} \\
961 It corresponds to a single-tile/single-processor setup:
962 {\tt nSx = nSy = 1, nPx = nPy = 1},
963 with standard overlap dimensioning
964 {\tt OLx = OLy = 3}.
965
966 \subsubsection{File {\it adcommon.h}}
967
968 This file contains common blocks of some adjoint variables
969 that are generated by TAMC.
970 The common blocks are used by the adjoint support routine
971 {\it addummy\_in\_stepping} which needs to access those variables:
972
973 \begin{tabular}{ll}
974 \hspace*{4ex} {\tt common /addynvars\_r/} &
975 \hspace*{4ex} is related to {\it DYNVARS.h} \\
976 \hspace*{4ex} {\tt common /addynvars\_cd/} &
977 \hspace*{4ex} is related to {\it DYNVARS.h} \\
978 \hspace*{4ex} {\tt common /addynvars\_diffkr/} &
979 \hspace*{4ex} is related to {\it DYNVARS.h} \\
980 \hspace*{4ex} {\tt common /addynvars\_kapgm/} &
981 \hspace*{4ex} is related to {\it DYNVARS.h} \\
982 \hspace*{4ex} {\tt common /adtr1\_r/} &
983 \hspace*{4ex} is related to {\it TR1.h} \\
984 \hspace*{4ex} {\tt common /adffields/} &
985 \hspace*{4ex} is related to {\it FFIELDS.h}\\
986 \end{tabular}
987
988 Note that if the structure of the common block changes in the
989 above header files of the forward code, the structure
990 of the adjoint common blocks will change accordingly.
991 Thus, it has to be made sure that the structure of the
992 adjoint common block in the hand-written file {\it adcommon.h}
993 complies with the automatically generated adjoint common blocks
994 in {\it adjoint\_model.F}.
995
996 \subsubsection{File {\it tamc.h}}
997
998 This routine contains the dimensions for TAMC checkpointing.
999 %
1000 \begin{itemize}
1001 %
1002 \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\
1003 3-level checkpointing is enabled, i.e. the timestepping
1004 is divided into three different levels (see Section \ref{???}).
1005 The model state of the outermost ({\tt nchklev\_3}) and the
1006 intermediate ({\tt nchklev\_2}) timestepping loop are stored to file
1007 (handled in {\it the\_main\_loop}).
1008 The innermost loop ({\tt nchklev\_1})
1009 avoids I/O by storing all required variables
1010 to common blocks. This storing may also be necessary if
1011 no checkpointing is chosen
1012 (nonlinear functions, if-statements, iterative loops, ...).
1013 In the present example the dimensions are chosen as follows: \\
1014 \hspace*{4ex} {\tt nchklev\_1 = 36 } \\
1015 \hspace*{4ex} {\tt nchklev\_2 = 30 } \\
1016 \hspace*{4ex} {\tt nchklev\_3 = 60 } \\
1017 To guarantee that the checkpointing intervals span the entire
1018 integration period the following relation must be satisfied: \\
1019 \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\
1020 where {\tt nTimeSteps} is either specified in {\it data}
1021 or computed via \\
1022 \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.
1023 %
1024 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\
1025 No checkpointing is enabled.
1026 In this case the relevant counter is {\tt nchklev\_0}.
1027 Similar to above, the following relation has to be satisfied \\
1028 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.
1029 %
1030 \end{itemize}
1031
1032 The following parameters may be worth describing: \\
1033 %
1034 \hspace*{4ex} {\tt isbyte} \\
1035 \hspace*{4ex} {\tt maxpass} \\
1036 ~
1037
1038 \subsubsection{File {\it makefile}}
1039
1040 This file contains all relevant parameter flags and
1041 lists to run TAMC or TAF.
1042 It is assumed that TAMC is available to you, either locally,
1043 being installed on your network, or remotely through the 'TAMC Utility'.
1044 TAMC is called with the command {\tt tamc} followed by a
1045 number of options. They are described in detail in the
1046 TAMC manual \cite{gie:99}.
1047 Here we briefly discuss the main flags used in the {\it makefile}
1048 %
1049 \begin{itemize}
1050 \item [{\tt tamc}] {\tt
1051 -input <variable names>
1052 -output <variable name> -r4 ... \\
1053 -toplevel <S/R name> -reverse <file names>
1054 }
1055 \end{itemize}
1056 %
1057 \begin{itemize}
1058 %
1059 \item {\tt -toplevel <S/R name>} \\
1060 Name of the toplevel routine, with respect to which the
1061 control flow analysis is performed.
1062 %
1063 \item {\tt -input <variable names>} \\
1064 List of independent variables $ u $ with respect to which the
1065 dependent variable $ J $ is differentiated.
