/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1.1.1 by adcroft, Wed Aug 8 16:16:26 2001 UTC revision 1.24 by jmc, Tue Aug 31 20:56:21 2010 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    Author: Patrick Heimbach
5    
6  {\sf Automatic differentiation} (AD), also referred to as algorithmic  {\sf Automatic differentiation} (AD), also referred to as algorithmic
7  (or, more loosely, computational) differentiation, involves  (or, more loosely, computational) differentiation, involves
8  automatically deriving code to calculate  automatically deriving code to calculate partial derivatives from an
9  partial derivatives from an existing fully non-linear prognostic code.  existing fully non-linear prognostic code.  (see \cite{gri:00}).  A
10  (see \cite{gri:00}).  software tool is used that parses and transforms source files
11  A software tool is used that parses and transforms source files  according to a set of linguistic and mathematical rules.  AD tools are
12  according to a set of linguistic and mathematical rules.  like source-to-source translators in that they parse a program code as
13  AD tools are like source-to-source translators in that  input and produce a new program code as output
14  they parse a program code as input and produce a new program code  (we restrict our discussion to source-to-source tools, ignoring
15  as output.  operator-overloading tools).  However, unlike a
16  However, unlike a pure source-to-source translation, the output program  pure source-to-source translation, the output program represents a new
17  represents a new algorithm, such as the evaluation of the  algorithm, such as the evaluation of the Jacobian, the Hessian, or
18  Jacobian, the Hessian, or higher derivative operators.  higher derivative operators.  In principle, a variety of derived
19  In principle, a variety of derived algorithms  algorithms can be generated automatically in this way.
20  can be generated automatically in this way.  
21    MITgcm has been adapted for use with the Tangent linear and Adjoint
22  The MITGCM has been adapted for use with the  Model Compiler (TAMC) and its successor TAF (Transformation of
23  Tangent linear and Adjoint Model Compiler (TAMC) and its succssor TAF  Algorithms in Fortran), developed by Ralf Giering (\cite{gie-kam:98},
24  (Transformation of Algorithms in Fortran), developed  \cite{gie:99,gie:00}).  The first application of the adjoint of MITgcm
25  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).  for sensitivity studies has been published by \cite{maro-eta:99}.
26  The first application of the adjoint of the MITGCM for senistivity  \cite{stam-etal:97,stam-etal:02} use MITgcm and its adjoint for ocean
27  studies has been published by \cite{maro-eta:99}.  state estimation studies.  In the following we shall refer to TAMC and
28  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint  TAF synonymously, except were explicitly stated otherwise.
29  for ocean state estimation studies.  
30    As of mid-2007 we are also able to generate fairly efficient
31  TAMC exploits the chain rule for computing the first  adjoint code of the MITgcm using a new, open-source AD tool,
32  derivative of a function with  called OpenAD (see \cite{naum-etal:06,utke-etal:08}.
33  respect to a set of input variables.  This enables us for the first time to compare adjoint models
34  Treating a given forward code as a composition of operations --  generated from different AD tools, providing an additional
35  each line representing a compositional element -- the chain rule is  accuracy check, complementary to finite-difference gradient checks.
36  rigorously applied to the code, line by line. The resulting  OpenAD and its application to  MITgcm is described in detail
37  tangent linear or adjoint code,  in section \ref{sec_ad_openad}.
38  then, may be thought of as the composition in  
39  forward or reverse order, respectively, of the  The AD tool exploits the chain rule for computing the first derivative of a
40  Jacobian matrices of the forward code compositional elements.  function with respect to a set of input variables.  Treating a given
41    forward code as a composition of operations -- each line representing
42    a compositional element, the chain rule is rigorously applied to the
43    code, line by line. The resulting tangent linear or adjoint code,
44    then, may be thought of as the composition in forward or reverse
45    order, respectively, of the Jacobian matrices of the forward code's
46    compositional elements.
47    
48  %**********************************************************************  %**********************************************************************
49  \section{Some basic algebra}  \section{Some basic algebra}
50  \label{sec_ad_algebra}  \label{sec_ad_algebra}
51    \begin{rawhtml}
52    <!-- CMIREDIR:sec_ad_algebra: -->
53    \end{rawhtml}
54  %**********************************************************************  %**********************************************************************
55    
56  Let $ \cal{M} $ be a general nonlinear, model, i.e. a  Let $ \cal{M} $ be a general nonlinear, model, i.e. a
# Line 50  $\vec{u}=(u_1,\ldots,u_m)$ Line 61  $\vec{u}=(u_1,\ldots,u_m)$
61  such as forcing functions) to the $n$-dimensional space  such as forcing functions) to the $n$-dimensional space
62  $V \subset I\!\!R^n$ of  $V \subset I\!\!R^n$ of
63  model output variable $\vec{v}=(v_1,\ldots,v_n)$  model output variable $\vec{v}=(v_1,\ldots,v_n)$
64  (model state, model diagnostcs, objective function, ...)  (model state, model diagnostics, objective function, ...)
65  under consideration,  under consideration,
66  %  %
67  \begin{equation}  \begin{equation}
68  \begin{split}  \begin{aligned}
69  {\cal M} \, : & \, U \,\, \longrightarrow \, V \\  {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
70  ~      & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,  ~      & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
71  {\cal M}(\vec{u})  {\cal M}(\vec{u})
72  \label{fulloperator}  \label{fulloperator}
73  \end{split}  \end{aligned}
74  \end{equation}  \end{equation}
75  %  %
76  The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.  The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
# Line 105  In contrast to the full nonlinear model Line 116  In contrast to the full nonlinear model
116  $ M $ is just a matrix  $ M $ is just a matrix
117  which can readily be used to find the forward sensitivity of $\vec{v}$ to  which can readily be used to find the forward sensitivity of $\vec{v}$ to
118  perturbations in  $u$,  perturbations in  $u$,
119  but if there are very many input variables $(>>O(10^{6})$ for  but if there are very many input variables $(\gg O(10^{6})$ for
120  large-scale oceanographic application), it quickly becomes  large-scale oceanographic application), it quickly becomes
121  prohibitive to proceed directly as in (\ref{tangent_linear}),  prohibitive to proceed directly as in (\ref{tangent_linear}),
122  if the impact of each component $ {\bf e_{i}} $ is to be assessed.  if the impact of each component $ {\bf e_{i}} $ is to be assessed.
# Line 130  or a measure of some model-to-data misfi Line 141  or a measure of some model-to-data misfi
141  \label{compo}  \label{compo}
142  \end{eqnarray}  \end{eqnarray}
143  %  %
144  The linear approximation of $ {\cal J} $,  The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
145  \[  \[
146  {\cal J} \, \approx \, {\cal J}_0 \, + \, \delta {\cal J}  {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
147  \]  \]
148  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
149  w.r.t. their corresponding inner product  w.r.t. their corresponding inner product
150  $\left\langle \,\, , \,\, \right\rangle $  $\left\langle \,\, , \,\, \right\rangle $
151  %  %
152  \begin{equation}  \begin{equation}
153  \begin{split}  \begin{aligned}
154  {\cal J} & = \,  {\cal J} & = \,
155  {\cal J} |_{\vec{u}^{(0)}} \, + \,  {\cal J} |_{\vec{u}^{(0)}} \, + \,
156  \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle  \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
# Line 148  $\left\langle \,\, , \,\, \right\rangle Line 159  $\left\langle \,\, , \,\, \right\rangle
159  {\cal J} |_{\vec{v}^{(0)}} \, + \,  {\cal J} |_{\vec{v}^{(0)}} \, + \,
160  \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle  \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
161  \, + \, O(\delta \vec{v}^2)  \, + \, O(\delta \vec{v}^2)
162  \end{split}  \end{aligned}
163  \label{deljidentity}  \label{deljidentity}
164  \end{equation}  \end{equation}
165  %  %
166  (note, that the gradient $ \nabla f $ is a pseudo-vector, therefore  (note, that the gradient $ \nabla f $ is a co-vector, therefore
167  its transpose is required in the above inner product).  its transpose is required in the above inner product).
168  Then, using the representation of  Then, using the representation of
169  $ \delta {\cal J} =  $ \delta {\cal J} =
# Line 168  transpose of $ A $, Line 179  transpose of $ A $,
179  \[  \[
180  A^{\ast} \, = \, A^T  A^{\ast} \, = \, A^T
181  \]  \]
182  and from eq. (\ref{tangent_linear}), we note that  and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
183    we note that
184  (omitting $|$'s):  (omitting $|$'s):
185  %  %
186  \begin{equation}  \begin{equation}
# Line 188  the gradient $ \nabla _{u}{\cal J} $ can Line 200  the gradient $ \nabla _{u}{\cal J} $ can
200  invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $  invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
201  %  %
202  \begin{equation}  \begin{equation}
203  \begin{split}  \begin{aligned}
204  \nabla _{u}{\cal J}^T |_{\vec{u}} &  \nabla _{u}{\cal J}^T |_{\vec{u}} &
205  = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}}  \\  = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}}  \\
206  ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\  ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
207  ~ & = \, \delta \vec{u}^{\ast}  ~ & = \, \delta \vec{u}^{\ast}
208  \end{split}  \end{aligned}
209  \label{adjoint}  \label{adjoint}
210  \end{equation}  \end{equation}
211  %  %
# Line 204  the adjoint variable of the model state Line 216  the adjoint variable of the model state
216  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
217    
218  The {\sf reverse} nature of the adjoint calculation can be readily  The {\sf reverse} nature of the adjoint calculation can be readily
219  seen as follows. Let us decompose ${\cal J}(u)$, thus:  seen as follows.
