/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Contents of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download) (as text)
Wed Oct 10 16:06:41 2001 UTC (23 years, 9 months ago) by heimbach
Branch: MAIN
Changes since 1.4: +148 -22 lines
File MIME type: application/x-tex
Adding pieces to part5 and part8.

1 % $Header: /u/gcmpack/mitgcmdoc/part5/doc_ad_2.tex,v 1.4 2001/10/05 22:22:20 heimbach Exp $
2 % $Name: $
3
4 {\sf Automatic differentiation} (AD), also referred to as algorithmic
5 (or, more loosely, computational) differentiation, involves
6 automatically deriving code to calculate
7 partial derivatives from an existing fully non-linear prognostic code.
8 (see \cite{gri:00}).
9 A software tool is used that parses and transforms source files
10 according to a set of linguistic and mathematical rules.
11 AD tools are like source-to-source translators in that
12 they parse a program code as input and produce a new program code
13 as output.
14 However, unlike a pure source-to-source translation, the output program
15 represents a new algorithm, such as the evaluation of the
16 Jacobian, the Hessian, or higher derivative operators.
17 In principle, a variety of derived algorithms
18 can be generated automatically in this way.
19
20 The MITGCM has been adapted for use with the
21 Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
22 (Transformation of Algorithms in Fortran), developed
23 by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
24 The first application of the adjoint of the MITGCM for senistivity
25 studies has been published by \cite{maro-eta:99}.
26 \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
27 for ocean state estimation studies.
28 In the following we shall refer to TAMC and TAF synonymously,
29 except were explicitly stated otherwise.
30
31 TAMC exploits the chain rule for computing the first
32 derivative of a function with
33 respect to a set of input variables.
34 Treating a given forward code as a composition of operations --
35 each line representing a compositional element, the chain rule is
36 rigorously applied to the code, line by line. The resulting
37 tangent linear or adjoint code,
38 then, may be thought of as the composition in
39 forward or reverse order, respectively, of the
40 Jacobian matrices of the forward code's compositional elements.
41
42 %**********************************************************************
43 \section{Some basic algebra}
44 \label{sec_ad_algebra}
45 %**********************************************************************
46
47 Let $ \cal{M} $ be a general nonlinear, model, i.e. a
48 mapping from the $m$-dimensional space
49 $U \subset I\!\!R^m$ of input variables
50 $\vec{u}=(u_1,\ldots,u_m)$
51 (model parameters, initial conditions, boundary conditions
52 such as forcing functions) to the $n$-dimensional space
53 $V \subset I\!\!R^n$ of
54 model output variable $\vec{v}=(v_1,\ldots,v_n)$
55 (model state, model diagnostcs, objective function, ...)
56 under consideration,
57 %
58 \begin{equation}
59 \begin{split}
60 {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
61 ~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
62 {\cal M}(\vec{u})
63 \label{fulloperator}
64 \end{split}
65 \end{equation}
66 %
67 The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
68 some given basis vectors
69 $ {\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m} $ and
70 $ {\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n} $ as
71 \[
72 \vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i},
73 \qquad
74 \vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j}
75 \]
76
77 Two routes may be followed to determine the sensitivity of the
78 output variable $\vec{v}$ to its input $\vec{u}$.
79
80 \subsection{Forward or direct sensitivity}
81 %
82 Consider a perturbation to the input variables $\delta \vec{u}$
83 (typically a single component
84 $\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}$).
85 Their effect on the output may be obtained via the linear
86 approximation of the model $ {\cal M}$ in terms of its Jacobian matrix
87 $ M $, evaluated in the point $u^{(0)}$ according to
88 %
89 \begin{equation}
90 \delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u}
91 \label{tangent_linear}
92 \end{equation}
93 with resulting output perturbation $\delta \vec{v}$.
94 In components
95 $M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i} $,
96 it reads
97 %
98 \begin{equation}
99 \delta v_{j} \, = \, \sum_{i}
100 \left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \,
101 \delta u_{i}
102 \label{jacobi_matrix}
103 \end{equation}
104 %
105 Eq. (\ref{tangent_linear}) is the {\sf tangent linear model (TLM)}.
106 In contrast to the full nonlinear model $ {\cal M} $, the operator
107 $ M $ is just a matrix
108 which can readily be used to find the forward sensitivity of $\vec{v}$ to
109 perturbations in $u$,
110 but if there are very many input variables $(\gg O(10^{6})$ for
111 large-scale oceanographic application), it quickly becomes
112 prohibitive to proceed directly as in (\ref{tangent_linear}),
113 if the impact of each component $ {\bf e_{i}} $ is to be assessed.
114
115 \subsection{Reverse or adjoint sensitivity}
116 %
117 Let us consider the special case of a
118 scalar objective function ${\cal J}(\vec{v})$ of the model output (e.g.
119 the total meridional heat transport,
120 the total uptake of $CO_{2}$ in the Southern
121 Ocean over a time interval,
122 or a measure of some model-to-data misfit)
123 %
124 \begin{eqnarray}
125 \begin{array}{cccccc}
126 {\cal J} \, : & U &
127 \longrightarrow & V &
128 \longrightarrow & I \!\! R \\
129 ~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) &
130 \longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u}))
131 \end{array}
132 \label{compo}
133 \end{eqnarray}
134 %
135 The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
136 \[
137 {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
138 \]
139 can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
140 w.r.t. their corresponding inner product
141 $\left\langle \,\, , \,\, \right\rangle $
142 %
143 \begin{equation}
144 \begin{split}
145 {\cal J} & = \,
146 {\cal J} |_{\vec{u}^{(0)}} \, + \,
147 \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
148 \, + \, O(\delta \vec{u}^2) \\
149 ~ & = \,
150 {\cal J} |_{\vec{v}^{(0)}} \, + \,
151 \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
152 \, + \, O(\delta \vec{v}^2)
153 \end{split}
154 \label{deljidentity}
155 \end{equation}
156 %
157 (note, that the gradient $ \nabla f $ is a co-vector, therefore
158 its transpose is required in the above inner product).
159 Then, using the representation of
160 $ \delta {\cal J} =
161 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle $,
162 the definition
163 of an adjoint operator $ A^{\ast} $ of a given operator $ A $,
164 \[
165 \left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle =
166 \left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle
167 \]
168 which for finite-dimensional vector spaces is just the
169 transpose of $ A $,
170 \[
171 A^{\ast} \, = \, A^T
172 \]
173 and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
174 we note that
175 (omitting $|$'s):
176 %
177 \begin{equation}
178 \delta {\cal J}
179 \, = \,
180 \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle
181 \, = \,
182 \left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle
183 \, = \,
184 \left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \,
185 \delta \vec{u} \, \right\rangle
186 \label{inner}
187 \end{equation}
188 %
189 With the identity (\ref{deljidentity}), we then find that
190 the gradient $ \nabla _{u}{\cal J} $ can be readily inferred by
191 invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
192 %
193 \begin{equation}
194 \begin{split}
195 \nabla _{u}{\cal J}^T |_{\vec{u}} &
196 = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\
197 ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
198 ~ & = \, \delta \vec{u}^{\ast}
199 \end{split}
200 \label{adjoint}
201 \end{equation}
202 %
203 Eq. (\ref{adjoint}) is the {\sf adjoint model (ADM)},
204 in which $M^T$ is the adjoint (here, the transpose) of the
205 tangent linear operator $M$, $ \delta \vec{v}^{\ast} $
206 the adjoint variable of the model state $ \vec{v} $, and
207 $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
208
209 The {\sf reverse} nature of the adjoint calculation can be readily
210 seen as follows.
211 Consider a model integration which consists of $ \Lambda $
212 consecutive operations
213 $ {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
214 ...... ( {\cal M}_{\lambda} (
215 ......
216 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
217 where the ${\cal M}$'s could be the elementary steps, i.e. single lines
218 in the code of the model, or successive time steps of the
219 model integration,
220 starting at step 0 and moving up to step $\Lambda$, with intermediate
221 ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
222 ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
223 Let ${\cal J}$ be a cost funciton which explicitly depends on the
224 final state $\vec{v}$ only
225 (this restriction is for clarity reasons only).
226 %
227 ${\cal J}(u)$ may be decomposed according to:
228 %
229 \begin{equation}
230 {\cal J}({\cal M}(\vec{u})) \, = \,
231 {\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
232 ...... ( {\cal M}_{\lambda} (
233 ......