1066 %
1067 \item {\tt -output <variable name>} \\
1068 Dependent variable $ J $ which is to be differentiated.
1069 %
1070 \item {\tt -reverse <file names>} \\
1071 Adjoint code is generated to compute the sensitivity of an
1072 independent variable w.r.t. many dependent variables.
1073 In the discussion of Section ???
1074 the generated adjoint top-level routine computes the product
1075 of the transposed Jacobian matrix $ M^T $ times
1076 the gradient vector $ \nabla_v J $.
1077 \\
1078 {\tt <file names>} refers to the list of files {\it .f} which are to be
1079 analyzed by TAMC. This list is generally smaller than the full list
1080 of code to be compiled. The files not contained are either
1081 above the top-level routine (some initializations), or are
1082 deliberately hidden from TAMC, either because hand-written
1083 adjoint routines exist, or the routines must not (or don't have to)
1084 be differentiated. For each routine which is part of the flow tree
1085 of the top-level routine, but deliberately hidden from TAMC
1086 (or for each package which contains such routines),
1087 a corresponding file {\it .flow} exists containing flow directives
1088 for TAMC.
1089 %
1090 \item {\tt -r4} \\
1091 ~
1092 %
1093 \end{itemize}
1094
1095
1096 \subsubsection{The input parameter files}
1097
1098 \paragraph{File {\it data}}
1099
1100 \paragraph{File {\it data.cost}}
1101
1102 \paragraph{File {\it data.ctrl}}
1103
1104 \paragraph{File {\it data.gmredi}}
1105
1106 \paragraph{File {\it data.grdchk}}
1107
1108 \paragraph{File {\it data.optim}}
1109
1110 \paragraph{File {\it data.pkg}}
1111
1112 \paragraph{File {\it eedata}}
1113
1114 \paragraph{File {\it topog.bin}}
1115
1116 \paragraph{File {\it windx.bin, windy.bin}}
1117
1118 \paragraph{File {\it salt.bin, theta.bin}}
1119
1120 \paragraph{File {\it SSS.bin, SST.bin}}
1121
1122 \paragraph{File {\it pickup*}}
1123
1124 \subsection{Compiling the model and its adjoint}
1125
1126 The built process of the adjoint model is slightly more
1127 complex than that of compiling the forward code.
1128 The main reason is that the adjoint code generation requires
1129 a specific list of routines that are to be differentiated
1130 (as opposed to the automatic generation of a list of
1131 files to be compiled by genmake).
1132 This list excludes routines that don't have to be or must not be
1133 differentiated. For some of the latter routines flow directives
1134 may be necessary, a list of which has to be given as well.
1135 For this reason, a separate {\it makefile} is currently
1136 maintained in the directory {\tt adjoint/}. This
1137 makefile is responsible for the adjoint code generation.
1138
1139 In the following we describe the build process step by step,
1140 assuming you are in the directory {\tt bin/}.
1141 A summary of steps to follow is given at the end.
1142
1143 \paragraph{Adjoint code generation and compilation -- step by step}
1144
1145 \begin{enumerate}
1146 %
1147 \item
1148 {\tt ln -s ../verification/???/code/.genmakerc .} \\
1149 {\tt ln -s ../verification/???/code/*.[Fh] .} \\
1150 Link your customized genmake options, header files,
1151 and modified code to the compile directory.
1152 %
1153 \item
1154 {\tt ../tools/genmake -makefile} \\
1155 Generate your Makefile (cf. Section ???).
1156 %
1157 \item
1158 {\tt make depend} \\
1159 Dependency analysis for the CPP pre-compiler (cf. Section ???).
1160 %
1161 \item
1162 {\tt make small\_f} \\
1163 This is the first difference between forward code compilation
1164 and adjoint code generation and compilation.
1165 Instead of going through the entire compilation process
1166 (CPP precompiling -- {\tt .f}, object code generation -- {\tt .o},
1167 linking of object files and libraries to generate executable),
1168 only the CPP compiler is invoked at this stage to generate
1169 the {\tt .f} files.
1170 %
1171 \item
1172 {\tt cd ../adjoint} \\
1173 {\tt make adtaf} or {\tt make adtamc} \\
1174 Depending on whether you have TAF or TAMC at your disposal,
1175 you'll choose {\tt adtaf} or {\tt adtamc} as your
1176 make target for the {\it makefile} in the directory {\tt adjoint/}.
1177 Several things happen at this stage.
1178 %
1179 \begin{enumerate}
1180 %
1181 \item
1182 The initial template file {\it adjoint\_model.F} which is part
1183 of the compiling list created by {\it genmake} is restored.
1184 %
1185 \item
1186 All Fortran routines {\tt *.f} in {\tt bin/} are
1187 concatenated into a single file (it's current name is
1188 {\it tamc\_code.f}).