220    Consider a model integration which consists of $ \Lambda $
221    consecutive operations
222    $ {\cal M}_{\Lambda} (  {\cal M}_{\Lambda-1} (
223    ...... ( {\cal M}_{\lambda} (
224    ......
225    ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
226    where the ${\cal M}$'s could be the elementary steps, i.e. single lines
227    in the code of the model, or successive time steps of the
228    model integration,
229    starting at step 0 and moving up to step $\Lambda$, with intermediate
230    ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
231    ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
232    Let ${\cal J}$ be a cost function which explicitly depends on the
233    final state $\vec{v}$ only
234    (this restriction is for clarity reasons only).
235    %
236    ${\cal J}(u)$ may be decomposed according to:
237  %  %
238  \begin{equation}  \begin{equation}
239  {\cal J}({\cal M}(\vec{u})) \, = \,  {\cal J}({\cal M}(\vec{u})) \, = \,
# Line 215  seen as follows. Let us decompose ${\cal Line 244  seen as follows. Let us decompose ${\cal
244  \label{compos}  \label{compos}
245  \end{equation}  \end{equation}
246  %  %
247  where the ${\cal M}$'s could be the elementary steps, i.e. single lines  Then, according to the chain rule, the forward calculation reads,
248  in the code of the model,  in terms of the Jacobi matrices
 starting at step 0 and moving up to step $\Lambda$, with intermediate  
 ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final  
 ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$  
 Then, according to the chain rule the forward calculation reads in  
 terms of the Jacobi matrices  
249  (we've omitted the $ | $'s which, nevertheless are important  (we've omitted the $ | $'s which, nevertheless are important
250  to the aspect of {\it tangent} linearity;  to the aspect of {\it tangent} linearity;
251  note also that per definition  note also that by definition
252  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
253  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
254  %  %
255  \begin{equation}  \begin{equation}
256  \begin{split}  \begin{aligned}
257  \nabla_v {\cal J} (M(\delta \vec{u})) & = \,  \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
258  \nabla_v {\cal J} \cdot M_{\Lambda}  \nabla_v {\cal J} \cdot M_{\Lambda}
259  \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot  \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
260  M_{1} \cdot M_{0} \cdot \delta \vec{u} \\  M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
261  ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\  ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
262  \end{split}  \end{aligned}
263  \label{forward}  \label{forward}
264  \end{equation}  \end{equation}
265  %  %
# Line 243  whereas in reverse mode we have Line 267  whereas in reverse mode we have
267  %  %
268  \begin{equation}  \begin{equation}
269  \boxed{  \boxed{
270  \begin{split}  \begin{aligned}
271  M^T ( \nabla_v {\cal J}^T) & = \,  M^T ( \nabla_v {\cal J}^T) & = \,
272  M_{0}^T \cdot M_{1}^T  M_{0}^T \cdot M_{1}^T
273  \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot  \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
# Line 252  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T Line 276  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T
276  \cdot ...... \cdot  \cdot ...... \cdot
277  \nabla_{v^{(\lambda)}} {\cal J}^T \\  \nabla_{v^{(\lambda)}} {\cal J}^T \\
278  ~ & = \, \nabla_u {\cal J}^T  ~ & = \, \nabla_u {\cal J}^T
279  \end{split}  \end{aligned}
280  }  }
281  \label{reverse}  \label{reverse}
282  \end{equation}  \end{equation}
283  %  %
284  clearly expressing the reverse nature of the calculation.  clearly expressing the reverse nature of the calculation.
285  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
286  The intermediate steps $\lambda$ in  If the intermediate steps $\lambda$ in
287  eqn. (\ref{compos}) -- (\ref{reverse})  eqn. (\ref{compos}) -- (\ref{reverse})
288  could represent the model state (forward or adjoint) at each  represent the model state (forward or adjoint) at each
289  intermediate time step in which case  intermediate time step as noted above, then correspondingly,
290  $ {\cal M}(\vec{v}^{(\lambda)}) = \vec{v}^{(\lambda+1)} $, and correspondingly,  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
291  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) = \delta \vec{v}^{(\lambda-1) \, \ast} $,  \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
292  but they can also be viewed more generally as  It thus becomes evident that the adjoint calculation also
293  single lines of code in the numerical algorithm.  yields the adjoint of each model state component
294  In both cases it becomes evident that the adjoint calculation  $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
 yields at the same time the adjoint of each model state component  
 $ \vec{v}^{(\lambda)} $ at each intermediate step $ l $, namely  
295  %  %
296  \begin{equation}  \begin{equation}
297  \boxed{  \boxed{
298  \begin{split}  \begin{aligned}
299  \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}  \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
300  & = \,  & = \,
301  M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot  M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
302  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
303  ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}  ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
304  \end{split}  \end{aligned}
305  }  }
306  \end{equation}  \end{equation}
307  %  %
308  in close analogy to eq. (\ref{adjoint})  in close analogy to eq. (\ref{adjoint})
309  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
310  are the Lagrange multipliers of the model state $ \vec{v}^{(\lambda)}$.  are the Lagrange multipliers of the model equations which determine
311    $ \vec{v}^{(\lambda)}$.
312    
313  In coponents, eq. (\ref{adjoint}) reads as follows.  In components, eq. (\ref{adjoint}) reads as follows.
314  Let  Let
315  \[  \[
316  \begin{array}{rclcrcl}  \begin{array}{rclcrcl}
# Line 308  Let Line 331  Let
331  \end{array}  \end{array}
332  \]  \]
333  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
334  and their adjoint varaiables;  and their adjoint variables;
335  further  further
336  \[  \[
337  M \, = \, \left(  M \, = \, \left(
# Line 395  and the shorthand notation for the adjoi Line 418  and the shorthand notation for the adjoi
418  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
419  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
420  for intermediate components, yielding  for intermediate components, yielding
421  \[  {\small
422  \footnotesize  \begin{equation}
423    \begin{aligned}
424  \left(  \left(
425  \begin{array}{c}  \begin{array}{c}
426  \delta v^{(\lambda) \, \ast}_1 \\  \delta v^{(\lambda) \, \ast}_1 \\
# Line 404  for intermediate components, yielding Line 428  for intermediate components, yielding
428  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
429  \end{array}  \end{array}
430  \right)  \right)
431  \, = \,  \, = &
432  \left(  \left(
433  \begin{array}{ccc}  \begin{array}{ccc}
434  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
435  & \ldots &  & \ldots \,\, \ldots &
436  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
437  \vdots & ~ & \vdots \\  \vdots & ~ & \vdots \\
438  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
439  & \ldots  &  & \ldots \,\, \ldots  &
440  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
441  \end{array}  \end{array}
442  \right)  \right)
 %  
443  \cdot  \cdot
444  %  %
445    \\ ~ & ~
446    \\ ~ &
447    %
448  \left(  \left(
449  \begin{array}{ccc}  \begin{array}{ccc}
450  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
# Line 431  for intermediate components, yielding Line 457  for intermediate components, yielding
457  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
458  \end{array}  \end{array}
459  \right)  \right)
460  \cdot \ldots \ldots \cdot  \cdot \, \ldots \, \cdot
461  \left(  \left(
462  \begin{array}{c}  \begin{array}{c}
463  \delta v^{\ast}_1 \\  \delta v^{\ast}_1 \\
# Line 439  for intermediate components, yielding Line 465  for intermediate components, yielding
465  \delta v^{\ast}_{n} \\  \delta v^{\ast}_{n} \\
466  \end{array}  \end{array}
467  \right)  \right)
468  \]  \end{aligned}
469    \end{equation}
470    }
471    
472  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
473  showing the advantage of the reverse over the forward mode  showing the advantage of the reverse over the forward mode
# Line 450  variables $u$ Line 478  variables $u$
478  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
479  In order to be able to solve for each component of the gradient  In order to be able to solve for each component of the gradient
480  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
481  a forward calulation has to be performed for each component seperately,  a forward calculation has to be performed for each component separately,
482  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
483  for  the $i$-th forward calculation.  for  the $i$-th forward calculation.
484  Then, (\ref{forward}) represents the  Then, (\ref{forward}) represents the
# Line 460  In contrast, eq. (\ref{reverse}) yields Line 488  In contrast, eq. (\ref{reverse}) yields
488  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
489  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
490    
491  Note, that in case $ {\cal J} $ is a vector-valued function  Note, that if $ {\cal J} $ is a vector-valued function
492  of dimension $ l > 1 $,  of dimension $ l > 1 $,
493  eq. (\ref{reverse}) has to be modified according to  eq. (\ref{reverse}) has to be modified according to
494  \[  \[
# Line 468  M^T \left( \nabla_v {\cal J}^T \left(\de Line 496  M^T \left( \nabla_v {\cal J}^T \left(\de
496  \, = \,  \, = \,
497  \nabla_u {\cal J}^T \cdot \delta \vec{J}  \nabla_u {\cal J}^T \cdot \delta \vec{J}
498  \]  \]
499  where now $ \delta \vec{J} \in I\!\!R $ is a vector of dimenison $ l $.  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
500    dimension $ l $.
501  In this case $ l $ reverse simulations have to be performed  In this case $ l $ reverse simulations have to be performed
502  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
503  Then, the reverse mode is more efficient as long as  Then, the reverse mode is more efficient as long as
504  $ l < n $, otherwise the forward mode is preferable.  $ l < n $, otherwise the forward mode is preferable.