234 ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))))
235 \label{compos}
236 \end{equation}
237 %
238 Then, according to the chain rule, the forward calculation reads,
239 in terms of the Jacobi matrices
240 (we've omitted the $ | $'s which, nevertheless are important
241 to the aspect of {\it tangent} linearity;
242 note also that by definition
243 $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
244 = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
245 %
246 \begin{equation}
247 \begin{split}
248 \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
249 \nabla_v {\cal J} \cdot M_{\Lambda}
250 \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
251 M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
252 ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
253 \end{split}
254 \label{forward}
255 \end{equation}
256 %
257 whereas in reverse mode we have
258 %
259 \begin{equation}
260 \boxed{
261 \begin{split}
262 M^T ( \nabla_v {\cal J}^T) & = \,
263 M_{0}^T \cdot M_{1}^T
264 \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
265 M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\
266 ~ & = \, M_{0}^T \cdot M_{1}^T
267 \cdot ...... \cdot
268 \nabla_{v^{(\lambda)}} {\cal J}^T \\
269 ~ & = \, \nabla_u {\cal J}^T
270 \end{split}
271 }
272 \label{reverse}
273 \end{equation}
274 %
275 clearly expressing the reverse nature of the calculation.
276 Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
277 If the intermediate steps $\lambda$ in
278 eqn. (\ref{compos}) -- (\ref{reverse})
279 represent the model state (forward or adjoint) at each
280 intermediate time step as noted above, then correspondingly,
281 $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
282 \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
283 It thus becomes evident that the adjoint calculation also
284 yields the adjoint of each model state component
285 $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
286 %
287 \begin{equation}
288 \boxed{
289 \begin{split}
290 \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
291 & = \,
292 M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
293 M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
294 ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
295 \end{split}
296 }
297 \end{equation}
298 %
299 in close analogy to eq. (\ref{adjoint})
300 We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
301 are the Lagrange multipliers of the model equations which determine
302 $ \vec{v}^{(\lambda)}$.
303
304 In coponents, eq. (\ref{adjoint}) reads as follows.
305 Let
306 \[
307 \begin{array}{rclcrcl}
308 \delta \vec{u} & = &
309 \left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad &
310 \delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = &
311 \left(
312 \frac{\partial {\cal J}}{\partial u_1},\ldots,
313 \frac{\partial {\cal J}}{\partial u_m}
314 \right)^T \\
315 \delta \vec{v} & = &
316 \left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad &
317 \delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = &
318 \left(
319 \frac{\partial {\cal J}}{\partial v_1},\ldots,
320 \frac{\partial {\cal J}}{\partial v_n}
321 \right)^T \\
322 \end{array}
323 \]
324 denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
325 and their adjoint varaiables;
326 further
327 \[
328 M \, = \, \left(
329 \begin{array}{ccc}
330 \frac{\partial {\cal M}_1}{\partial u_1} & \ldots &
331 \frac{\partial {\cal M}_1}{\partial u_m} \\
332 \vdots & ~ & \vdots \\
333 \frac{\partial {\cal M}_n}{\partial u_1} & \ldots &
334 \frac{\partial {\cal M}_n}{\partial u_m} \\
335 \end{array}
336 \right)
337 \]
338 is the Jacobi matrix of $ {\cal M} $
339 (an $ n \times m $ matrix)
340 such that $ \delta \vec{v} = M \cdot \delta \vec{u} $, or
341 \[
342 \delta v_{j}
343 \, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i}
344 \, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
345 \delta u_{i}
346 \]
347 %
348 Then eq. (\ref{adjoint}) takes the form
349 \[
350 \delta u_{i}^{\ast}
351 \, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast}
352 \, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
353 \delta v_{j}^{\ast}
354 \]
355 %
356 or
357 %
358 \[
359 \left(
360 \begin{array}{c}
361 \left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\
362 \vdots \\
363 \left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\
364 \end{array}
365 \right)
366 \, = \,
367 \left(
368 \begin{array}{ccc}
369 \left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}}
370 & \ldots &
371 \left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\
372 \vdots & ~ & \vdots \\
373 \left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}}
374 & \ldots &
375 \left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\
376 \end{array}
377 \right)
378 \cdot
379 \left(
380 \begin{array}{c}
381 \left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\
382 \vdots \\
383 \left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\
384 \end{array}
385 \right)
386 \]
387 %
388 Furthermore, the adjoint $ \delta v^{(\lambda) \, \ast} $
389 of any intermediate state $ v^{(\lambda)} $
390 may be obtained, using the intermediate Jacobian
391 (an $ n_{\lambda+1} \times n_{\lambda} $ matrix)
392 %
393 \[
394 M_{\lambda} \, = \,
395 \left(
396 \begin{array}{ccc}
397 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
398 & \ldots &
399 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
400 \vdots & ~ & \vdots \\
401 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1}
402 & \ldots &
403 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
404 \end{array}
405 \right)
406 \]
407 %
408 and the shorthand notation for the adjoint variables
409 $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
410 {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
411 for intermediate components, yielding
412 \begin{equation}
413 \small
414 \begin{split}
415 \left(
416 \begin{array}{c}
417 \delta v^{(\lambda) \, \ast}_1 \\
418 \vdots \\
419 \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
420 \end{array}
421 \right)
422 \, = &
423 \left(
424 \begin{array}{ccc}
425 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
426 & \ldots \,\, \ldots &
427 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
428 \vdots & ~ & \vdots \\
429 \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
430 & \ldots \,\, \ldots &
431 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
432 \end{array}
433 \right)
434 \cdot
435 %
436 \\ ~ & ~
437 \\ ~ &
438 %
439 \left(
440 \begin{array}{ccc}
441 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
442 & \ldots &
443 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\
444 \vdots & ~ & \vdots \\
445 \vdots & ~ & \vdots \\
446 \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}}
447 & \ldots &
448 \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
449 \end{array}
450 \right)
451 \cdot \, \ldots \, \cdot
452 \left(
453 \begin{array}{c}
454 \delta v^{\ast}_1 \\
455 \vdots \\
456 \delta v^{\ast}_{n} \\
457 \end{array}
458 \right)
459 \end{split}
460 \end{equation}
461
462 Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
463 showing the advantage of the reverse over the forward mode
464 if the gradient $\nabla _{u}{\cal J}$, i.e. the sensitivity of the
465 cost function $ {\cal J} $ with respect to {\it all} input
466 variables $u$
467 (or the sensitivity of the cost function with respect to
468 {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
469 In order to be able to solve for each component of the gradient
470 $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
471 a forward calulation has to be performed for each component seperately,
472 i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
473 for the $i$-th forward calculation.
474 Then, (\ref{forward}) represents the
475 projection of $ \nabla_u {\cal J} $ onto the $i$-th component.
476 The full gradient is retrieved from the $ m $ forward calculations.
477 In contrast, eq. (\ref{reverse}) yields the full
478 gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
479 $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
480
481 Note, that if $ {\cal J} $ is a vector-valued function
482 of dimension $ l > 1 $,
483 eq. (\ref{reverse}) has to be modified according to
484 \[
485 M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right)
486 \, = \,
487 \nabla_u {\cal J}^T \cdot \delta \vec{J}
488 \]
489 where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
490 dimenison $ l $.
491 In this case $ l $ reverse simulations have to be performed
492 for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
493 Then, the reverse mode is more efficient as long as
494 $ l < n $, otherwise the forward mode is preferable.
495 Stricly, the reverse mode is called adjoint mode only for
496 $ l = 1 $.
497
498 A detailed analysis of the underlying numerical operations
499 shows that the computation of $\nabla _{u}{\cal J}$ in this way
500 requires about 2 to 5 times the computation of the cost function.
501 Alternatively, the gradient vector could be approximated
502 by finite differences, requiring $m$ computations
503 of the perturbed cost function.
504
505 To conclude we give two examples of commonly used types
506 of cost functions:
507
508 \paragraph{Example 1:
509 $ {\cal J} = v_{j} (T) $} ~ \\
510 The cost function consists of the $j$-th component of the model state
511 $ \vec{v} $ at time $T$.
512 Then $ \nabla_v {\cal J}^T = {\vec{f}_{j}} $ is just the $j$-th
513 unit vector. The $ \nabla_u {\cal J}^T $
514 is the projection of the adjoint
515 operator onto the $j$-th component ${\bf f_{j}}$,
516 \[
517 \nabla_u {\cal J}^T
518 \, = \, M^T \cdot \nabla_v {\cal J}^T
519 \, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}}
520 \]
521
522 \paragraph{Example 2:
523 $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
524 \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
525 The cost function represents the quadratic model vs. data misfit.
526 Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
527 operator which maps the model state space onto the data space.