1189 %
1190 \item
1191 Adjoint code is generated by TAMC or TAF.
1192 The adjoint code is written to the file {\it tamc\_code\_ad.f}.
1193 It contains all adjoint routines of the forward routines
1194 concatenated in {\it tamc\_code.f}.
1195 For a given forward routines {\tt subroutine routinename}
1196 the adjoint routine is named {\tt adsubroutine routinename}
1197 by default (that default can be changed via the flag
1198 {\tt -admark <markname>}).
1199 Furthermore, it may contain modified code which
1200 incorporates the translation of adjoint store directives
1201 into specific Fortran code.
1202 For a given forward routines {\tt subroutine routinename}
1203 the modified routine is named {\tt mdsubroutine routinename}.
1204 TAMC or TAF info is written to file
1205 {\it tamc\_code.prot} or {\it taf.log}, respectively.
1206 %
1207 \end{enumerate}
1208 %
1209 \item
1210 {\tt make adchange} \\
1211 The multi-threading capability of the MITGCM requires a slight
1212 change in the parameter list of some routines that are related to
1213 to active file handling.
1214 This post-processing invokes the sed script {\it adjoint\_ecco\_sed.com}
1215 to insert the threading counter {\bf myThId} into the parameter list
1216 of those subroutines.
1217 The resulting code is written to file {\it tamc\_code\_sed\_ad.f}
1218 and appended to the file {\it adjoint\_model.F}.
1219 This concludes the adjoint code generation.
1220 %
1221 \item
1222 {\tt cd ../bin} \\
1223 {\tt make} \\
1224 The file {\it adjoint\_model.F} now contains the full adjoint code.
1225 All routines are now compiled.
1226 %
1227 \end{enumerate}
1228
1229 \paragraph{Adjoint code generation and compilation -- summary}
1230 ~ \\
1231
1232 \[
1233 \boxed{
1234 \begin{split}
1235 ~ & \mbox{\tt cd bin} \\
1236 ~ & \mbox{\tt ln -s ../verification/my\_experiment/code/.genmakerc .} \\
1237 ~ & \mbox{\tt ln -s ../verification/my\_experiment/code/*.[Fh] .} \\
1238 ~ & \mbox{\tt ../tools/genmake -makefile} \\
1239 ~ & \mbox{\tt make depend} \\
1240 ~ & \mbox{\tt make small\_f} \\
1241 ~ & \mbox{\tt cd ../adjoint} \\
1242 ~ & \mbox{\tt make adtaf <OR: make adtamc>} \\
1243 ~ & \mbox{\tt make adchange} \\
1244 ~ & \mbox{\tt cd ../bin} \\
1245 ~ & \mbox{\tt make} \\
1246 \end{split}
1247 }
1248 \]
1249
1250 \newpage
1251
1252 %**********************************************************************
1253 \section{TLM and ADM generation in general}
1254 \label{sec_ad_setup_gen}
1255 %**********************************************************************
1256
1257 In this section we describe in a general fashion
1258 the parts of the code that are relevant for automatic
1259 differentiation using the software tool TAMC.
1260
1261 \begin{figure}[b!]
1262 \input{part5/doc_ad_the_model}
1263 \caption{~}
1264 \label{fig:adthemodel}
1265 \end{figure}
1266
1267 The basic flow is depicted in \ref{fig:adthemodel}.
1268 If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
1269 {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
1270 invokes the adjoint of this routine, {\it adthe\_main\_loop},
1271 which is the toplevel routine in terms of reverse mode computation.
1272 The routine {\it adthe\_main\_loop} has been generated using TAMC.
1273 It contains both the forward integration of the full model,
1274 any additional storing that is required for efficient checkpointing,
1275 and the reverse integration of the adjoint model.
1276 The structure of {\it adthe\_main\_loop} has been strongly
1277 simplified for clarification; in particular, no checkpointing
1278 procedures are shown here.
1279 Prior to the call of {\it adthe\_main\_loop}, the routine
1280 {\it ctrl\_unpack} is invoked to unpack the control vector,
1281 and following that call, the routine {\it ctrl\_pack}
1282 is invoked to pack the control vector
1283 (cf. Section \ref{section_ctrl}).
1284 If gradient checks are to be performed, the option
1285 {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
1286 the driver routine {\it grdchk\_main} is called after
1287 the gradient has been computed via the adjoint
1288 (cf. Section \ref{section_grdchk}).
1289
1290 \subsection{The cost function (dependent variable)
1291 \label{section_cost}}
1292
1293 The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1294 It is a function of the input variables $ \vec{u} $ via the composition
1295 $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1296 The input is referred to as the
1297 {\sf independent variables} or {\sf control variables}.