505  Stricly, the reverse mode is called adjoint mode only for  Strictly, the reverse mode is called adjoint mode only for
506  $ l = 1 $.  $ l = 1 $.
507    
508  A detailed analysis of the underlying numerical operations  A detailed analysis of the underlying numerical operations
# Line 503  operator onto the $j$-th component ${\bf Line 532  operator onto the $j$-th component ${\bf
532  \paragraph{Example 2:  \paragraph{Example 2:
533  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
534   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
535  The cost function represents the quadratic model vs.data misfit.  The cost function represents the quadratic model vs. data misfit.
536  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
537  operator which maps the model state space onto the data space.  operator which maps the model state space onto the data space.
538  Then, $ \nabla_v {\cal J} $ takes the form  Then, $ \nabla_v {\cal J} $ takes the form
539  %  %
540  \begin{equation*}  \begin{equation*}
541  \begin{split}  \begin{aligned}
542  \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot  \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
543  \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\  \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
544  ~          & = \, 2 \sum_{j} \left\{ \sum_k  ~          & = \, 2 \sum_{j} \left\{ \sum_k
545  \frac{\partial {\cal H}_k}{\partial v_{j}}  \frac{\partial {\cal H}_k}{\partial v_{j}}
546  \left( {\cal H}_k (\vec{v}) - d_k \right)  \left( {\cal H}_k (\vec{v}) - d_k \right)
547  \right\} \, {\vec{f}_{j}} \\  \right\} \, {\vec{f}_{j}} \\
548  \end{split}  \end{aligned}
549  \end{equation*}  \end{equation*}
550  %  %
551  where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the  where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
# Line 534  H \cdot \left( {\cal H}(\vec{v}) - \vec{ Line 563  H \cdot \left( {\cal H}(\vec{v}) - \vec{
563    
564  We note an important aspect of the forward vs. reverse  We note an important aspect of the forward vs. reverse
565  mode calculation.  mode calculation.
566  Because of the locality of the derivative,  Because of the local character of the derivative
567    (a derivative is defined w.r.t. a point along the trajectory),
568  the intermediate results of the model trajectory  the intermediate results of the model trajectory
569  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
570  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
571  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
572    This is the case e.g. for nonlinear expressions
573    (momentum advection, nonlinear equation of state), state-dependent
574    conditional statements (parameterization schemes).
575  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
576  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
577  in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
578  Thus, in the reverse mode the trajectory of the forward model  Thus, in the reverse mode the trajectory of the forward model
579  integration ${\cal M}$ has to be stored to be available in the reverse  integration ${\cal M}$ has to be stored to be available in the reverse
580  calculation. Alternatively, the model state would have to be  calculation. Alternatively, the complete model state up to the
581  recomputed whenever its value is required.  point of evaluation has to be recomputed whenever its value is required.
582    
583  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
584  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
585  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
586  It is depicted in Fig. ... for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
587  [as concrete example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
588  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
589  \begin{itemize}  \begin{itemize}
590  %  %
# Line 559  integration with a 1-hourly timestep in Line 592  integration with a 1-hourly timestep in
592  In a first step, the model trajectory is subdivided into  In a first step, the model trajectory is subdivided into
593  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
594  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
595  The model is then integrated over the full trajectory,  The model is then integrated along the full trajectory,
596  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
597  [i.e. 3 times, at  [i.e. 3 times, at
598  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
599    In addition, the cost function is computed, if needed.
600  %  %
601  \item [$lev2$]  \item [$lev2$]
602  In a second step each subsection is itself divided into  In a second step each subsection itself is divided into
603  $ {n}^{lev2} $ subsubsections  $ {n}^{lev2} $ subsections
604  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
605  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
606  $ v_{k_{n}^{lev3}} $ and is integrated forward in time over  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
607  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
608  intermediate loop.  intermediate loop.
609  The model state is now stored only at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
610  timestep  timestep
611  [i.e. 4 times, at  [i.e. 4 times, at
612  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
613  %  %
614  \item [$lev1$]  \item [$lev1$]
615  Finally, the mode picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
616  $ v_{k_{n}^{lev2}} $ and is integrated forward in time over  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
617  the last subsubsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
618  intermediate loop.  intermediate loop.
619  Within this subsubsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
620  at every timestep  to memory at every timestep
621  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
622  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
623  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
624  and the model state of all peceeding timesteps over the last  and the model state of all preceding timesteps along the last
625  subsubsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
626  in time over the last subsubsection.  in time along the last subsection.
627  Thus, the adjoint can be computed over this last  The adjoint can thus be computed along this last
628  subsubsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
629  %  %
630  \end{itemize}  \end{itemize}
631  %  %
632  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
633  subsubsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
634  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
635  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
636  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 607  $k_{1}^{lev3}$. Line 641  $k_{1}^{lev3}$.
641  For the full model trajectory of  For the full model trajectory of
642  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
643  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
644  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
645  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
646  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
647    to memory].
648  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
649  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
650  checkpointing level).  checkpointing level).
651  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
652  on the computing resources available.  on the computing resources available and may be adjusted by
653    adjusting the partitioning among the
654    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
655    
656  \begin{figure}[t!]  \begin{figure}[t!]
657  \centering  \begin{center}
658  %\psdraft  %\psdraft
659  \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}  %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
660  \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}  %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
661  \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}  %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
662  \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}  %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
663  \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}  %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
664  \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}  %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
665  \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}  %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
666  \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}  %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
667  \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}  %\mbox{\epsfig{file=s_autodiff/figs/checkpointing.eps, width=0.8\textwidth}}
668    \resizebox{5.5in}{!}{\includegraphics{s_autodiff/figs/checkpointing.eps}}
669  %\psfull  %\psfull
670  \caption  \end{center}
671  {Schematic view of intermediate dump and restart for  \caption{
672    Schematic view of intermediate dump and restart for
673  3-level checkpointing.}  3-level checkpointing.}
674  \label{fig:erswns}  \label{fig:3levelcheck}
675  \end{figure}  \end{figure}
676    
677  \subsection{Optimal perturbations}  % \subsection{Optimal perturbations}
678  \label{optpert}  % \label{sec_optpert}
679    
680    
681  \subsection{Error covariance estimate and Hessian matrix}  % \subsection{Error covariance estimate and Hessian matrix}
682  \label{sec_hessian}  % \label{sec_hessian}
683    
684  \newpage  \newpage
685    
686  %**********************************************************************  %**********************************************************************
687  \section{AD-specific setup by example: sensitivity of carbon sequestration}  \section{TLM and ADM generation in general}
688  \label{sec_ad_setup_ex}  \label{sec_ad_setup_gen}
689    \begin{rawhtml}
690    <!-- CMIREDIR:sec_ad_setup_gen: -->
691    \end{rawhtml}
692  %**********************************************************************  %**********************************************************************
693    
694  The MITGCM has been adapted to enable AD using TAMC or TAF  In this section we describe in a general fashion
695  (we'll refer to TAMC and TAF interchangeably, except where  the parts of the code that are relevant for automatic
696  distinctions are explicitly mentioned).  differentiation using the software tool TAF.
697  The present description, therefore, is specific to the  Modifications to use OpenAD are described in \ref{sec_ad_openad}.
698  use of TAMC as AD tool.  
699  The following sections describe the steps which are necessary to  \input{s_autodiff/text/doc_ad_the_model}
700  generate a tangent linear or adjoint model of the MITGCM.  
701  We take as an example the sensitivity of carbon sequestration  The basic flow is depicted in \ref{fig:adthemodel}.
702  in the ocean.  If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined,
703  The AD-relevant hooks in the code are sketched in  the driver routine
704  \reffig{adthemodel}, \reffig{adthemain}.  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
705    invokes the adjoint of this routine, {\it adthe\_main\_loop}
706  \subsection{Overview of the experiment}  (case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or
707    the tangent linear of this routine {\it g\_the\_main\_loop}
708  We describe an adjoint sensitivity analysis of outgassing from  (case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}),
709  the ocean into the atmosphere of a carbon like tracer injected  which are the toplevel routines in terms of automatic differentiation.
710  into the ocean interior (see \cite{hil-eta:01}).  The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop}
711    are generated by TAF.
712  \subsubsection{Passive tracer equation}  It contains both the forward integration of the full model, the
713    cost function calculation,
714  For this work the MITGCM was augmented with a thermodynamically  any additional storing that is required for efficient checkpointing,
715  inactive tracer, $C$. Tracer residing in the ocean  and the reverse integration of the adjoint model.
716  model surface layer is outgassed according to a relaxation time scale,  
717  $\mu$. Within the ocean interior, the tracer is passively advected  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
718  by the ocean model currents. The full equation for the time evolution  
719  %  In Fig. \ref{fig:adthemodel}
720  \begin{equation}  the structure of {\it adthe\_main\_loop} has been strongly
721  \label{carbon_ddt}  simplified to focus on the essentials; in particular, no checkpointing
722  \frac{\partial C}{\partial t} \, = \,  procedures are shown here.
723  -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S  Prior to the call of {\it adthe\_main\_loop}, the routine
724  \end{equation}  {\it ctrl\_unpack} is invoked to unpack the control vector
725  %  or initialise the control variables.