528 Then, $ \nabla_v {\cal J} $ takes the form
529 %
530 \begin{equation*}
531 \begin{split}
532 \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
533 \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
534 ~ & = \, 2 \sum_{j} \left\{ \sum_k
535 \frac{\partial {\cal H}_k}{\partial v_{j}}
536 \left( {\cal H}_k (\vec{v}) - d_k \right)
537 \right\} \, {\vec{f}_{j}} \\
538 \end{split}
539 \end{equation*}
540 %
541 where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
542 Jacobi matrix of the data projection operator.
543 Thus, the gradient $ \nabla_u {\cal J} $ is given by the
544 adjoint operator,
545 driven by the model vs. data misfit:
546 \[
547 \nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot
548 H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right)
549 \]
550
551 \subsection{Storing vs. recomputation in reverse mode}
552 \label{checkpointing}
553
554 We note an important aspect of the forward vs. reverse
555 mode calculation.
556 Because of the local character of the derivative
557 (a derivative is defined w.r.t. a point along the trajectory),
558 the intermediate results of the model trajectory
559 $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560 are needed to evaluate the intermediate Jacobian
561 $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562 In the forward mode, the intermediate results are required
563 in the same order as computed by the full forward model ${\cal M}$,
564 but in the reverse mode they are required in the reverse order.
565 Thus, in the reverse mode the trajectory of the forward model
566 integration ${\cal M}$ has to be stored to be available in the reverse
567 calculation. Alternatively, the complete model state up to the
568 point of evaluation has to be recomputed whenever its value is required.
569
570 A method to balance the amount of recomputations vs.
571 storage requirements is called {\sf checkpointing}
572 (e.g. \cite{res-eta:98}).
573 It is depicted in \reffig{3levelcheck} for a 3-level checkpointing
574 [as an example, we give explicit numbers for a 3-day
575 integration with a 1-hourly timestep in square brackets].
576 \begin{itemize}
577 %
578 \item [$lev3$]
579 In a first step, the model trajectory is subdivided into
580 $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
581 with the label $lev3$ for this outermost loop.
582 The model is then integrated along the full trajectory,
583 and the model state stored only at every $ k_{i}^{lev3} $-th timestep
584 [i.e. 3 times, at
585 $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
586 %
587 \item [$lev2$]
588 In a second step each subsection itself is divided into
589 $ {n}^{lev2} $ sub-subsections
590 [$ {n}^{lev2} $=4 6-hour intervals per subsection].
591 The model picks up at the last outermost dumped state
592 $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
593 the last subsection, with the label $lev2$ for this
594 intermediate loop.
595 The model state is now stored at every $ k_{i}^{lev2} $-th
596 timestep
597 [i.e. 4 times, at
598 $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
599 %
600 \item [$lev1$]
601 Finally, the model picks up at the last intermediate dump state
602 $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
603 the last sub-subsection, with the label $lev1$ for this
604 intermediate loop.
605 Within this sub-subsection only, the model state is stored
606 at every timestep
607 [i.e. every hour $ i=0,...,5$ corresponding to
608 $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
609 Thus, the final state $ v_n = v_{k_{n}^{lev1}} $ is reached
610 and the model state of all peceeding timesteps along the last
611 sub-subsections are available, enabling integration backwards
612 in time along the last sub-subsection.
613 Thus, the adjoint can be computed along this last
614 sub-subsection $k_{n}^{lev2}$.
615 %
616 \end{itemize}
617 %
618 This procedure is repeated consecutively for each previous
619 sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
620 carrying the adjoint computation to the initial time
621 of the subsection $k_{n}^{lev3}$.
622 Then, the procedure is repeated for the previous subsection
623 $k_{n-1}^{lev3}$
624 carrying the adjoint computation to the initial time
625 $k_{1}^{lev3}$.
626
627 For the full model trajectory of
628 $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
629 the required storing of the model state was significantly reduced to
630 $ n^{lev1} + n^{lev2} + n^{lev3} $
631 [i.e. for the 3-day integration with a total oof 72 timesteps
632 the model state was stored 13 times].
633 This saving in memory comes at a cost of a required
634 3 full forward integrations of the model (one for each
635 checkpointing level).
636 The balance of storage vs. recomputation certainly depends
637 on the computing resources available.
638
639 \begin{figure}[t!]
640 \centering
641 %\psdraft
642 \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
643 \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
644 \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
645 \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
646 \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
647 \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
648 \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
649 \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
650 \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
651 %\psfull
652 \caption
653 {Schematic view of intermediate dump and restart for
654 3-level checkpointing.}
655 \label{fig:3levelcheck}
656 \end{figure}
657
658 % \subsection{Optimal perturbations}
659 % \label{sec_optpert}
660
661
662 % \subsection{Error covariance estimate and Hessian matrix}
663 % \label{sec_hessian}
664
665 \newpage
666
667 %**********************************************************************
668 \section{AD-specific setup by example: sensitivity of carbon sequestration}
669 \label{sec_ad_setup_ex}
670 %**********************************************************************
671
672 The MITGCM has been adapted to enable AD using TAMC or TAF.
673 The present description, therefore, is specific to the
674 use of TAMC or TAF as AD tool.
675 The following sections describe the steps which are necessary to
676 generate a tangent linear or adjoint model of the MITGCM.
677 We take as an example the sensitivity of carbon sequestration
678 in the ocean.
679 The AD-relevant hooks in the code are sketched in
680 \reffig{adthemodel}, \reffig{adthemain}.
681
682 \subsection{Overview of the experiment}
683
684 We describe an adjoint sensitivity analysis of outgassing from
685 the ocean into the atmosphere of a carbon-like tracer injected
686 into the ocean interior (see \cite{hil-eta:01}).
687
688 \subsubsection{Passive tracer equation}
689
690 For this work the MITGCM was augmented with a thermodynamically
691 inactive tracer, $C$. Tracer residing in the ocean
692 model surface layer is outgassed according to a relaxation time scale,
693 $\mu$. Within the ocean interior, the tracer is passively advected
694 by the ocean model currents. The full equation for the time evolution
695 %
696 \begin{equation}
697 \label{carbon_ddt}
698 \frac{\partial C}{\partial t} \, = \,
699 -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S
700 \end{equation}
701 %
702 also includes a source term $S$. This term
703 represents interior sources of $C$ such as would arise due to
704 direct injection.
705 The velocity term, $U$, is the sum of the
706 model Eulerian circulation and an eddy-induced velocity, the latter
707 parameterized according to Gent/McWilliams
708 (\cite{gen-mcw:90, gen-eta:95}).
709 The convection function, $\Gamma$, mixes $C$ vertically wherever the
710 fluid is locally statically unstable.
711
712 The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})
713 is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface
714 ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})
715 is valid as a prognostic equation for small perturbations in oceanic
716 carbon concentrations. This configuration provides a
717 powerful tool for examining the impact of large-scale ocean circulation
718 on $ CO_2 $ outgassing due to interior injections.
719 As source we choose a constant in time injection of
720 $ S = 1 \,\, {\rm mol / s}$.
721
722 \subsubsection{Model configuration}
723
724 The model configuration employed has a constant
725 $4^\circ \times 4^\circ$ resolution horizontal grid and realistic
726 geography and bathymetry. Twenty vertical layers are used with
727 vertical spacing ranging
728 from 50 m near the surface to 815 m at depth.
729 Driven to steady-state by climatalogical wind-stress, heat and
730 fresh-water forcing the model reproduces well known large-scale
731 features of the ocean general circulation.
732
733 \subsubsection{Outgassing cost function}
734
735 To quantify and understand outgassing due to injections of $C$
736 in eqn. (\ref{carbon_ddt}),
737 we define a cost function $ {\cal J} $ that measures the total amount of
738 tracer outgassed at each timestep:
739 %
740 \begin{equation}
741 \label{cost_tracer}
742 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt
743 \end{equation}
744 %
745 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,
746 from (\ref{carbon_ddt})
747 over the entire ocean surface area, $A$, and accumulates it
748 up to time $T$.
749 Physically, ${\cal J}$ can be thought of as representing the amount of
750 $CO_2$ that our model predicts would be outgassed following an
751 injection at rate $S$.
752 The sensitivity of ${\cal J}$ to the spatial location of $S$,
753 $\frac{\partial {\cal J}}{\partial S}$,
754 can be used to identify regions from which circulation
755 would cause $CO_2$ to rapidly outgas following injection
756 and regions in which $CO_2$ injections would remain effectively
757 sequesterd within the ocean.
758
759 \subsection{Code configuration}
760
761 The model configuration for this experiment resides under the
762 directory {\it verification/carbon/}.