1298 All aspects relevant to the treatment of the cost function $ {\cal J} $
1299 (parameter setting, initialization, accumulation,
1300 final evaluation), are controlled by the package {\it pkg/cost}.
1301
1302 \begin{figure}[h!]
1303 \input{part5/doc_cost_flow}
1304 \caption{~}
1305 \label{fig:costflow}
1306 \end{figure}
1307
1308 \subsubsection{genmake and CPP options}
1309 %
1310 \begin{itemize}
1311 %
1312 \item
1313 \fbox{
1314 \begin{minipage}{12cm}
1315 {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1316 \end{minipage}
1317 }
1318 \end{itemize}
1319 %
1320 The directory {\it pkg/cost} can be included to the
1321 compile list in 3 different ways (cf. Section \ref{???}):
1322 %
1323 \begin{enumerate}
1324 %
1325 \item {\it genmake}: \\
1326 Change the default settings in the file {\it genmake} by adding
1327 {\bf cost} to the {\bf enable} list (not recommended).
1328 %
1329 \item {\it .genmakerc}: \\
1330 Customize the settings of {\bf enable}, {\bf disable} which are
1331 appropriate for your experiment in the file {\it .genmakerc}
1332 and add the file to your compile directory.
1333 %
1334 \item genmake-options: \\
1335 Call {\it genmake} with the option
1336 {\tt genmake -enable=cost}.
1337 %
1338 \end{enumerate}
1339 The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1340 Each specific cost function contribution has its own option.
1341 For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1342 All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1343 Since the cost function is usually used in conjunction with
1344 automatic differentiation, the CPP option
1345 {\bf ALLOW\_ADJOINT\_RUN} should be defined
1346 (file {\it CPP\_OPTIONS.h}).
1347
1348 \subsubsection{Initialization}
1349 %
1350 The initialization of the {\it cost} package is readily enabled
1351 as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.
1352 %
1353 \begin{itemize}
1354 %
1355 \item
1356 \fbox{
1357 \begin{minipage}{12cm}
1358 Parameters: {\it cost\_readparms}
1359 \end{minipage}
1360 }
1361 \\
1362 This S/R
1363 reads runtime flags and parameters from file {\it data.cost}.
1364 For the present example the only relevant parameter read
1365 is {\bf mult\_tracer}. This multiplier enables different
1366 cost function contributions to be switched on
1367 ( = 1.) or off ( = 0.) at runtime.
1368 For more complex cost functions which involve model vs. data
1369 misfits, the corresponding data filenames and data
1370 specifications (start date and time, period, ...) are read
1371 in this S/R.
1372 %
1373 \item
1374 \fbox{
1375 \begin{minipage}{12cm}
1376 Variables: {\it cost\_init}
1377 \end{minipage}
1378 }
1379 \\
1380 This S/R
1381 initializes the different cost function contributions.
1382 The contribution for the present example is {\bf objf\_tracer}
1383 which is defined on each tile (bi,bj).
1384 %
1385 \end{itemize}
1386 %
1387 \subsubsection{Accumulation}
1388 %
1389 \begin{itemize}
1390 %
1391 \item
1392 \fbox{
1393 \begin{minipage}{12cm}
1394 {\it cost\_tile}, {\it cost\_tracer}
1395 \end{minipage}
1396 }
1397 \end{itemize}
1398 %
1399 The 'driver' routine
1400 {\it cost\_tile} is called at the end of each time step.
1401 Within this 'driver' routine, S/R are called for each of
1402 the chosen cost function contributions.
1403 In the present example ({\bf ALLOW\_COST\_TRACER}),
1404 S/R {\it cost\_tracer} is called.
1405 It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).
1406 %
1407 \subsubsection{Finalize all contributions}
1408 %
1409 \begin{itemize}
1410 %
1411 \item
1412 \fbox{
1413 \begin{minipage}{12cm}
1414 {\it cost\_final}
1415 \end{minipage}
1416 }
1417 \end{itemize}
1418 %
1419 At the end of the forward integration S/R {\it cost\_final}
1420 is called. It accumulates the total cost function {\bf fc}
1421 from each contribution and sums over all tiles:
1422 \begin{equation}
1423 {\cal J} \, = \,
1424 {\rm fc} \, = \,
1425 {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}
1426 {\rm objf\_tracer}(bi,bj) \, + \, ...
1427 \end{equation}
1428 %
1429 The total cost function {\bf fc} will be the
1430 'dependent' variable in the argument list for TAMC, i.e.
1431 \begin{verbatim}
1432 tamc -output 'fc' ...