726  also includes a source term $S$. This term  Following the call of {\it adthe\_main\_loop},
727  represents interior sources of $C$ such as would arise due to  the routine {\it ctrl\_pack}
728  direct injection.  is invoked to pack the control vector
729  The velocity term, $U$, is the sum of the  (cf. Section \ref{section_ctrl}).
730  model Eulerian circulation and an eddy-induced velocity, the latter  If gradient checks are to be performed, the option
731  parameterized according to Gent/McWilliams (\cite{gen:90, dan:95}).  {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
732  The convection function, $\Gamma$, mixes $C$ vertically wherever the  the driver routine {\it grdchk\_main} is called after
733  fluid is locally statically unstable.  the gradient has been computed via the adjoint
734    (cf. Section \ref{sec:ad_gradient_check}).
735  The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})  
736  is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface  %------------------------------------------------------------------
737  ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})  
738  is valid as a prognostic equation for small perturbations in oceanic  \subsection{General setup
739  carbon concentrations. This configuration provides a  \label{section_ad_setup}}
740  powerful tool for examining the impact of large-scale ocean circulation  
741  on $ CO_2 $ outgassing due to interior injections.  In order to configure AD-related setups the following packages need
742  As source we choose a constant in time injection of  to be enabled:
743  $ S = 1 \,\, {\rm mol / s}$.  {\it
744    \begin{table}[!ht]
745  \subsubsection{Model configuration}  \begin{tabular}{l}
746    autodiff \\
747  The model configuration employed has a constant  ctrl \\
748  $4^\circ \times 4^\circ$ resolution horizontal grid and realistic  cost \\
749  geography and bathymetry. Twenty vertical layers are used with  grdchk \\
750  vertical spacing ranging  \end{tabular}
751  from 50 m near the surface to 815 m at depth.  \end{table}
752  Driven to steady-state by climatalogical wind-stress, heat and  }
753  fresh-water forcing the model reproduces well known large-scale  The packages are enabled by adding them to your experiment-specific
754  features of the ocean general circulation.  configuration file
755    {\it packages.conf} (see Section ???).
756  \subsubsection{Outgassing cost function}  
757    The following AD-specific CPP option files need to be customized:
 To quantify and understand outgassing due to injections of $C$  
 in eqn. (\ref{carbon_ddt}),  
 we define a cost function $ {\cal J} $ that measures the total amount of  
 tracer outgassed at each timestep:  
 %  
 \begin{equation}  
 \label{cost_tracer}  
 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt  
 \end{equation}  
 %  
 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,  
 from (\ref{carbon_ddt})  
 over the entire ocean surface area, $A$, and accumulates it  
 up to time $T$.  
 Physically, ${\cal J}$ can be thought of as representing the amount of  
 $CO_2$ that our model predicts would be outgassed following an  
 injection at rate $S$.  
 The sensitivity of ${\cal J}$ to the spatial location of $S$,  
 $\frac{\partial {\cal J}}{\partial S}$,  
 can be used to identify regions from which circulation  
 would cause $CO_2$ to rapidly outgas following injection  
 and regions in which $CO_2$ injections would remain effectively  
 sequesterd within the ocean.  
   
 \subsection{Code configuration}  
   
 The model configuration for this experiment resides under the  
 directory {\it verification/carbon/}.  
 The code customisation routines are in {\it verification/carbon/code/}:  
758  %  %
759  \begin{itemize}  \begin{itemize}
760  %  %
761  \item {\it .genmakerc}  \item {\it ECCO\_CPPOPTIONS.h} \\
762  %  This header file collects CPP options for the packages
763  \item {\it COST\_CPPOPTIONS.h}  {\it autodiff, cost, ctrl} as well as AD-unrelated options for
764  %  the external forcing package {\it exf}.
765  \item {\it CPP\_EEOPTIONS.h}  \footnote{NOTE: These options are not set in their package-specific
766  %  headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
767  \item {\it CPP\_OPTIONS.h}  in the single header file {\it ECCO\_CPPOPTIONS.h}.
768  %  The package-specific header files serve as simple
769  \item {\it CTRL\_OPTIONS.h}  placeholders at this point.}
770  %  %
771  \item {\it ECCO\_OPTIONS.h}  \item {\it tamc.h} \\
772  %  This header configures the splitting of the time stepping loop
773  \item {\it SIZE.h}  w.r.t. the 3-level checkpointing (see section ???).
774  %  
 \item {\it adcommon.h}  
 %  
 \item {\it tamc.h}  
775  %  %
776  \end{itemize}  \end{itemize}
777    
778    %------------------------------------------------------------------
779    
780    \subsection{Building the AD code using TAF
781    \label{section_ad_build}}
782    
783    The build process of an AD code is very similar to building
784    the forward model. However, depending on which AD code one wishes
785    to generate, and on which AD tool is available (TAF or TAMC),
786    the following {\tt make} targets are available:
787    
788    \begin{table}[!ht]
789    {\footnotesize
790    \begin{tabular}{|ccll|}
791    \hline
792    ~ & {\it AD-target} & {\it output} & {\it description} \\
793    \hline
794    \hline
795    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
796    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
797    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
798    ~ & ~ & ~ & useful for compiling on remote platforms \\
799    \hline
800    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
801    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
802    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
803    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
804    \hline
805    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
806    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
807    ~ & ~ & ~ & and compiles all code \\
808    ~ & ~ & ~ & (use of TAF is set as default) \\
809    \hline
810    \end{tabular}
811    }
812    \end{table}
813  %  %
814  The runtime flag and parameters settings are contained in  Here, the following placeholders are used
 {\it verification/carbon/input/},  
 together with the forcing fields and and restart files:  
815  %  %
816  \begin{itemize}  \begin{itemize}
817  %  %
818  \item {\it data}  \item $<$TOOL$>$
819  %  %
820  \item {\it data.cost}  \begin{itemize}
 %  
 \item {\it data.ctrl}  
 %  
 \item {\it data.pkg}  
 %  
 \item {\it eedata}  
 %  
 \item {\it topog.bin}  
 %  
 \item {\it windx.bin, windy.bin}  
 %  
 \item {\it salt.bin, theta.bin}  
 %  
 \item {\it SSS.bin, SST.bin}  
821  %  %
822  \item {\it pickup*}  \item {\tt TAF}
823    \item {\tt TAMC}
824  %  %
825  \end{itemize}  \end{itemize}
826  %  %
827  Finally, the file to generate the adjoint code resides in  \item $<$MODE$>$
 $ adjoint/ $:  
828  %  %
829  \begin{itemize}  \begin{itemize}
830  %  %
831  \item {\it makefile}  \item {\tt ad} generates the adjoint model (ADM)
832    \item {\tt ftl} generates the tangent linear model (TLM)
833    \item {\tt svd} generates both ADM and TLM for \\
834    singular value decomposition (SVD) type calculations
835  %  %
836  \end{itemize}  \end{itemize}
837  %  %
838    \end{itemize}
839    
840  Below we describe the customisations of this files which are  For example, to generate the adjoint model using TAF after routines ({\tt .F})
841  specific to this experiment.  or headers ({\tt .h}) have been modified, but without compilation,
842    type {\tt make adtaf};
843  \subsubsection{File {\it .genmakerc}}  or, to generate the tangent linear model using TAMC without
844  This file overwites default settings of {\it genmake}.  re-generating the input code, type {\tt make ftltamconly}.
 In the present example it is used to switch on the following  
 packages which are related to automatic differentiation  
 and are disabled by default: \\  
 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco )}  \\  
 Other packages which are not needed are switched off: \\  
 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}  
   
 \subsubsection{File {\it COST\_CPPOPTIONS.h,  CTRL\_OPTIONS.h}}  
   
 These files used to contain package-specific CPP-options  
 (see Section \ref{???}).  
 For technical reasons those options have been grouped together  
 in the file {\it ECCO\_OPTIONS.h}.  
 To retain the modularity, the files have been kept and contain  
 the standard include of the {\it CPP\_OPTIONS.h} file.  
   
 \subsubsection{File {\it CPP\_EEOPTIONS.h}}  
   
 This file contains 'wrapper'-specific CPP options.  
 It only needs to be changed if the code is to be run  
 in  parallel environment (see Section \ref{???}).  
   
 \subsubsection{File {\it CPP\_OPTIONS.h}}  
   
 This file contains model-specific CPP options  
 (see Section \ref{???}).  
 Most options are related to the forward model setup.  
 They are identical to the global steady circulation setup of  
 {\it verification/exp2/}.  
 The option specific to this experiment is \\  
 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\  
 This flag enables the inclusion of some AD-related fields  
 concerning initialisation, link between control variables  
 and forward model variables, and the call to the top-level  
 forward/adjoint subroutine {\it adthe\_main\_loop}  
 instead of {\it the\_main\_loop}.  
   
 \subsubsection{File {\it ECCO\_OPTIONS.h}}  
845    
 The CPP options of several AD-related packages are grouped  
 in this file:  
 %  
 \begin{itemize}  
 %  
 \item  
 Adjoint support package: {\it pkg/autodiff/} \\  
 This package contains hand-written adjoint code such as  
 active file handling, flow directives for files which must not  
 be differentiated, and TAMC-specific header files. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\  
 defines TAMC-related features in the code. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\  
 enables the checkpointing feature of TAMC  
 (see Section \ref{???}).  
 In the present example a 3-level checkpointing is implemented.  
 The code contains the relevant store directives, common block  
 and tape initialisations, storing key computation,  
 and loop index handling.  