763 The code customisation routines are in {\it verification/carbon/code/}:
764 %
765 \begin{itemize}
766 %
767 \item {\it .genmakerc}
768 %
769 \item {\it COST\_CPPOPTIONS.h}
770 %
771 \item {\it CPP\_EEOPTIONS.h}
772 %
773 \item {\it CPP\_OPTIONS.h}
774 %
775 \item {\it CTRL\_OPTIONS.h}
776 %
777 \item {\it ECCO\_OPTIONS.h}
778 %
779 \item {\it SIZE.h}
780 %
781 \item {\it adcommon.h}
782 %
783 \item {\it tamc.h}
784 %
785 \end{itemize}
786 %
787 The runtime flag and parameters settings are contained in
788 {\it verification/carbon/input/},
789 together with the forcing fields and and restart files:
790 %
791 \begin{itemize}
792 %
793 \item {\it data}
794 %
795 \item {\it data.cost}
796 %
797 \item {\it data.ctrl}
798 %
799 \item {\it data.gmredi}
800 %
801 \item {\it data.grdchk}
802 %
803 \item {\it data.optim}
804 %
805 \item {\it data.pkg}
806 %
807 \item {\it eedata}
808 %
809 \item {\it topog.bin}
810 %
811 \item {\it windx.bin, windy.bin}
812 %
813 \item {\it salt.bin, theta.bin}
814 %
815 \item {\it SSS.bin, SST.bin}
816 %
817 \item {\it pickup*}
818 %
819 \end{itemize}
820 %
821 Finally, the file to generate the adjoint code resides in
822 $ adjoint/ $:
823 %
824 \begin{itemize}
825 %
826 \item {\it makefile}
827 %
828 \end{itemize}
829 %
830
831 Below we describe the customisations of this files which are
832 specific to this experiment.
833
834 \subsubsection{File {\it .genmakerc}}
835 This file overwrites default settings of {\it genmake}.
836 In the present example it is used to switch on the following
837 packages which are related to automatic differentiation
838 and are disabled by default: \\
839 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco gmredi grdchk kpp )} \\
840 Other packages which are not needed are switched off: \\
841 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}
842
843 \subsubsection{File {\it COST\_CPPOPTIONS.h, CTRL\_OPTIONS.h}}
844
845 These files used to contain package-specific CPP-options
846 (see Section \ref{???}).
847 For technical reasons those options have been grouped together
848 in the file {\it ECCO\_OPTIONS.h}.
849 To retain the modularity, the files have been kept and contain
850 the standard include of the {\it CPP\_OPTIONS.h} file.
851
852 \subsubsection{File {\it CPP\_EEOPTIONS.h}}
853
854 This file contains 'wrapper'-specific CPP options.
855 It only needs to be changed if the code is to be run
856 in a parallel environment (see Section \ref{???}).
857
858 \subsubsection{File {\it CPP\_OPTIONS.h}}
859
860 This file contains model-specific CPP options
861 (see Section \ref{???}).
862 Most options are related to the forward model setup.
863 They are identical to the global steady circulation setup of
864 {\it verification/exp2/}.
865 The three options specific to this experiment are \\
866 \hspace*{4ex} {\tt \#define ALLOW\_PASSIVE\_TRACER} \\
867 This flag enables the code to carry through the
868 advection/diffusion of a passive tracer along the
869 model integration. \\
870 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\
871 This flag enables the inclusion of some AD-related fields
872 concerning initialisation, link between control variables
873 and forward model variables, and the call to the top-level
874 forward/adjoint subroutine {\it adthe\_main\_loop}
875 instead of {\it the\_main\_loop}. \\
876 \hspace*{4ex} {\tt \#define ALLOW\_GRADIENT\_CHECK} \\
877 This flag enables the gradient check package.
878 After computing the unperturbed cost function and its gradient,
879 a series of computations are performed for which \\
880 $\bullet$ an element of the control vector is perturbed \\
881 $\bullet$ the cost function w.r.t. the perturbed element is
882 computed \\
883 $\bullet$ the difference between the perturbed and unperturbed
884 cost function is computed to compute the finite difference gradient \\
885 $\bullet$ the finite difference gradient is compared with the
886 adjoint-generated gradient.
887 The gradient check package is further described in Section ???.
888
889 \subsubsection{File {\it ECCO\_OPTIONS.h}}
890
891 The CPP options of several AD-related packages are grouped
892 in this file:
893 %
894 \begin{itemize}
895 %
896 \item
897 Adjoint support package: {\it pkg/autodiff/} \\
898 This package contains hand-written adjoint code such as
899 active file handling, flow directives for files which must not
900 be differentiated, and TAMC-specific header files. \\
901 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\
902 defines TAMC-related features in the code. \\
903 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\
904 enables the checkpointing feature of TAMC
905 (see Section \ref{???}).
906 In the present example a 3-level checkpointing is implemented.
907 The code contains the relevant store directives, common block
908 and tape initialisations, storing key computation,
909 and loop index handling.
910 The checkpointing length at each level is defined in
911 file {\it tamc.h}, cf. below.
912 %
913 \item Cost function package: {\it pkg/cost/} \\
914 This package contains all relevant routines for
915 initialising, accumulating and finalizing the cost function
916 (see Section \ref{???}). \\
917 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\
918 enables all general aspects of the cost function handling,
919 in particular the hooks in the foorward code for
920 initialising, accumulating and finalizing the cost function. \\
921 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\
922 includes the call to the cost function for this
923 particular experiment, eqn. (\ref{cost_tracer}).
924 %
925 \item Control variable package: {\it pkg/ctrl/} \\
926 This package contains all relevant routines for
927 the handling of the control vector.
928 Each control variable can be enabled/disabled with its own flag: \\
929 \begin{tabular}{ll}
930 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &
931 initial temperature \\
932 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &
933 initial salinity \\
934 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &
935 initial passive tracer concentration \\
936 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &
937 zonal wind stress \\
938 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &
939 meridional wind stress \\
940 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &
941 freshwater flux \\
942 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &
943 heat flux \\
944 \hspace*{2ex} {\tt \#define ALLOW\_DIFFKR\_CONTROL} &
945 diapycnal diffusivity \\
946 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &
947 isopycnal diffusivity \\
948 \end{tabular}
949 %
950 \end{itemize}
951
952 \subsubsection{File {\it SIZE.h}}
953
954 The file contains the grid point dimensions of the forward
955 model. It is identical to the {\it verification/exp2/}: \\
956 \hspace*{4ex} {\tt sNx = 90} \\
957 \hspace*{4ex} {\tt sNy = 40} \\
958 \hspace*{4ex} {\tt Nr = 20} \\
959 It correpsponds to a single-tile/single-processor setup:
960 {\tt nSx = nSy = 1, nPx = nPy = 1},
961 with standard overlap dimensioning
962 {\tt OLx = OLy = 3}.
963
964 \subsubsection{File {\it adcommon.h}}
965
966 This file contains common blocks of some adjoint variables
967 that are generated by TAMC.
968 The common blocks are used by the adjoint support routine
969 {\it addummy\_in\_stepping} which needs to access those variables:
970
971 \begin{tabular}{ll}
972 \hspace*{4ex} {\tt common /addynvars\_r/} &
973 \hspace*{4ex} is related to {\it DYNVARS.h} \\
974 \hspace*{4ex} {\tt common /addynvars\_cd/} &
975 \hspace*{4ex} is related to {\it DYNVARS.h} \\
976 \hspace*{4ex} {\tt common /addynvars\_diffkr/} &
977 \hspace*{4ex} is related to {\it DYNVARS.h} \\
978 \hspace*{4ex} {\tt common /addynvars\_kapgm/} &
979 \hspace*{4ex} is related to {\it DYNVARS.h} \\
980 \hspace*{4ex} {\tt common /adtr1\_r/} &
981 \hspace*{4ex} is related to {\it TR1.h} \\
982 \hspace*{4ex} {\tt common /adffields/} &
983 \hspace*{4ex} is related to {\it FFIELDS.h}\\
984 \end{tabular}
985
986 Note that if the structure of the common block changes in the
987 above header files of the forward code, the structure
988 of the adjoint common blocks will change accordingly.
989 Thus, it has to be made sure that the structure of the
990 adjoint common block in the hand-written file {\it adcommon.h}
991 complies with the automatically generated adjoint common blocks
992 in {\it adjoint\_model.F}.
993
994 \subsubsection{File {\it tamc.h}}
995
996 This routine contains the dimensions for TAMC checkpointing.
997 %
998 \begin{itemize}
999 %
1000 \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\
1001 3-level checkpointing is enabled, i.e. the timestepping
1002 is divided into three different levels (see Section \ref{???}).
1003 The model state of the outermost ({\tt nchklev\_3}) and the
1004 intermediate ({\tt nchklev\_2}) timestepping loop are stored to file
1005 (handled in {\it the\_main\_loop}).
1006 The innermost loop ({\tt nchklev\_1})
1007 avoids I/O by storing all required variables
1008 to common blocks. This storing may also be necessary if
1009 no checkpointing is chosen
1010 (nonlinear functions, if-statements, iterative loops, ...).