1433 \end{verbatim}
1434
1435 %%%% \end{document}
1436
1437 \begin{figure}
1438 \input{part5/doc_ad_the_main}
1439 \caption{~}
1440 \label{fig:adthemain}
1441 \end{figure}
1442
1443 \subsection{The control variables (independent variables)
1444 \label{section_ctrl}}
1445
1446 The control variables are a subset of the model input
1447 (initial conditions, boundary conditions, model parameters).
1448 Here we identify them with the variable $ \vec{u} $.
1449 All intermediate variables whose derivative w.r.t. control
1450 variables do not vanish are called {\sf active variables}.
1451 All subroutines whose derivative w.r.t. the control variables
1452 don't vanish are called {\sf active routines}.
1453 Read and write operations from and to file can be viewed
1454 as variable assignments. Therefore, files to which
1455 active variables are written and from which active variables
1456 are read are called {\sf active files}.
1457 All aspects relevant to the treatment of the control variables
1458 (parameter setting, initialization, perturbation)
1459 are controlled by the package {\it pkg/ctrl}.
1460
1461 \begin{figure}[h!]
1462 \input{part5/doc_ctrl_flow}
1463 \caption{~}
1464 \label{fig:ctrlflow}
1465 \end{figure}
1466
1467 \subsubsection{genmake and CPP options}
1468 %
1469 \begin{itemize}
1470 %
1471 \item
1472 \fbox{
1473 \begin{minipage}{12cm}
1474 {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1475 \end{minipage}
1476 }
1477 \end{itemize}
1478 %
1479 To enable the directory to be included to the compile list,
1480 {\bf ctrl} has to be added to the {\bf enable} list in
1481 {\it .genmakerc} (or {\it genmake} itself).
1482 Each control variable is enabled via its own CPP option
1483 in {\it ECCO\_CPPOPTIONS.h}.
1484
1485 \subsubsection{Initialization}
1486 %
1487 \begin{itemize}
1488 %
1489 \item
1490 \fbox{
1491 \begin{minipage}{12cm}
1492 Parameters: {\it ctrl\_readparms}
1493 \end{minipage}
1494 }
1495 \\
1496 %
1497 This S/R
1498 reads runtime flags and parameters from file {\it data.ctrl}.
1499 For the present example the file contains the file names
1500 of each control variable that is used.
1501 In addition, the number of wet points for each control
1502 variable and the net dimension of the space of control
1503 variables (counting wet points only) {\bf nvarlength}
1504 is determined.
1505 Masks for wet points for each tile {\bf (bi,\,bj)}
1506 and vertical layer {\bf k} are generated for the three
1507 relevant categories on the C-grid:
1508 {\bf nWetCtile} for tracer fields,
1509 {\bf nWetWtile} for zonal velocity fields,
1510 {\bf nWetStile} for meridional velocity fields.
1511 %
1512 \item
1513 \fbox{
1514 \begin{minipage}{12cm}
1515 Control variables, control vector,
1516 and their gradients: {\it ctrl\_unpack}
1517 \end{minipage}
1518 }
1519 \\
1520 %
1521 Two important issues related to the handling of the control
1522 variables in the MITGCM need to be addressed.
1523 First, in order to save memory, the control variable arrays
1524 are not kept in memory, but rather read from file and added
1525 to the initial fields during the model initialization phase.
1526 Similarly, the corresponding adjoint fields which represent
1527 the gradient of the cost function w.r.t. the control variables
1528 are written to file at the end of the adjoint integration.
1529 Second, in addition to the files holding the 2-dim. and 3-dim.
1530 control variables and the corresponding cost gradients,
1531 a 1-dim. {\sf control vector}
1532 and {\sf gradient vector} are written to file. They contain
1533 only the wet points of the control variables and the corresponding
1534 gradient.
1535 This leads to a significant data compression.
1536 Furthermore, an option is available
1537 ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1538 non-dimensionalise the control and gradient vector,
1539 which otherwise would contain different pieces of different
1540 magnitudes and units.
1541 Finally, the control and gradient vector can be passed to a
1542 minimization routine if an update of the control variables
1543 is sought as part of a minimization exercise.
1544
1545 The files holding fields and vectors of the control variables
1546 and gradient are generated and initialised in S/R {\it ctrl\_unpack}.
1547 %
1548 \end{itemize}
1549
1550 \subsubsection{Perturbation of the independent variables}
1551 %
1552 The dependency flow for differentiation w.r.t. the controls
1553 starts with adding a perturbation onto the input variable,
1554 thus defining the independent or control variables for TAMC.
1555 Three types of controls may be considered:
1556 %
1557 \begin{itemize}
1558 %
1559 \item
1560 \fbox{
1561 \begin{minipage}{12cm}
1562 {\it ctrl\_map\_ini} (initial value sensitivity):
1563 \end{minipage}
1564 }
1565 \\
1566 %
1567 Consider as an example the initial tracer distribution
1568 {\bf tr1} as control variable.