 The checkpointing length at each level is defined in  
 file {\it tamc.h}, cf. below.  
 %  
 \item Cost function package: {\it pkg/cost/} \\  
 This package contains all relevant routines for  
 initialising, accumulating and finalizing the cost function  
 (see Section \ref{???}). \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\  
 enables all general aspects of the cost function handling,  
 in particular the hooks in the foorward code for  
 initialising, accumulating and finalizing the cost function. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\  
 includes the subroutine with the cost function for this  
 particular experiment, eqn. (\ref{cost_tracer}).  
 %  
 \item Control variable package: {\it pkg/ctrl/} \\  
 This package contains all relevant routines for  
 the handling of the control vector.  
 Each control variable can be enabled/disabled with its own flag: \\  
 \begin{tabular}{ll}  
 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &  
 initial temperature \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &  
 initial salinity \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &  
 initial passive tracer concentration \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &  
 zonal wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &  
 meridional wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &  
 freshwater flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &  
 heat flux \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_DIFFKR\_CONTROL} &  
 diapycnal diffusivity \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &  
 isopycnal diffusivity \\  
 \end{tabular}  
 %  
 \end{itemize}  
846    
847  \subsubsection{File {\it SIZE.h}}  A typical full build process to generate the ADM via TAF would
848    look like follows:
849    \begin{verbatim}
850    % mkdir build
851    % cd build
852    % ../../../tools/genmake2 -mods=../code_ad
853    % make depend
854    % make adall
855    \end{verbatim}
856    
857  The file contains the grid point dimensions of the forward  %------------------------------------------------------------------
 model. It is identical to the {\it verification/exp2/}: \\  
 \hspace*{4ex} {\tt sNx = 90} \\  
 \hspace*{4ex} {\tt sNy = 40} \\  
 \hspace*{4ex} {\tt Nr = 20} \\  
 It correpsponds to a single-tile/single-processor setup:  
 {\tt nSx = nSy = 1, nPx = nPy = 1},  
 with standard overlap dimensioning  
 {\tt OLx = OLy = 3}.  
   
 \subsubsection{File {\it adcommon.h}}  
   
 This file contains common blocks of some adjoint variables  
 that are generated by TAMC.  
 The common blocks are used by the adjoint support routine  
 {\it addummy\_in\_stepping} which needs to access those variables:  
   
 \begin{tabular}{ll}  
 \hspace*{4ex} {\tt common /addynvars\_r/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_cd/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /adtr1\_r/} &  
 \hspace*{4ex} is related to {\it TR1.h} \\  
 \hspace*{4ex} {\tt common /adffields/} &  
 \hspace*{4ex} is related to {\it FFIELDS.h}\\  
 \end{tabular}  
858    
859  Note that if the structure of the common block changes in the  \subsection{The AD build process in detail
860  above header files of the forward code, the structure  \label{section_ad_build_detail}}
 of the adjoint common blocks will change accordingly.  
 Thus, it has to be made sure that the structure of the  
 adjoint common block in the hand-written file {\it adcommon.h}  
 complies with the automatically generated adjoint common blocks  
 in {\it adjoint\_model.F}.  
861    
862  \subsubsection{File {\it tamc.h}}  The {\tt make <MODE>all} target consists of the following procedures:
863    
864  This routine contains the dimensions for TAMC checkpointing.  \begin{enumerate}
865  %  %
866    \item
867    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
868    on which code ought to be generated. Depending on the {\tt make} target,
869    the contents is one of the following:
870  \begin{itemize}  \begin{itemize}
871    \item
872    {\tt \#define ALLOW\_ADJOINT\_RUN}
873    \item
874    {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
875    \item
876    {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
877    \end{itemize}
878  %  %
879  \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\  \item
880  3-level checkpointing is enabled, i.e. the timestepping  A single file {\tt <MODE>\_input\_code.f} is concatenated
881  is divided into three different levels (see Section \ref{???}).  consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
882  The model state of the outermost ({\tt nchklev\_3}) and the  and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
883  itermediate ({\tt nchklev\_2}) timestepping loop are stored to file  %
884  (handled in {\it the\_main\_loop}).  \item
885  The innermost loop ({\tt nchklev\_1})  The AD tool is invoked with the {\tt <MODE>\_<TOOL>\_FLAGS}.
886  avoids I/O by storing all required variables  The default AD tool flags in {\tt genmake2} can be overrwritten by
887  to common blocks. This storing may also be necessary if  an {\tt adjoint\_options} file (similar to the platform-specific
888  no checkpointing is chosen  {\tt build\_options}, see Section ???.
889  (nonlinear functions, if-statements, iterative loops, ...).  The AD tool writes the resulting AD code into the file
890  In the present example the dimensions are chosen as follows: \\  {\tt <MODE>\_input\_code\_ad.f}
891  \hspace*{4ex} {\tt nchklev\_1      =  36 } \\  %
892  \hspace*{4ex} {\tt nchklev\_2      =  30 } \\  \item
893  \hspace*{4ex} {\tt nchklev\_3      =  60 } \\  A short sed script {\tt adjoint\_sed} is applied to
894  To guarantee that the checkpointing intervals span the entire  {\tt <MODE>\_input\_code\_ad.f}
895  integration period the relation \\  to reinstate {\bf myThid} into the CALL argument list of active file I/O.
896  \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\  The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
897  where {\tt nTimeSteps} is either specified in {\it data}  %
898  or computed via \\  \item
899  \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.  All routines are compiled and an executable is generated
900  %  (see Table ???).
 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\  
 No checkpointing is enabled.  
 In this case the relevant counter is {\tt nchklev\_0}.  
 Similar to above, the following relation has to be satisfied \\  
 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.  
901  %  %
902  \end{itemize}  \end{enumerate}
903    
904  \subsubsection{File {\it makefile}}  \subsubsection{The list AD\_FILES and {\tt .list} files}
905    
906  This file contains all relevant paramter flags and  Not all routines are presented to the AD tool.
907  lists to run TAMC.  Routines typically hidden are diagnostics routines which
908  It is assumed that TAMC is available to you, either locally,  do not influence the cost function, but may create
909  being installed on your network, or remotely through the 'TAMC Utility'.  artificial flow dependencies such as I/O of active variables.
910  TAMC is called with the command {\tt tamc} followed by a  
911  number of options. They are described in detail in the  {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
912  TAMC manual \cite{gie:99}.  which contains all routines that are shown to the AD tool.
913  Here we briefly discuss the main flags used in the {\it makefile}  This list is put together from all files with suffix {\tt .list}
914    that {\tt genmake2} finds in its search directories.
915    The list file for the core MITgcm routines is in {\tt model/src/}
916    is called {\tt model\_ad\_diff.list}.
917    Note that no wrapper routine is shown to TAF. These are either
918    not visible at all to the AD code, or hand-written AD code
919    is available (see next section).
920    
921    Each package directory contains its package-specific
922    list file {\tt <PKG>\_ad\_diff.list}. For example,
923    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
924    Thus, enabling a package will automatically extend the
925    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
926    package-specific routines.
927    Note that you will need to regenerate the {\tt Makefile} if
928    you enable a package (e.g. by adding it to {\tt packages.conf})
929    and a {\tt Makefile} already exists.
930    
931    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
932    
933    TAMC and TAF can evaluate user-specified directives
934    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
935    The main categories of directives are STORE directives and
936    FLOW directives. Here, we are concerned with flow directives,
937    store directives are treated elsewhere.
938    
939    Flow directives enable the AD tool to evaluate how it should treat
940    routines that are 'hidden' by the user, i.e. routines which are
941    not contained in the {\bf AD\_FILES} list (see previous section),
942    but which are called in part of the code that the AD tool does see.
943    The flow directive tell the AD tool
944  %  %
945  \begin{itemize}  \begin{itemize}
 \item [{\tt tamc}] {\tt  
 -input <variable names>  
 -output <variable name> ... \\  
 -toplevel <S/R name> -reverse <file names>  
 }  
 \end{itemize}  
946  %  %
947  \begin{itemize}  \item which subroutine arguments are input/output
948  %  \item which subroutine arguments are active
949  \item {\tt -toplevel <S/R name>} \\  \item which subroutine arguments are required to compute the cost
950  Name of the toplevel routine, with respect to which the  \item which subroutine arguments are dependent
 control flow analysis is performed.  
 %  
 \item {\tt -input <variable names>} \\  
 List of independent variables $ u $ with respect to which the  
 dependent variable $ J $ is differentiated.  
 %  
 \item {\tt -output <variable name>} \\  
 Dependent variable $ J $  which is to be differentiated.  
 %  
 \item {\tt -reverse <file names>} \\  
 Adjoint code is generated to compute the sensitivity of an  
 independent variable w.r.t.  many dependent variables.  
 The generated adjoint top-level routine computes the product  
 of the transposed Jacobian matrix $ M^T $ times  
 the gradient vector $ \nabla_v J $.  
 \\  
 {\tt <file names>} refers to the list of files {\it .f} which are to be  
 analyzed by TAMC. This list is generally smaller than the full list  
 of code to be compiled. The files not contained are either  
 above the top-level routine (some initialisations), or are  
 deliberately hidden from TAMC, either because hand-written  
 adjoint routines exist, or the routines must not (or don't have to)  
 be differentiated. For each routine which is part of the flow tree  
 of the top-level routine, but deliberately hidden from TAMC,  
 a corresponding file {\it .flow} exists containing flow directives  
 for TAMC.  