1011 In the present example the dimensions are chosen as follows: \\
1012 \hspace*{4ex} {\tt nchklev\_1 = 36 } \\
1013 \hspace*{4ex} {\tt nchklev\_2 = 30 } \\
1014 \hspace*{4ex} {\tt nchklev\_3 = 60 } \\
1015 To guarantee that the checkpointing intervals span the entire
1016 integration period the following relation must be satisfied: \\
1017 \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\
1018 where {\tt nTimeSteps} is either specified in {\it data}
1019 or computed via \\
1020 \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.
1021 %
1022 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\
1023 No checkpointing is enabled.
1024 In this case the relevant counter is {\tt nchklev\_0}.
1025 Similar to above, the following relation has to be satisfied \\
1026 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.
1027 %
1028 \end{itemize}
1029
1030 The following parameters may be worth describing: \\
1031 %
1032 \hspace*{4ex} {\tt isbyte} \\
1033 \hspace*{4ex} {\tt maxpass} \\
1034 ~
1035
1036 \subsubsection{File {\it makefile}}
1037
1038 This file contains all relevant paramter flags and
1039 lists to run TAMC or TAF.
1040 It is assumed that TAMC is available to you, either locally,
1041 being installed on your network, or remotely through the 'TAMC Utility'.
1042 TAMC is called with the command {\tt tamc} followed by a
1043 number of options. They are described in detail in the
1044 TAMC manual \cite{gie:99}.
1045 Here we briefly discuss the main flags used in the {\it makefile}
1046 %
1047 \begin{itemize}
1048 \item [{\tt tamc}] {\tt
1049 -input <variable names>
1050 -output <variable name> -r4 ... \\
1051 -toplevel <S/R name> -reverse <file names>
1052 }
1053 \end{itemize}
1054 %
1055 \begin{itemize}
1056 %
1057 \item {\tt -toplevel <S/R name>} \\
1058 Name of the toplevel routine, with respect to which the
1059 control flow analysis is performed.
1060 %
1061 \item {\tt -input <variable names>} \\
1062 List of independent variables $ u $ with respect to which the
1063 dependent variable $ J $ is differentiated.
1064 %
1065 \item {\tt -output <variable name>} \\
1066 Dependent variable $ J $ which is to be differentiated.
1067 %
1068 \item {\tt -reverse <file names>} \\
1069 Adjoint code is generated to compute the sensitivity of an
1070 independent variable w.r.t. many dependent variables.
1071 In the discussion of Section ???
1072 the generated adjoint top-level routine computes the product
1073 of the transposed Jacobian matrix $ M^T $ times
1074 the gradient vector $ \nabla_v J $.
1075 \\
1076 {\tt <file names>} refers to the list of files {\it .f} which are to be
1077 analyzed by TAMC. This list is generally smaller than the full list
1078 of code to be compiled. The files not contained are either
1079 above the top-level routine (some initialisations), or are
1080 deliberately hidden from TAMC, either because hand-written
1081 adjoint routines exist, or the routines must not (or don't have to)
1082 be differentiated. For each routine which is part of the flow tree
1083 of the top-level routine, but deliberately hidden from TAMC
1084 (or for each package which contains such routines),
1085 a corresponding file {\it .flow} exists containing flow directives
1086 for TAMC.
1087 %
1088 \item {\tt -r4} \\
1089 ~
1090 %
1091 \end{itemize}
1092
1093
1094 \subsubsection{The input parameter files}
1095
1096 \paragraph{File {\it data}}
1097
1098 \paragraph{File {\it data.cost}}
1099
1100 \paragraph{File {\it data.ctrl}}
1101
1102 \paragraph{File {\it data.gmredi}}
1103
1104 \paragraph{File {\it data.grdchk}}
1105
1106 \paragraph{File {\it data.optim}}
1107
1108 \paragraph{File {\it data.pkg}}
1109
1110 \paragraph{File {\it eedata}}
1111
1112 \paragraph{File {\it topog.bin}}
1113
1114 \paragraph{File {\it windx.bin, windy.bin}}
1115
1116 \paragraph{File {\it salt.bin, theta.bin}}
1117
1118 \paragraph{File {\it SSS.bin, SST.bin}}
1119
1120 \paragraph{File {\it pickup*}}
1121
1122 \subsection{Compiling the model and its adjoint}
1123
1124 The built process of the adjoint model is slightly more
1125 complex than that of compiling the forward code.
1126 The main reason is that the adjoint code generation requires
1127 a specific list of routines that are to be differentiated
1128 (as opposed to the automatic generation of a list of
1129 files to be compiled by genmake).
1130 This list excludes routines that don't have to be or must not be
1131 differentiated. For some of the latter routines flow directives
1132 may be necessary, a list of which has to be given as well.
1133 For this reason, a separate {\it makefile} is currently
1134 maintained in the directory {\tt adjoint/}. This
1135 makefile is responsible for the adjoint code generation.
1136
1137 In the following we describe the build process step by step,
1138 assuming you are in the directory {\tt bin/}.
1139 A summary of steps to follow is given at the end.
1140
1141 \paragraph{Adjoint code generation and compilation -- step by step}
1142
1143 \begin{enumerate}
1144 %
1145 \item
1146 {\tt ln -s ../verification/???/code/.genmakerc .} \\
1147 {\tt ln -s ../verification/???/code/*.[Fh] .} \\
1148 Link your customized genmake options, header files,
1149 and modified code to the compile directory.
1150 %
1151 \item
1152 {\tt ../tools/genmake -makefile} \\
1153 Generate your Makefile (cf. Section ???).
1154 %
1155 \item
1156 {\tt make depend} \\
1157 Dependency analysis for the CPP pre-compiler (cf. Section ???).
1158 %
1159 \item
1160 {\tt make small\_f} \\
1161 This is the first difference between forward code compilation
1162 and adjoint code generation and compilation.
1163 Instead of going through the entire compilation process
1164 (CPP precompiling -- {\tt .f}, object code generation -- {\tt .o},
1165 linking of object files and libraries to generate executable),
1166 only the CPP compiler is invoked at this stage to generate
1167 the {\tt .f} files.
1168 %
1169 \item
1170 {\tt cd ../adjoint} \\
1171 {\tt make adtaf} or {\tt make adtamc} \\
1172 Depending on whether you have TAF or TAMC at your disposal,
1173 you'll choose {\tt adtaf} or {\tt adtamc} as your
1174 make target for the {\it makefile} in the directory {\tt adjoint/}.
1175 Several things happen at this stage.
1176 %
1177 \begin{enumerate}
1178 %
1179 \item
1180 The initial template file {\it adjoint\_model.F} which is part
1181 of the compiling list created by {\it genmake} is restored.
1182 %
1183 \item
1184 All Fortran routines {\tt *.f} in {\tt bin/} are
1185 concatenated into a single file (it's current name is
1186 {\it tamc\_code.f}).
1187 %
1188 \item
1189 Adjoint code is generated by TAMC or TAF.
1190 The adjoint code is written to the file {\it tamc\_code\_ad.f}.
1191 It contains all adjoint routines of the forward routines
1192 concatenated in {\it tamc\_code.f}.
1193 For a given forward routines {\tt subroutine routinename}
1194 the adjoint routine is named {\tt adsubroutine routinename}
1195 by default (that default can be changed via the flag
1196 {\tt -admark <markname>}).
1197 Furthermore, it may contain modified code which
1198 incorporates the translation of adjoint store directives
1199 into specific Fortran code.
1200 For a given forward routines {\tt subroutine routinename}
1201 the modified routine is named {\tt mdsubroutine routinename}.
1202 TAMC or TAF info is written to file
1203 {\it tamc\_code.prot} or {\it taf.log}, respectively.
1204 %
1205 \end{enumerate}
1206 %
1207 \item
1208 {\tt make adchange} \\
1209 The multi-threading capability of the MITGCM requires a slight
1210 change in the parameter list of some routines that are related to
1211 to active file handling.
1212 This postprocessing invokes the sed script {\it adjoint\_ecco\_sed.com}
1213 to insert the threading counter {\bf myThId} into the parameter list
1214 of those subroutines.
1215 The resulting code is written to file {\it tamc\_code\_sed\_ad.f}
1216 and appended to the file {\it adjoint\_model.F}.