1569 After {\bf tr1} has been initialised in
1570 {\it ini\_tr1} (dynamical variables such as
1571 temperature and salinity are initialised in {\it ini\_fields}),
1572 a perturbation anomaly is added to the field in S/R
1573 {\it ctrl\_map\_ini}
1574 %
1575 \begin{equation}
1576 \begin{split}
1577 u & = \, u_{[0]} \, + \, \Delta u \\
1578 {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1579 \label{perturb}
1580 \end{split}
1581 \end{equation}
1582 %
1583 {\bf xx\_tr1} is a 3-dim. global array
1584 holding the perturbation. In the case of a simple
1585 sensitivity study this array is identical to zero.
1586 However, it's specification is essential in the context
1587 of automatic differentiation since TAMC
1588 treats the corresponding line in the code symbolically
1589 when determining the differentiation chain and its origin.
1590 Thus, the variable names are part of the argument list
1591 when calling TAMC:
1592 %
1593 \begin{verbatim}
1594 tamc -input 'xx_tr1 ...' ...
1595 \end{verbatim}
1596 %
1597 Now, as mentioned above, the MITGCM avoids maintaining
1598 an array for each control variable by reading the
1599 perturbation to a temporary array from file.
1600 To ensure the symbolic link to be recognized by TAMC, a scalar
1601 dummy variable {\bf xx\_tr1\_dummy} is introduced
1602 and an 'active read' routine of the adjoint support
1603 package {\it pkg/autodiff} is invoked.
1604 The read-procedure is tagged with the variable
1605 {\bf xx\_tr1\_dummy} enabling TAMC to recognize the
1606 initialization of the perturbation.
1607 The modified call of TAMC thus reads
1608 %
1609 \begin{verbatim}
1610 tamc -input 'xx_tr1_dummy ...' ...
1611 \end{verbatim}
1612 %
1613 and the modified operation to (\ref{perturb})
1614 in the code takes on the form
1615 %
1616 \begin{verbatim}
1617 call active_read_xyz(
1618 & ..., tmpfld3d, ..., xx_tr1_dummy, ... )
1619
1620 tr1(...) = tr1(...) + tmpfld3d(...)
1621 \end{verbatim}
1622 %
1623 Note, that reading an active variable corresponds
1624 to a variable assignment. Its derivative corresponds
1625 to a write statement of the adjoint variable.
1626 The 'active file' routines have been designed
1627 to support active read and corresponding adjoint active write
1628 operations (and vice versa).
1629 %
1630 \item
1631 \fbox{
1632 \begin{minipage}{12cm}
1633 {\it ctrl\_map\_forcing} (boundary value sensitivity):
1634 \end{minipage}
1635 }
1636 \\
1637 %
1638 The handling of boundary values as control variables
1639 proceeds exactly analogous to the initial values
1640 with the symbolic perturbation taking place in S/R
1641 {\it ctrl\_map\_forcing}.
1642 Note however an important difference:
1643 Since the boundary values are time dependent with a new
1644 forcing field applied at each time steps,
1645 the general problem may be thought of as
1646 a new control variable at each time step
1647 (or, if the perturbation is averaged over a certain period,
1648 at each $ N $ timesteps), i.e.
1649 \[
1650 u_{\rm forcing} \, = \,
1651 \{ \, u_{\rm forcing} ( t_n ) \, \}_{
1652 n \, = \, 1, \ldots , {\rm nTimeSteps} }
1653 \]
1654 %
1655 In the current example an equilibrium state is considered,
1656 and only an initial perturbation to
1657 surface forcing is applied with respect to the
1658 equilibrium state.
1659 A time dependent treatment of the surface forcing is
1660 implemented in the ECCO environment, involving the
1661 calendar ({\it cal}~) and external forcing ({\it exf}~) packages.
1662 %
1663 \item
1664 \fbox{
1665 \begin{minipage}{12cm}
1666 {\it ctrl\_map\_params} (parameter sensitivity):
1667 \end{minipage}
1668 }
1669 \\
1670 %
1671 This routine is not yet implemented, but would proceed
1672 proceed along the same lines as the initial value sensitivity.
1673 The mixing parameters {\bf diffkr} and {\bf kapgm}
1674 are currently added as controls in {\it ctrl\_map\_ini.F}.
1675 %
1676 \end{itemize}
1677 %
1678
1679 \subsubsection{Output of adjoint variables and gradient}
1680 %
1681 Several ways exist to generate output of adjoint fields.
1682 %
1683 \begin{itemize}
1684 %
1685 \item
1686 \fbox{
1687 \begin{minipage}{12cm}
1688 {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1689 \end{minipage}
1690 }
1691 \\
1692 \begin{itemize}
1693 %
1694 \item {\bf xx\_...}: the control variable fields \\
1695 Before the forward integration, the control
1696 variables are read from file {\bf xx\_ ...} and added to
1697 the model field.