951  %  %
952  \end{itemize}  \end{itemize}
953    %
954    The syntax for the flow directives can be found in the
955    AD tool manuals.
956    
957    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
958    which contains all files with suffix{\tt .flow} that it finds
959    in its search directories.
960    The flow directives for the core MITgcm routines of
961    {\tt eesupp/src/} and {\tt model/src/}
962    reside in {\tt pkg/autodiff/}.
963    This directory also contains hand-written adjoint code
964    for the MITgcm WRAPPER (section \ref{chap:sarch}).
965    
966    Flow directives for package-specific routines are contained in
967    the corresponding package directories in the file
968    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
969    {\tt ptracers\_ad.flow}.
970    
971    \subsubsection{Store directives for 3-level checkpointing}
972    
973    The storing that is required at each period of the
974    3-level checkpointing is controled by three
975    top-level headers.
976    
977  \subsubsection{File {\it data}}  \begin{verbatim}
978    do ilev_3 = 1, nchklev_3
979  \subsubsection{File {\it data.cost}}  #  include ``checkpoint_lev3.h''
980       do ilev_2 = 1, nchklev_2
981  \subsubsection{File {\it data.ctrl}}  #     include ``checkpoint_lev2.h''
982          do ilev_1 = 1, nchklev_1
983  \subsubsection{File {\it data.pkg}}  #        include ``checkpoint_lev1.h''
984    
985  \subsubsection{File {\it eedata}}  ...
986    
987  \subsubsection{File {\it topog.bin}}        end do
988       end do
989  \subsubsection{File {\it windx.bin, windy.bin}}  end do
990    \end{verbatim}
 \subsubsection{File {\it salt.bin, theta.bin}}  
991    
992  \subsubsection{File {\it SSS.bin, SST.bin}}  All files {\tt checkpoint\_lev?.h} are contained in directory
993    {\tt pkg/autodiff/}.
994    
 \subsubsection{File {\it pickup*}}  
995    
996  \subsection{Compiling the model and its adjoint}  \subsubsection{Changing the default AD tool flags: ad\_options files}
997    
 \newpage  
998    
999  %**********************************************************************  \subsubsection{Hand-written adjoint code}
 \section{TLM and ADM code generation in general}  
 \label{sec_ad_setup_gen}  
 %**********************************************************************  
1000    
1001  In this section we describe in a general fashion  %------------------------------------------------------------------
 the parts of the code that are relevant for automatic  
 differentiation using the software tool TAMC.  
1002    
1003  \subsection{The cost function (dependent variable)}  \subsection{The cost function (dependent variable)
1004    \label{section_cost}}
1005    
1006  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1007  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
1008  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1009  The input is referred to as the  The input are referred to as the
1010  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
1011  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
1012  (parameter setting, initialisation, incrementation,  (parameter setting, initialization, accumulation,
1013  final evaluation), are controled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
1014    The aspects relevant to the treatment of the independent variables
1015    are controlled by the package {\it pkg/ctrl} and will be treated
1016    in the next section.
1017    
1018    \input{s_autodiff/text/doc_cost_flow}
1019    
1020    \subsubsection{Enabling the package}
1021    
 \subsubsection{genmake and CPP options}  
 %  
 \begin{itemize}  
 %  
 \item  
1022  \fbox{  \fbox{
1023  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1024  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1025  \end{minipage}  \end{minipage}
1026  }  }
1027  \end{itemize}  \begin{itemize}
1028  %  %
1029  The directory {\it pkg/cost} can be included to the  \item
1030  compile list in 3 different ways (cf. Section \ref{???}):  The package is enabled by adding {\it cost} to your file {\it packages.conf}
1031    (see Section ???)
1032  %  %
1033  \begin{enumerate}  \item
1034  %  
1035  \item {\it genmake}: \\  
1036  Change the default settngs in the file {\it genmake} by adding  \end{itemize}
 {\bf cost} to the {\bf enable} list (not recommended).  
 %  
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1037  %  %
1038  \end{enumerate}  
1039  Since the cost function is usually used in conjunction with  N.B.: In general the following packages ought to be enabled
1040  automatic differentiation, the CPP option  simultaneously: {\it autodiff, cost, ctrl}.
 {\bf ALLOW\_ADJOINT\_RUN} should be defined  
 (file {\it CPP\_OPTIONS.h}).  
1041  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1042  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1043  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1044  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1045    Since the cost function is usually used in conjunction with
1046    automatic differentiation, the CPP option
1047    {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1048    {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1049    should be defined.
1050    
1051  \subsubsection{Initialisation}  \subsubsection{Initialization}
1052  %  %
1053  The initialisation of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1054  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1055  %  %
1056  \begin{itemize}  \begin{itemize}
1057  %  %
# Line 1152  Variables: {\it cost\_init} Line 1081  Variables: {\it cost\_init}
1081  }  }
1082  \\  \\
1083  This S/R  This S/R
1084  initialises the different cost function contributions.  initializes the different cost function contributions.
1085  The contribtion for the present example is {\bf objf\_tracer}  The contribution for the present example is {\bf objf\_tracer}
1086  which is defined on each tile (bi,bj).  which is defined on each tile (bi,bj).
1087  %  %
1088  \end{itemize}  \end{itemize}
1089  %  %
1090  \subsubsection{Incrementation}  \subsubsection{Accumulation}
1091  %  %
1092  \begin{itemize}  \begin{itemize}
1093  %  %
# Line 1176  Within this 'driver' routine, S/R are ca Line 1105  Within this 'driver' routine, S/R are ca
1105  the chosen cost function contributions.  the chosen cost function contributions.
1106  In the present example ({\bf ALLOW\_COST\_TRACER}),  In the present example ({\bf ALLOW\_COST\_TRACER}),
1107  S/R {\it cost\_tracer} is called.  S/R {\it cost\_tracer} is called.
1108  It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).  It accumulates {\bf objf\_tracer} according to eqn. (ref:ask-the-author).
1109  %  %
1110  \subsubsection{Finalize all contributions}  \subsubsection{Finalize all contributions}
1111  %  %
# Line 1196  from each contribution and sums over all Line 1125  from each contribution and sums over all
1125  \begin{equation}  \begin{equation}
1126  {\cal J} \, = \,  {\cal J} \, = \,
1127  {\rm fc} \, = \,  {\rm fc} \, = \,
1128  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1129  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1130  \end{equation}  \end{equation}
1131  %  %
1132  The total cost function {\bf fc} will be the  The total cost function {\bf fc} will be the
1133  'dependent' variable in the argument list for TAMC, i.e.  'dependent' variable in the argument list for TAF, i.e.
1134  \begin{verbatim}  \begin{verbatim}
1135  tamc -output 'fc' ...  taf -output 'fc' ...
1136  \end{verbatim}  \end{verbatim}
1137    
1138  \begin{figure}[t!]  %%%% \end{document}
 \input{part5/doc_ad_the_model}  
 \label{fig:adthemodel}  
 \caption{~}  
 \end{figure}  
1139    
1140  \begin{figure}  \input{s_autodiff/text/doc_ad_the_main}
 \input{part5/doc_ad_the_main}  
 \label{fig:adthemain}  
 \caption{~}  
 \end{figure}  
1141    
1142  \subsection{The control variables (independent variables)}  \subsection{The control variables (independent variables)
1143    \label{section_ctrl}}
1144    
1145  The control variables are a subset of the model input  The control variables are a subset of the model input
1146  (initial conditions, boundary conditions, model parameters).  (initial conditions, boundary conditions, model parameters).
1147  Here we identify them with the variable $ \vec{u} $.  Here we identify them with the variable $ \vec{u} $.
1148  All intermediate variables whose derivative w.r.t. control  All intermediate variables whose derivative w.r.t. control
1149  variables don't vanish are called {\sf active variables}.  variables do not vanish are called {\sf active variables}.
1150  All subroutines whose derivative w.r.t. the control variables  All subroutines whose derivative w.r.t. the control variables
1151  don't vanish are called {\sf active routines}.  don't vanish are called {\sf active routines}.
1152  Read and write operations from and to file can be viewed  Read and write operations from and to file can be viewed
# Line 1232  as variable assignments. Therefore, file Line 1154  as variable assignments. Therefore, file
1154  active variables are written and from which active variables  active variables are written and from which active variables
1155  are read are called {\sf active files}.  are read are called {\sf active files}.
1156  All aspects relevant to the treatment of the control variables  All aspects relevant to the treatment of the control variables
1157  (parameter setting, initialisation, perturbation)  (parameter setting, initialization, perturbation)
1158  are controled by the package {\it pkg/ctrl}.  are controlled by the package {\it pkg/ctrl}.
1159    
1160    \input{s_autodiff/text/doc_ctrl_flow}
1161    
1162  \subsubsection{genmake and CPP options}  \subsubsection{genmake and CPP options}
1163  %  %
# Line 1249  are controled by the package {\it pkg/ct Line 1173  are controled by the package {\it pkg/ct
1173  %  %
1174  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1175  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1176  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1177    package, cf. previous section).
1178  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1179  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1180    
1181  \subsubsection{Initialisation}  \subsubsection{Initialization}
1182  %  %
1183  \begin{itemize}  \begin{itemize}
1184  %  %
# Line 1290  and their gradients: {\it ctrl\_unpack} Line 1215  and their gradients: {\it ctrl\_unpack}
1215  \\  \\
1216  %  %
1217  Two important issues related to the handling of the control  Two important issues related to the handling of the control
1218  variables in the MITGCM need to be addressed.  variables in MITgcm need to be addressed.