1217 This concludes the adjoint codel generation.
1218 %
1219 \item
1220 {\tt cd ../bin} \\
1221 {\tt make} \\
1222 The file {\it adjoint\_model.F} now contains the full adjoint code.
1223 All routines are now compiled.
1224 %
1225 \end{enumerate}
1226
1227 \paragraph{Adjoint code generation and compilation -- summary}
1228 ~ \\
1229
1230 \[
1231 \boxed{
1232 \begin{split}
1233 ~ & \mbox{\tt cd bin} \\
1234 ~ & \mbox{\tt ln -s ../verification/my\_experiment/code/.genmakerc .} \\
1235 ~ & \mbox{\tt ln -s ../verification/my\_experiment/code/*.[Fh] .} \\
1236 ~ & \mbox{\tt ../tools/genmake -makefile} \\
1237 ~ & \mbox{\tt make depend} \\
1238 ~ & \mbox{\tt make small\_f} \\
1239 ~ & \mbox{\tt cd ../adjoint} \\
1240 ~ & \mbox{\tt make adtaf <OR: make adtamc>} \\
1241 ~ & \mbox{\tt make adchange} \\
1242 ~ & \mbox{\tt cd ../bin} \\
1243 ~ & \mbox{\tt make} \\
1244 \end{split}
1245 }
1246 \]
1247
1248 \newpage
1249
1250 %**********************************************************************
1251 \section{TLM and ADM generation in general}
1252 \label{sec_ad_setup_gen}
1253 %**********************************************************************
1254
1255 In this section we describe in a general fashion
1256 the parts of the code that are relevant for automatic
1257 differentiation using the software tool TAMC.
1258
1259 \begin{figure}[b!]
1260 \input{part5/doc_ad_the_model}
1261 \caption{~}
1262 \label{fig:adthemodel}
1263 \end{figure}
1264
1265 The basic flow is depicted in \reffig{adthemodel}.
1266 If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
1267 {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
1268 invokes the adjoint of this routine, {\it adthe\_main\_loop},
1269 which is the toplevel routine in terms of reverse mode computation.
1270 The routine {\it adthe\_main\_loop} has been generated using TAMC.
1271 It contains both the forward integration of the full model,
1272 any additional storing that is required for efficient checkpointing,
1273 and the reverse integration of the adjoint model.
1274 The structure of {\it adthe\_main\_loop} has been strongly
1275 simplified for clarification; in particular, no checkpointing
1276 procedures are shown here.
1277 Prior to the call of {\it adthe\_main\_loop}, the routine
1278 {\it ctrl\_unpack} is invoked to unpack the control vector,
1279 and following that call, the routine {\it ctrl\_pack}
1280 is invoked to pack the control vector
1281 (cf. Section \ref{section_ctrl}).
1282 If gradient checks are to be performed, the option
1283 {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
1284 the driver routine {\it grdchk\_main} is called after
1285 the gradient has been computed via the adjoint
1286 (cf. Section \ref{section_grdchk}).
1287
1288 \subsection{The cost function (dependent variable)
1289 \label{section_cost}}
1290
1291 The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1292 It is a function of the input variables $ \vec{u} $ via the composition
1293 $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1294 The input is referred to as the
1295 {\sf independent variables} or {\sf control variables}.
1296 All aspects relevant to the treatment of the cost function $ {\cal J} $
1297 (parameter setting, initialisation, accumulation,
1298 final evaluation), are controlled by the package {\it pkg/cost}.
1299
1300 \begin{figure}[h!]
1301 \input{part5/doc_cost_flow}
1302 \caption{~}
1303 \label{fig:costflow}
1304 \end{figure}
1305
1306 \subsubsection{genmake and CPP options}
1307 %
1308 \begin{itemize}
1309 %
1310 \item
1311 \fbox{
1312 \begin{minipage}{12cm}
1313 {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1314 \end{minipage}
1315 }
1316 \end{itemize}
1317 %
1318 The directory {\it pkg/cost} can be included to the
1319 compile list in 3 different ways (cf. Section \ref{???}):
1320 %
1321 \begin{enumerate}
1322 %
1323 \item {\it genmake}: \\
1324 Change the default settings in the file {\it genmake} by adding
1325 {\bf cost} to the {\bf enable} list (not recommended).
1326 %
1327 \item {\it .genmakerc}: \\
1328 Customize the settings of {\bf enable}, {\bf disable} which are
1329 appropriate for your experiment in the file {\it .genmakerc}
1330 and add the file to your compile directory.
1331 %
1332 \item genmake-options: \\
1333 Call {\it genmake} with the option
1334 {\tt genmake -enable=cost}.
1335 %
1336 \end{enumerate}
1337 The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1338 Each specific cost function contribution has its own option.
1339 For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1340 All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1341 Since the cost function is usually used in conjunction with
1342 automatic differentiation, the CPP option
1343 {\bf ALLOW\_ADJOINT\_RUN} should be defined
1344 (file {\it CPP\_OPTIONS.h}).
1345
1346 \subsubsection{Initialisation}
1347 %
1348 The initialisation of the {\it cost} package is readily enabled
1349 as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.
1350 %
1351 \begin{itemize}
1352 %
1353 \item
1354 \fbox{
1355 \begin{minipage}{12cm}
1356 Parameters: {\it cost\_readparms}
1357 \end{minipage}
1358 }
1359 \\
1360 This S/R
1361 reads runtime flags and parameters from file {\it data.cost}.
1362 For the present example the only relevant parameter read
1363 is {\bf mult\_tracer}. This multiplier enables different
1364 cost function contributions to be switched on
1365 ( = 1.) or off ( = 0.) at runtime.
1366 For more complex cost functions which involve model vs. data
1367 misfits, the corresponding data filenames and data
1368 specifications (start date and time, period, ...) are read
1369 in this S/R.
1370 %
1371 \item
1372 \fbox{
1373 \begin{minipage}{12cm}
1374 Variables: {\it cost\_init}
1375 \end{minipage}
1376 }
1377 \\
1378 This S/R
1379 initialises the different cost function contributions.
1380 The contribtion for the present example is {\bf objf\_tracer}
1381 which is defined on each tile (bi,bj).
1382 %
1383 \end{itemize}
1384 %
1385 \subsubsection{Accumulation}
1386 %
1387 \begin{itemize}
1388 %
1389 \item
1390 \fbox{
1391 \begin{minipage}{12cm}
1392 {\it cost\_tile}, {\it cost\_tracer}
1393 \end{minipage}
1394 }
1395 \end{itemize}
1396 %
1397 The 'driver' routine
1398 {\it cost\_tile} is called at the end of each time step.
1399 Within this 'driver' routine, S/R are called for each of
1400 the chosen cost function contributions.
1401 In the present example ({\bf ALLOW\_COST\_TRACER}),
1402 S/R {\it cost\_tracer} is called.
1403 It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).
1404 %
1405 \subsubsection{Finalize all contributions}
1406 %
1407 \begin{itemize}
1408 %
1409 \item
1410 \fbox{
1411 \begin{minipage}{12cm}
1412 {\it cost\_final}
1413 \end{minipage}
1414 }
1415 \end{itemize}
1416 %
1417 At the end of the forward integration S/R {\it cost\_final}
1418 is called. It accumulates the total cost function {\bf fc}
1419 from each contribution and sums over all tiles:
1420 \begin{equation}
1421 {\cal J} \, = \,
1422 {\rm fc} \, = \,
1423 {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}
1424 {\rm objf\_tracer}(bi,bj) \, + \, ...
1425 \end{equation}
1426 %
1427 The total cost function {\bf fc} will be the
1428 'dependent' variable in the argument list for TAMC, i.e.
1429 \begin{verbatim}
1430 tamc -output 'fc' ...
1431 \end{verbatim}
1432
1433 %%%% \end{document}
1434
1435 \begin{figure}
1436 \input{part5/doc_ad_the_main}
1437 \caption{~}
1438 \label{fig:adthemain}
1439 \end{figure}
1440
1441 \subsection{The control variables (independent variables)
1442 \label{section_ctrl}}
1443
1444 The control variables are a subset of the model input
1445 (initial conditions, boundary conditions, model parameters).
1446 Here we identify them with the variable $ \vec{u} $.
1447 All intermediate variables whose derivative w.r.t. control
1448 variables do not vanish are called {\sf active variables}.
1449 All subroutines whose derivative w.r.t. the control variables
1450 don't vanish are called {\sf active routines}.
1451 Read and write operations from and to file can be viewed
1452 as variable assignments. Therefore, files to which
1453 active variables are written and from which active variables
1454 are read are called {\sf active files}.
1455 All aspects relevant to the treatment of the control variables
1456 (parameter setting, initialisation, perturbation)
1457 are controled by the package {\it pkg/ctrl}.
1458
1459 \begin{figure}[h!]