1698 %
1699 \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1700 $ \nabla _{u}{\cal J} $ for each control variable \\
1701 After the adjoint integration the corresponding adjoint
1702 variables are written to {\bf adxx\_ ...}.
1703 %
1704 \end{itemize}
1705 %
1706 \item
1707 \fbox{
1708 \begin{minipage}{12cm}
1709 {\it ctrl\_unpack, ctrl\_pack}:
1710 \end{minipage}
1711 }
1712 \\
1713 %
1714 \begin{itemize}
1715 %
1716 \item {\bf vector\_ctrl}: the control vector \\
1717 At the very beginning of the model initialization,
1718 the updated compressed control vector is read (or initialised)
1719 and distributed to 2-dim. and 3-dim. control variable fields.
1720 %
1721 \item {\bf vector\_grad}: the gradient vector \\
1722 At the very end of the adjoint integration,
1723 the 2-dim. and 3-dim. adjoint variables are read,
1724 compressed to a single vector and written to file.
1725 %
1726 \end{itemize}
1727 %
1728 \item
1729 \fbox{
1730 \begin{minipage}{12cm}
1731 {\it addummy\_in\_stepping}:
1732 \end{minipage}
1733 }
1734 \\
1735 In addition to writing the gradient at the end of the
1736 forward/adjoint integration, many more adjoint variables
1737 of the model state
1738 at intermediate times can be written using S/R
1739 {\it addummy\_in\_stepping}.
1740 This routine is part of the adjoint support package
1741 {\it pkg/autodiff} (cf.f. below).
1742 To be part of the adjoint code, the corresponding S/R
1743 {\it dummy\_in\_stepping} has to be called in the forward
1744 model (S/R {\it the\_main\_loop}) at the appropriate place.
1745
1746 {\it dummy\_in\_stepping} is essentially empty,
1747 the corresponding adjoint routine is hand-written rather
1748 than generated automatically.
1749 Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1750 ensure that TAMC does not automatically
1751 generate {\it addummy\_in\_stepping} by trying to differentiate
1752 {\it dummy\_in\_stepping}, but instead refers to
1753 the hand-written routine.
1754
1755 {\it dummy\_in\_stepping} is called in the forward code
1756 at the beginning of each
1757 timestep, before the call to {\it dynamics}, thus ensuring
1758 that {\it addummy\_in\_stepping} is called at the end of
1759 each timestep in the adjoint calculation, after the call to
1760 {\it addynamics}.
1761
1762 {\it addummy\_in\_stepping} includes the header files
1763 {\it adcommon.h}.
1764 This header file is also hand-written. It contains
1765 the common blocks
1766 {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1767 {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1768 {\bf /adtr1\_r/}, {\bf /adffields/},
1769 which have been extracted from the adjoint code to enable
1770 access to the adjoint variables.
1771 %
1772 \end{itemize}
1773
1774
1775 \subsubsection{Control variable handling for
1776 optimization applications}
1777
1778 In optimization mode the cost function $ {\cal J}(u) $ is sought
1779 to be minimized with respect to a set of control variables
1780 $ \delta {\cal J} \, = \, 0 $, in an iterative manner.
1781 The gradient $ \nabla _{u}{\cal J} |_{u_{[k]}} $ together
1782 with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1783 at iteration step $ k $ serve
1784 as input to a minimization routine (e.g. quasi-Newton method,
1785 conjugate gradient, ... \cite{gil_lem:89})
1786 to compute an update in the
1787 control variable for iteration step $k+1$
1788 \[
1789 u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]}
1790 \quad \mbox{satisfying} \quad
1791 {\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right)
1792 \]
1793 $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1794 to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1795 $ k+1 $.
1796 Tab. \ref{???} sketches the flow between forward/adjoint model
1797 and the minimization routine.