1219  First, in order to save memory, the control variable arrays  First, in order to save memory, the control variable arrays
1220  are not kept in memory, but rather read from file and added  are not kept in memory, but rather read from file and added
1221  to the initial (or first guess) fields.  to the initial fields during the model initialization phase.
1222  Similarly, the corresponding adjoint fields which represent  Similarly, the corresponding adjoint fields which represent
1223  the gradient of the cost function w.r.t. the control variables  the gradient of the cost function w.r.t. the control variables
1224  are written to to file.  are written to file at the end of the adjoint integration.
1225  Second, in addition to the files holding the 2-dim. and 3-dim.  Second, in addition to the files holding the 2-dim. and 3-dim.
1226  control variables and the gradient, a 1-dim. {\sf control vector}  control variables and the corresponding cost gradients,
1227    a 1-dim. {\sf control vector}
1228  and {\sf gradient vector} are written to file. They contain  and {\sf gradient vector} are written to file. They contain
1229  only the wet points of the control variables and the corresponding  only the wet points of the control variables and the corresponding
1230  gradient.  gradient.
1231  This leads to a significant data compression.  This leads to a significant data compression.
1232  Furthermore, the control and the gradient vector can be passed to a  Furthermore, an option is available
1233    ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1234    non-dimensionalise the control and gradient vector,
1235    which otherwise would contain different pieces of different
1236    magnitudes and units.
1237    Finally, the control and gradient vector can be passed to a
1238  minimization routine if an update of the control variables  minimization routine if an update of the control variables
1239  is sought as part of a minimization exercise.  is sought as part of a minimization exercise.
1240    
# Line 1314  and gradient are generated and initialis Line 1245  and gradient are generated and initialis
1245    
1246  \subsubsection{Perturbation of the independent variables}  \subsubsection{Perturbation of the independent variables}
1247  %  %
1248  The dependency chain for differentiation starts  The dependency flow for differentiation w.r.t. the controls
1249  with adding a perturbation onto the the input variable,  starts with adding a perturbation onto the input variable,
1250  thus defining the independent or control variables for TAMC.  thus defining the independent or control variables for TAF.
1251  Three classes of controls may be considered:  Three types of controls may be considered:
1252  %  %
1253  \begin{itemize}  \begin{itemize}
1254  %  %
# Line 1332  Three classes of controls may be conside Line 1263  Three classes of controls may be conside
1263  Consider as an example the initial tracer distribution  Consider as an example the initial tracer distribution
1264  {\bf tr1} as control variable.  {\bf tr1} as control variable.
1265  After {\bf tr1} has been initialised in  After {\bf tr1} has been initialised in
1266  {\it ini\_tr1} (dynamical variables including  {\it ini\_tr1} (dynamical variables such as
1267  temperature and salinity are initialised in {\it ini\_fields}),  temperature and salinity are initialised in {\it ini\_fields}),
1268  a perturbation anomaly is added to the field in S/R  a perturbation anomaly is added to the field in S/R
1269  {\it ctrl\_map\_ini}  {\it ctrl\_map\_ini}
1270  %  %
1271    %\begin{eqnarray}
1272  \begin{equation}  \begin{equation}
1273  \begin{split}  \begin{aligned}
1274  u         & = \, u_{[0]} \, + \, \Delta u \\  u         & = \, u_{[0]} \, + \, \Delta u \\
1275  {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)  {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1276  \label{perturb}  \label{perturb}
1277  \end{split}  \end{aligned}
1278  \end{equation}  \end{equation}
1279    %\end{eqnarray}
1280  %  %
1281  In principle {\bf xx\_tr1} is a 3-dim. global array  {\bf xx\_tr1} is a 3-dim. global array
1282  holding the perturbation. In the case of a simple  holding the perturbation. In the case of a simple
1283  sensitivity study this array is identical to zero.  sensitivity study this array is identical to zero.
1284  However, it's specification is essential since TAMC  However, it's specification is essential in the context
1285    of automatic differentiation since TAF
1286  treats the corresponding line in the code symbolically  treats the corresponding line in the code symbolically
1287  when determining the differentiation chain and its origin.  when determining the differentiation chain and its origin.
1288  Thus, the variable names are part of the argument list  Thus, the variable names are part of the argument list
1289  when calling TAMC:  when calling TAF:
1290  %  %
1291  \begin{verbatim}  \begin{verbatim}
1292  tamc -input 'xx_tr1 ...' ...  taf -input 'xx_tr1 ...' ...
1293  \end{verbatim}  \end{verbatim}
1294  %  %
1295  Now, as mentioned above, the MITGCM avoids maintaining  Now, as mentioned above, MITgcm avoids maintaining
1296  an array for each control variable by reading the  an array for each control variable by reading the
1297  perturbation to a temporary array from file.  perturbation to a temporary array from file.
1298  To ensure the symbolic link to be recognized by TAMC, a scalar  To ensure the symbolic link to be recognized by TAF, a scalar
1299  dummy variable {\bf xx\_tr1\_dummy} is introduced  dummy variable {\bf xx\_tr1\_dummy} is introduced
1300  and an 'active read' routine of the adjoint support  and an 'active read' routine of the adjoint support
1301  package {\it pkg/autodiff} is invoked.  package {\it pkg/autodiff} is invoked.
1302  The read-procedure is tagged with the variable  The read-procedure is tagged with the variable
1303  {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the  {\bf xx\_tr1\_dummy} enabling TAF to recognize the
1304  initialisation of the perturbation.  initialization of the perturbation.
1305  The modified call of TAMC thus reads  The modified call of TAF thus reads
1306  %  %
1307  \begin{verbatim}  \begin{verbatim}
1308  tamc -input 'xx_tr1_dummy ...' ...  taf -input 'xx_tr1_dummy ...' ...
1309  \end{verbatim}  \end{verbatim}
1310  %  %
1311  and the modified operation to (\ref{perturb})  and the modified operation to (\ref{perturb})
# Line 1386  in the code takes on the form Line 1320  in the code takes on the form
1320  %  %
1321  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1322  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1323  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1324    a reset.
1325  The 'active file' routines have been designed  The 'active file' routines have been designed
1326  to support active read and corresponding active write  to support active read and corresponding adjoint active write
1327  operations.  operations (and vice versa).
1328  %  %
1329  \item  \item
1330  \fbox{  \fbox{
# Line 1406  with the symbolic perturbation taking pl Line 1341  with the symbolic perturbation taking pl
1341  Note however an important difference:  Note however an important difference:
1342  Since the boundary values are time dependent with a new  Since the boundary values are time dependent with a new
1343  forcing field applied at each time steps,  forcing field applied at each time steps,
1344  the general problem may be be thought of as  the general problem may be thought of as
1345  a new control variable at each time step, i.e.  a new control variable at each time step
1346    (or, if the perturbation is averaged over a certain period,
1347    at each $ N $ timesteps), i.e.
1348  \[  \[
1349  u_{\rm forcing} \, = \,  u_{\rm forcing} \, = \,
1350  \{ \, u_{\rm forcing} ( t_n ) \, \}_{  \{ \, u_{\rm forcing} ( t_n ) \, \}_{
# Line 1432  calendar ({\it cal}~) and external forci Line 1369  calendar ({\it cal}~) and external forci
1369  %  %
1370  This routine is not yet implemented, but would proceed  This routine is not yet implemented, but would proceed
1371  proceed along the same lines as the initial value sensitivity.  proceed along the same lines as the initial value sensitivity.
1372    The mixing parameters {\bf diffkr} and {\bf kapgm}
1373    are currently added as controls in {\it ctrl\_map\_ini.F}.
1374  %  %
1375  \end{itemize}  \end{itemize}
1376  %  %
1377    
1378  \subsubsection{Output of adjoint variables and gradient}  \subsubsection{Output of adjoint variables and gradient}
1379  %  %
1380  Two ways exist to generate output of adjoint fields.  Several ways exist to generate output of adjoint fields.
1381  %  %
1382  \begin{itemize}  \begin{itemize}
1383  %  %
1384  \item  \item
1385  \fbox{  \fbox{
1386  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1387  {\it ctrl\_pack}:  {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1388  \end{minipage}  \end{minipage}
1389  }  }
1390  \\  \\
 At the end of the forward/adjoint integration, the S/R  
 {\it ctrl\_pack} is called which mirrors S/R {\it ctrl\_unpack}.  
 It writes the following files:  
 %  
1391  \begin{itemize}  \begin{itemize}
1392  %  %
1393  \item {\bf xx\_...}: the control variable fields  \item {\bf xx\_...}: the control variable fields \\
1394    Before the forward integration, the control
1395    variables are read from file {\bf xx\_ ...} and added to
1396    the model field.
1397  %  %
1398  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1399  $ \nabla _{u}{\cal J} $ for each control variable,  $ \nabla _{u}{\cal J} $ for each control variable \\
1400    After the adjoint integration the corresponding adjoint
1401    variables are written to {\bf adxx\_ ...}.