1460 \input{part5/doc_ctrl_flow}
1461 \caption{~}
1462 \label{fig:ctrlflow}
1463 \end{figure}
1464
1465 \subsubsection{genmake and CPP options}
1466 %
1467 \begin{itemize}
1468 %
1469 \item
1470 \fbox{
1471 \begin{minipage}{12cm}
1472 {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1473 \end{minipage}
1474 }
1475 \end{itemize}
1476 %
1477 To enable the directory to be included to the compile list,
1478 {\bf ctrl} has to be added to the {\bf enable} list in
1479 {\it .genmakerc} (or {\it genmake} itself).
1480 Each control variable is enabled via its own CPP option
1481 in {\it ECCO\_CPPOPTIONS.h}.
1482
1483 \subsubsection{Initialisation}
1484 %
1485 \begin{itemize}
1486 %
1487 \item
1488 \fbox{
1489 \begin{minipage}{12cm}
1490 Parameters: {\it ctrl\_readparms}
1491 \end{minipage}
1492 }
1493 \\
1494 %
1495 This S/R
1496 reads runtime flags and parameters from file {\it data.ctrl}.
1497 For the present example the file contains the file names
1498 of each control variable that is used.
1499 In addition, the number of wet points for each control
1500 variable and the net dimension of the space of control
1501 variables (counting wet points only) {\bf nvarlength}
1502 is determined.
1503 Masks for wet points for each tile {\bf (bi,\,bj)}
1504 and vertical layer {\bf k} are generated for the three
1505 relevant categories on the C-grid:
1506 {\bf nWetCtile} for tracer fields,
1507 {\bf nWetWtile} for zonal velocity fields,
1508 {\bf nWetStile} for meridional velocity fields.
1509 %
1510 \item
1511 \fbox{
1512 \begin{minipage}{12cm}
1513 Control variables, control vector,
1514 and their gradients: {\it ctrl\_unpack}
1515 \end{minipage}
1516 }
1517 \\
1518 %
1519 Two important issues related to the handling of the control
1520 variables in the MITGCM need to be addressed.
1521 First, in order to save memory, the control variable arrays
1522 are not kept in memory, but rather read from file and added
1523 to the initial fields during the model initialisation phase.
1524 Similarly, the corresponding adjoint fields which represent
1525 the gradient of the cost function w.r.t. the control variables
1526 are written to file at the end of the adjoint integration.
1527 Second, in addition to the files holding the 2-dim. and 3-dim.
1528 control variables and the corresponding cost gradients,
1529 a 1-dim. {\sf control vector}
1530 and {\sf gradient vector} are written to file. They contain
1531 only the wet points of the control variables and the corresponding
1532 gradient.
1533 This leads to a significant data compression.
1534 Furthermore, an option is available
1535 ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1536 non-dimensionalise the control and gradient vector,
1537 which otherwise would contain different pieces of different
1538 magnitudes and units.
1539 Finally, the control and gradient vector can be passed to a
1540 minimization routine if an update of the control variables
1541 is sought as part of a minimization exercise.
1542
1543 The files holding fields and vectors of the control variables
1544 and gradient are generated and initialised in S/R {\it ctrl\_unpack}.
1545 %
1546 \end{itemize}
1547
1548 \subsubsection{Perturbation of the independent variables}
1549 %
1550 The dependency flow for differentiation w.r.t. the controls
1551 starts with adding a perturbation onto the input variable,
1552 thus defining the independent or control variables for TAMC.
1553 Three types of controls may be considered:
1554 %
1555 \begin{itemize}
1556 %
1557 \item
1558 \fbox{
1559 \begin{minipage}{12cm}
1560 {\it ctrl\_map\_ini} (initial value sensitivity):
1561 \end{minipage}
1562 }
1563 \\
1564 %
1565 Consider as an example the initial tracer distribution
1566 {\bf tr1} as control variable.
1567 After {\bf tr1} has been initialised in
1568 {\it ini\_tr1} (dynamical variables such as
1569 temperature and salinity are initialised in {\it ini\_fields}),
1570 a perturbation anomaly is added to the field in S/R
1571 {\it ctrl\_map\_ini}
1572 %
1573 \begin{equation}
1574 \begin{split}
1575 u & = \, u_{[0]} \, + \, \Delta u \\
1576 {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1577 \label{perturb}
1578 \end{split}
1579 \end{equation}
1580 %
1581 {\bf xx\_tr1} is a 3-dim. global array
1582 holding the perturbation. In the case of a simple
1583 sensitivity study this array is identical to zero.
1584 However, it's specification is essential in the context
1585 of automatic differentiation since TAMC
1586 treats the corresponding line in the code symbolically
1587 when determining the differentiation chain and its origin.
1588 Thus, the variable names are part of the argument list
1589 when calling TAMC:
1590 %
1591 \begin{verbatim}
1592 tamc -input 'xx_tr1 ...' ...
1593 \end{verbatim}
1594 %
1595 Now, as mentioned above, the MITGCM avoids maintaining
1596 an array for each control variable by reading the
1597 perturbation to a temporary array from file.
1598 To ensure the symbolic link to be recognized by TAMC, a scalar
1599 dummy variable {\bf xx\_tr1\_dummy} is introduced
1600 and an 'active read' routine of the adjoint support
1601 package {\it pkg/autodiff} is invoked.
1602 The read-procedure is tagged with the variable
1603 {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the
1604 initialisation of the perturbation.
1605 The modified call of TAMC thus reads
1606 %
1607 \begin{verbatim}
1608 tamc -input 'xx_tr1_dummy ...' ...
1609 \end{verbatim}
1610 %
1611 and the modified operation to (\ref{perturb})
1612 in the code takes on the form
1613 %
1614 \begin{verbatim}
1615 call active_read_xyz(
1616 & ..., tmpfld3d, ..., xx_tr1_dummy, ... )
1617
1618 tr1(...) = tr1(...) + tmpfld3d(...)
1619 \end{verbatim}
1620 %
1621 Note, that reading an active variable corresponds
1622 to a variable assignment. Its derivative corresponds
1623 to a write statement of the adjoint variable.
1624 The 'active file' routines have been designed
1625 to support active read and corresponding adjoint active write
1626 operations (and vice versa).
1627 %
1628 \item
1629 \fbox{
1630 \begin{minipage}{12cm}
1631 {\it ctrl\_map\_forcing} (boundary value sensitivity):
1632 \end{minipage}
1633 }
1634 \\
1635 %
1636 The handling of boundary values as control variables
1637 proceeds exactly analogous to the initial values
1638 with the symbolic perturbation taking place in S/R
1639 {\it ctrl\_map\_forcing}.
1640 Note however an important difference:
1641 Since the boundary values are time dependent with a new
1642 forcing field applied at each time steps,
1643 the general problem may be thought of as
1644 a new control variable at each time step
1645 (or, if the perturbation is averaged over a certain period,
1646 at each $ N $ timesteps), i.e.
1647 \[
1648 u_{\rm forcing} \, = \,
1649 \{ \, u_{\rm forcing} ( t_n ) \, \}_{
1650 n \, = \, 1, \ldots , {\rm nTimeSteps} }
1651 \]
1652 %
1653 In the current example an equilibrium state is considered,
1654 and only an initial perturbation to
1655 surface forcing is applied with respect to the
1656 equilibrium state.
1657 A time dependent treatment of the surface forcing is
1658 implemented in the ECCO environment, involving the
1659 calendar ({\it cal}~) and external forcing ({\it exf}~) packages.
1660 %
1661 \item
1662 \fbox{
1663 \begin{minipage}{12cm}
1664 {\it ctrl\_map\_params} (parameter sensitivity):
1665 \end{minipage}
1666 }
1667 \\
1668 %
1669 This routine is not yet implemented, but would proceed
1670 proceed along the same lines as the initial value sensitivity.
1671 The mixing parameters {\bf diffkr} and {\bf kapgm}
1672 are currently added as controls in {\it ctrl\_map\_ini.F}.
1673 %
1674 \end{itemize}
1675 %
1676
1677 \subsubsection{Output of adjoint variables and gradient}
1678 %
1679 Several ways exist to generate output of adjoint fields.
1680 %
1681 \begin{itemize}
1682 %
1683 \item
1684 \fbox{
1685 \begin{minipage}{12cm}
1686 {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1687 \end{minipage}
1688 }
1689 \\
1690 \begin{itemize}
1691 %
1692 \item {\bf xx\_...}: the control variable fields \\
1693 Before the forward integration, the control
1694 variables are read from file {\bf xx\_ ...} and added to
1695 the model field.
1696 %
1697 \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1698 $ \nabla _{u}{\cal J} $ for each control variable \\
1699 After the adjoint integration the corresponding adjoint
1700 variables are written to {\bf adxx\_ ...}.