1798
1799 \begin{eqnarray*}
1800 \scriptsize
1801 \begin{array}{ccccc}
1802 u_{[0]} \,\, , \,\, \Delta u_{[k]} & ~ & ~ & ~ & ~ \\
1803 {\Big\downarrow}
1804 & ~ & ~ & ~ & ~ \\
1805 ~ & ~ & ~ & ~ & ~ \\
1806 \hline
1807 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1808 \multicolumn{1}{|c}{
1809 u_{[k]} = u_{[0]} + \Delta u_{[k]}} &
1810 \stackrel{\bf forward}{\bf \longrightarrow} &
1811 v_{[k]} = M \left( u_{[k]} \right) &
1812 \stackrel{\bf forward}{\bf \longrightarrow} &
1813 \multicolumn{1}{c|}{
1814 {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1815 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1816 \hline
1817 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1818 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1819 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1820 \hline
1821 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1822 \multicolumn{1}{|c}{
1823 \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1824 T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1825 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1826 ad \, v_{[k]} (\delta {\cal J}) =
1827 \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
1828 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1829 \multicolumn{1}{c|}{ ad \, {\cal J} = \delta {\cal J}} \\
1830 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1831 \hline
1832 ~ & ~ & ~ & ~ & ~ \\
1833 \hspace*{15ex}{\Bigg\downarrow}
1834 \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1835 & ~ & ~ & ~ & ~ \\
1836 ~ & ~ & ~ & ~ & ~ \\
1837 \hline
1838 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1839 \multicolumn{1}{|c}{
1840 {\cal J}_{[k]} \,\, , \,\, \nabla_u {\cal J}_{[k]}} &
1841 {\mathbf \longrightarrow} & \text{\bf minimisation} &
1842 {\mathbf \longrightarrow} &
1843 \multicolumn{1}{c|}{ \Delta u_{[k+1]}} \\
1844 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1845 \hline
1846 ~ & ~ & ~ & ~ & ~ \\
1847 ~ & ~ & ~ & ~ & \Big\downarrow \\
1848 ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1849 \end{array}
1850 \end{eqnarray*}
1851
1852 The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1853 the link between the model and the minimization routine.
1854 As described in Section \ref{???}
1855 the {\it unpack} and {\it pack} routines read and write
1856 control and gradient {\it vectors} which are compressed
1857 to contain only wet points, in addition to the full
1858 2-dim. and 3-dim. fields.
1859 The corresponding I/O flow looks as follows:
1860
1861 \vspace*{0.5cm}
1862
1863 {\scriptsize
1864 \begin{tabular}{ccccc}
1865 {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1866 {\big\downarrow} & ~ & ~ & ~ & ~ \\
1867 \cline{1-1}
1868 \multicolumn{1}{|c|}{\it ctrl\_unpack} & ~ & ~ & ~ & ~ \\
1869 \cline{1-1}
1870 {\big\downarrow} & ~ & ~ & ~ & ~ \\
1871 \cline{3-3}
1872 \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1873 \multicolumn{1}{|c|}{~} & ~ & ~ \\
1874 \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1875 $\stackrel{\mbox{read}}{\longrightarrow}$ &
1876 \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1877 \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}
1878 & ~ & ~ \\
1879 \cline{3-3}
1880 ~ & ~ & $\downarrow$ & ~ & ~ \\
1881 \cline{3-3}
1882 ~ & ~ &
1883 \multicolumn{1}{|c|}{~} & ~ &
1884 \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$} \\
1885 ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1886 $\stackrel{\mbox{write}}{\longrightarrow}$ &
1887 \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1888 ~ & ~ & \multicolumn{1}{|c|}{~}
1889 & ~ & \multicolumn{1}{l}{\bf \vdots} \\
1890 \cline{3-3}
1891 ~ & ~ & ~ & ~ & {\big\downarrow} \\
1892 \cline{5-5}
1893 ~ & ~ & ~ & ~ & \multicolumn{1}{|c|}{\it ctrl\_pack} \\
1894 \cline{5-5}
1895 ~ & ~ & ~ & ~ & {\big\downarrow} \\
1896 ~ & ~ & ~ & ~ & {\bf vector\_grad\_$<$k$>$ } \\
1897 \end{tabular}
1898 }
1899
1900 \vspace*{0.5cm}
1901
1902
1903 {\it ctrl\_unpack} reads the updated control vector
1904 {\bf vector\_ctrl\_$<$k$>$}.
1905 It distributes the different control variables to
1906 2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1907 At the start of the forward integration the control variables
1908 are read from {\it xx\_...$<$k$>$} and added to the
1909 field.
1910 Correspondingly, at the end of the adjoint integration
1911 the adjoint fields are written
1912 to {\it adxx\_...$<$k$>$}, again via the active file routines.
1913 Finally, {\it ctrl\_pack} collects all adjoint files
1914 and writes them to the compressed vector file
1915 {\bf vector\_grad\_$<$k$>$}.
1916
1917 \subsection{TLM and ADM generation via TAMC}
1918
1919
1920
1921 \subsection{Flow directives and adjoint support routines \label{section_flowdir}}
1922
1923 \subsection{Store directives and checkpointing \label{section_checkpointing}}
1924
1925 \subsection{Gradient checks \label{section_grdchk}}
1926
1927 \subsection{Second derivative generation via TAMC}
1928
1929 \section{Example of adjoint code}

  ViewVC Help
Powered by ViewVC 1.1.22