1701 %
1702 \end{itemize}
1703 %
1704 \item
1705 \fbox{
1706 \begin{minipage}{12cm}
1707 {\it ctrl\_unpack, ctrl\_pack}:
1708 \end{minipage}
1709 }
1710 \\
1711 %
1712 \begin{itemize}
1713 %
1714 \item {\bf vector\_ctrl}: the control vector \\
1715 At the very beginning of the model initialisation,
1716 the updated compressed control vector is read (or initialised)
1717 and distributed to 2-dim. and 3-dim. control variable fields.
1718 %
1719 \item {\bf vector\_grad}: the gradient vector \\
1720 At the very end of the adjoint integration,
1721 the 2-dim. and 3-dim. adjoint variables are read,
1722 compressed to a single vector and written to file.
1723 %
1724 \end{itemize}
1725 %
1726 \item
1727 \fbox{
1728 \begin{minipage}{12cm}
1729 {\it addummy\_in\_stepping}:
1730 \end{minipage}
1731 }
1732 \\
1733 In addition to writing the gradient at the end of the
1734 forward/adjoint integration, many more adjoint variables
1735 of the model state
1736 at intermediate times can be written using S/R
1737 {\it addummy\_in\_stepping}.
1738 This routine is part of the adjoint support package
1739 {\it pkg/autodiff} (cf.f. below).
1740 To be part of the adjoint code, the corresponding S/R
1741 {\it dummy\_in\_stepping} has to be called in the forward
1742 model (S/R {\it the\_main\_loop}) at the appropriate place.
1743
1744 {\it dummy\_in\_stepping} is essentially empty,
1745 the corresponding adjoint routine is hand-written rather
1746 than generated automatically.
1747 Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1748 ensure that TAMC does not automatically
1749 generate {\it addummy\_in\_stepping} by trying to differentiate
1750 {\it dummy\_in\_stepping}, but instead refers to
1751 the hand-written routine.
1752
1753 {\it dummy\_in\_stepping} is called in the forward code
1754 at the beginning of each
1755 timestep, before the call to {\it dynamics}, thus ensuring
1756 that {\it addummy\_in\_stepping} is called at the end of
1757 each timestep in the adjoint calculation, after the call to
1758 {\it addynamics}.
1759
1760 {\it addummy\_in\_stepping} includes the header files
1761 {\it adcommon.h}.
1762 This header file is also hand-written. It contains
1763 the common blocks
1764 {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1765 {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1766 {\bf /adtr1\_r/}, {\bf /adffields/},
1767 which have been extracted from the adjoint code to enable
1768 access to the adjoint variables.
1769 %
1770 \end{itemize}
1771
1772
1773 \subsubsection{Control variable handling for
1774 optimization applications}
1775
1776 In optimization mode the cost function $ {\cal J}(u) $ is sought
1777 to be minimized with respect to a set of control variables
1778 $ \delta {\cal J} \, = \, 0 $, in an iterative manner.
1779 The gradient $ \nabla _{u}{\cal J} |_{u_{[k]}} $ together
1780 with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1781 at iteration step $ k $ serve
1782 as input to a minimization routine (e.g. quasi-Newton method,
1783 conjugate gradient, ... \cite{gil_lem:89})
1784 to compute an update in the
1785 control variable for iteration step $k+1$
1786 \[
1787 u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]}
1788 \quad \mbox{satisfying} \quad
1789 {\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right)
1790 \]
1791 $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1792 to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1793 $ k+1 $.
1794 Tab. \ref{???} sketches the flow between forward/adjoint model
1795 and the minimization routine.
1796
1797 \begin{eqnarray*}
1798 \scriptsize
1799 \begin{array}{ccccc}
1800 u_{[0]} \,\, , \,\, \Delta u_{[k]} & ~ & ~ & ~ & ~ \\
1801 {\Big\downarrow}
1802 & ~ & ~ & ~ & ~ \\
1803 ~ & ~ & ~ & ~ & ~ \\
1804 \hline
1805 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1806 \multicolumn{1}{|c}{
1807 u_{[k]} = u_{[0]} + \Delta u_{[k]}} &
1808 \stackrel{\bf forward}{\bf \longrightarrow} &
1809 v_{[k]} = M \left( u_{[k]} \right) &
1810 \stackrel{\bf forward}{\bf \longrightarrow} &
1811 \multicolumn{1}{c|}{
1812 {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1813 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1814 \hline
1815 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1816 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1817 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1818 \hline
1819 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1820 \multicolumn{1}{|c}{
1821 \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1822 T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1823 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1824 ad \, v_{[k]} (\delta {\cal J}) =
1825 \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
1826 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1827 \multicolumn{1}{c|}{ ad \, {\cal J} = \delta {\cal J}} \\
1828 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1829 \hline
1830 ~ & ~ & ~ & ~ & ~ \\
1831 \hspace*{15ex}{\Bigg\downarrow}
1832 \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1833 & ~ & ~ & ~ & ~ \\
1834 ~ & ~ & ~ & ~ & ~ \\
1835 \hline
1836 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1837 \multicolumn{1}{|c}{
1838 {\cal J}_{[k]} \,\, , \,\, \nabla_u {\cal J}_{[k]}} &
1839 {\mathbf \longrightarrow} & \text{\bf minimisation} &
1840 {\mathbf \longrightarrow} &
1841 \multicolumn{1}{c|}{ \Delta u_{[k+1]}} \\
1842 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1843 \hline
1844 ~ & ~ & ~ & ~ & ~ \\
1845 ~ & ~ & ~ & ~ & \Big\downarrow \\
1846 ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1847 \end{array}
1848 \end{eqnarray*}
1849
1850 The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1851 the link between the model and the minimization routine.
1852 As described in Section \ref{???}
1853 the {\it unpack} and {\it pack} routines read and write
1854 control and gradient {\it vectors} which are compressed
1855 to contain only wet points, in addition to the full
1856 2-dim. and 3-dim. fields.
1857 The corresponding I/O flow looks as follows:
1858
1859 \vspace*{0.5cm}
1860
1861 {\scriptsize
1862 \begin{tabular}{ccccc}
1863 {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1864 {\big\downarrow} & ~ & ~ & ~ & ~ \\
1865 \cline{1-1}
1866 \multicolumn{1}{|c|}{\it ctrl\_unpack} & ~ & ~ & ~ & ~ \\
1867 \cline{1-1}
1868 {\big\downarrow} & ~ & ~ & ~ & ~ \\
1869 \cline{3-3}
1870 \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1871 \multicolumn{1}{|c|}{~} & ~ & ~ \\
1872 \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1873 $\stackrel{\mbox{read}}{\longrightarrow}$ &
1874 \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1875 \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}
1876 & ~ & ~ \\
1877 \cline{3-3}
1878 ~ & ~ & $\downarrow$ & ~ & ~ \\
1879 \cline{3-3}
1880 ~ & ~ &
1881 \multicolumn{1}{|c|}{~} & ~ &
1882 \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$} \\
1883 ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1884 $\stackrel{\mbox{write}}{\longrightarrow}$ &
1885 \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1886 ~ & ~ & \multicolumn{1}{|c|}{~}
1887 & ~ & \multicolumn{1}{l}{\bf \vdots} \\
1888 \cline{3-3}
1889 ~ & ~ & ~ & ~ & {\big\downarrow} \\
1890 \cline{5-5}
1891 ~ & ~ & ~ & ~ & \multicolumn{1}{|c|}{\it ctrl\_pack} \\
1892 \cline{5-5}
1893 ~ & ~ & ~ & ~ & {\big\downarrow} \\
1894 ~ & ~ & ~ & ~ & {\bf vector\_grad\_$<$k$>$ } \\
1895 \end{tabular}
1896 }
1897
1898 \vspace*{0.5cm}
1899
1900
1901 {\it ctrl\_unpack} reads the updated control vector
1902 {\bf vector\_ctrl\_$<$k$>$}.
1903 It distributes the different control variables to
1904 2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1905 At the start of the forward integration the control variables
1906 are read from {\it xx\_...$<$k$>$} and added to the
1907 field.
1908 Correspondingly, at the end of the adjoint integration
1909 the adjoint fields are written
1910 to {\it adxx\_...$<$k$>$}, again via the active file routines.
1911 Finally, {\it ctrl\_pack} collects all adjoint files
1912 and writes them to the compressed vector file
1913 {\bf vector\_grad\_$<$k$>$}.
1914
1915 \subsection{TLM and ADM generation via TAMC}
1916
1917
1918
1919 \subsection{Flow directives and adjoint support routines \label{section_flowdir}}
1920
1921 \subsection{Store directives and checkpointing \label{section_checkpointing}}
1922
1923 \subsection{Gradient checks \label{section_grdchk}}
1924
1925 \subsection{Second derivative generation via TAMC}
1926
1927 \section{Example of adjoint code}

  ViewVC Help
Powered by ViewVC 1.1.22