1402  %  %
1403  \item {\bf vector\_ctrl}: the control vector  \end{itemize}
1404  %  %
1405  \item {\bf vector\_grad}: the gradient vector  \item
1406    \fbox{
1407    \begin{minipage}{12cm}
1408    {\it ctrl\_unpack, ctrl\_pack}:
1409    \end{minipage}
1410    }
1411    \\
1412    %
1413    \begin{itemize}
1414    %
1415    \item {\bf vector\_ctrl}: the control vector \\
1416    At the very beginning of the model initialization,
1417    the updated compressed control vector is read (or initialised)
1418    and distributed to 2-dim. and 3-dim. control variable fields.
1419    %
1420    \item {\bf vector\_grad}: the gradient vector \\
1421    At the very end of the adjoint integration,
1422    the 2-dim. and 3-dim. adjoint variables are read,
1423    compressed to a single vector and written to file.
1424  %  %
1425  \end{itemize}  \end{itemize}
1426  %  %
# Line 1474  $ \nabla _{u}{\cal J} $ for each control Line 1432  $ \nabla _{u}{\cal J} $ for each control
1432  }  }
1433  \\  \\
1434  In addition to writing the gradient at the end of the  In addition to writing the gradient at the end of the
1435  forward/adjoint integration, many more adjoint variables,  forward/adjoint integration, many more adjoint variables
1436  representing the Lagrange multipliers of the model state  of the model state
1437  w.r.t. the model state  at intermediate times can be written using S/R
 at different times can be written using S/R  
1438  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1439  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1440  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1441    The procedure is enabled using via the CPP-option
1442    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1443  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1444  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1445  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1446    The adjoint common blocks are extracted from the adjoint code
1447    via the header file {\it adcommon.h}.
1448    
1449  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1450  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1491  than generated automatically. Line 1452  than generated automatically.
1452  Appropriate flow directives ({\it dummy\_in\_stepping.flow})  Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1453  ensure that TAMC does not automatically  ensure that TAMC does not automatically
1454  generate {\it addummy\_in\_stepping} by trying to differentiate  generate {\it addummy\_in\_stepping} by trying to differentiate
1455  {\it dummy\_in\_stepping}, but rather takes the hand-written routine.  {\it dummy\_in\_stepping}, but instead refers to
1456    the hand-written routine.
1457    
1458  {\it dummy\_in\_stepping} is called in the forward code  {\it dummy\_in\_stepping} is called in the forward code
1459  at the beginning of each  at the beginning of each
# Line 1501  each timestep in the adjoint calculation Line 1463  each timestep in the adjoint calculation
1463  {\it addynamics}.  {\it addynamics}.
1464    
1465  {\it addummy\_in\_stepping} includes the header files  {\it addummy\_in\_stepping} includes the header files
1466  {\it adffields.h, addynamics.h, adtr1.h}.  {\it adcommon.h}.
1467  These header files are also hand-written. They contain  This header file is also hand-written. It contains
1468  the common blocks {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},  the common blocks
1469    {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1470    {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1471  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1472  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1473  access to the adjoint variables.  access to the adjoint variables.
1474    
1475    {\bf WARNING:} If the structure of the common blocks
1476    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1477    similar changes will occur in the adjoint common blocks.
1478    Therefore, consistency between the TAMC-generated common blocks
1479    and those in {\it adcommon.h} have to be checked.
1480  %  %
1481  \end{itemize}  \end{itemize}
1482    
# Line 1521  The gradient $ \nabla _{u}{\cal J} |_{u_ Line 1491  The gradient $ \nabla _{u}{\cal J} |_{u_
1491  with the value of the cost function itself $ {\cal J}(u_{[k]}) $  with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1492  at iteration step $ k $ serve  at iteration step $ k $ serve
1493  as input to a minimization routine (e.g. quasi-Newton method,  as input to a minimization routine (e.g. quasi-Newton method,
1494  conjugate gradient, ...) to compute an update in the  conjugate gradient, ... \cite{gil-lem:89})
1495    to compute an update in the
1496  control variable for iteration step $k+1$  control variable for iteration step $k+1$
1497  \[  \[
1498  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}
# Line 1531  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delt Line 1502  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delt
1502  $ u_{[k+1]} $ then serves as input for a forward/adjoint run  $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1503  to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step  to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1504  $ k+1 $.  $ k+1 $.
1505  Tab. \ref{???} sketches the flow between forward/adjoint model  Tab. ref:ask-the-author sketches the flow between forward/adjoint model
1506  and the minimization routine.  and the minimization routine.
1507    
1508    {\scriptsize
1509  \begin{eqnarray*}  \begin{eqnarray*}
 \footnotesize  
1510  \begin{array}{ccccc}  \begin{array}{ccccc}
1511  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\
1512  {\Big\downarrow}  {\Big\downarrow}
# Line 1552  v_{[k]} = M \left( u_{[k]} \right) & Line 1523  v_{[k]} = M \left( u_{[k]} \right) &
1523  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1524  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1525  \hline  \hline
1526    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1527    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1528    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1529  \hline  \hline
1530  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1531  \multicolumn{1}{|c}{  \multicolumn{1}{|c}{
1532  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1533  T\!\!^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &  T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1534  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1535  ad \, v_{[k]} (\delta {\cal J}) =  ad \, v_{[k]} (\delta {\cal J}) =
1536  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
# Line 1565  ad \, v_{[k]} (\delta {\cal J}) = Line 1539  ad \, v_{[k]} (\delta {\cal J}) =
1539  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1540  \hline  \hline
1541   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1542  ~ & ~ &  \hspace*{15ex}{\Bigg\downarrow}  
1543  {\cal J}_{[k]} \qquad {\Bigg\downarrow}  \qquad \nabla_u {\cal J}_{[k]}  \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1544   & ~ & ~ \\   & ~ & ~ & ~ & ~ \\
1545   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1546  \hline  \hline
1547  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
# Line 1583  ad \, v_{[k]} (\delta {\cal J}) = Line 1557  ad \, v_{[k]} (\delta {\cal J}) =
1557   ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\   ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1558  \end{array}  \end{array}
1559  \end{eqnarray*}  \end{eqnarray*}
1560    }
1561    
1562  The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide  The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1563  the link between the model and the minimization routine.  the link between the model and the minimization routine.
1564  As described in Section \ref{???}  As described in Section ref:ask-the-author
1565  the {\it unpack} and {\it pack} routines read and write  the {\it unpack} and {\it pack} routines read and write
1566  control and gradient {\it vectors} which are compressed  control and gradient {\it vectors} which are compressed
1567  to contain only wet points, in addition to the full  to contain only wet points, in addition to the full
# Line 1595  The corresponding I/O flow looks as foll Line 1570  The corresponding I/O flow looks as foll
1570    
1571  \vspace*{0.5cm}  \vspace*{0.5cm}
1572    
1573    {\scriptsize
1574  \begin{tabular}{ccccc}  \begin{tabular}{ccccc}
1575  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1576  {\big\downarrow}  & ~ & ~ & ~ & ~ \\  {\big\downarrow}  & ~ & ~ & ~ & ~ \\
# Line 1605  The corresponding I/O flow looks as foll Line 1581  The corresponding I/O flow looks as foll
1581  \cline{3-3}  \cline{3-3}
1582  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1583  \multicolumn{1}{|c|}{~} & ~ & ~ \\  \multicolumn{1}{|c|}{~} & ~ & ~ \\
1584  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} & $\longrightarrow$ &  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1585    $\stackrel{\mbox{read}}{\longrightarrow}$ &
1586  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1587  \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}    \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}  
1588  & ~ & ~ \\  & ~ & ~ \\
1589  \cline{3-3}  \cline{3-3}
1590  ~ & ~ & ~ & ~ & ~ \\  ~ & ~ & $\downarrow$ & ~ & ~ \\
1591  \cline{3-3}  \cline{3-3}
1592  ~ & ~ &  ~ & ~ &
1593  \multicolumn{1}{|c|}{~} & ~ &  \multicolumn{1}{|c|}{~} & ~ &
1594  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\
1595  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1596  $\longrightarrow$ &  $\stackrel{\mbox{write}}{\longrightarrow}$ &
1597  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1598  ~ & ~ & \multicolumn{1}{|c|}{~}    ~ & ~ & \multicolumn{1}{|c|}{~}  
1599  & ~ & \multicolumn{1}{l}{\bf \vdots} \\  & ~ & \multicolumn{1}{l}{\bf \vdots} \\
# Line 1628  $\longrightarrow$ & Line 1605  $\longrightarrow$ &
1605  ~ & ~ & ~ & ~ &  {\big\downarrow} \\  ~ & ~ & ~ & ~ &  {\big\downarrow} \\
1606  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\
1607  \end{tabular}  \end{tabular}
1608    }
1609    
1610  \vspace*{0.5cm}  \vspace*{0.5cm}
1611    
1612    
1613  {\it ctrl\_unpack} reads in the updated control vector  {\it ctrl\_unpack} reads the updated control vector
1614  {\bf vector\_ctrl\_$<$k$>$}.  {\bf vector\_ctrl\_$<$k$>$}.
1615  It distributes the different control variables to  It distributes the different control variables to
1616  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1617  During the forward integration the control variables  At the start of the forward integration the control variables
1618  are read from {\it xx\_...$<$k$>$}.  are read from {\it xx\_...$<$k$>$} and added to the
1619  Correspondingly, the adjoint fields are written  field.
1620    Correspondingly, at the end of the adjoint integration
1621    the adjoint fields are written
1622  to {\it adxx\_...$<$k$>$}, again via the active file routines.  to {\it adxx\_...$<$k$>$}, again via the active file routines.
1623  Finally, {\it ctrl\_pack} collects all adjoint field files  Finally, {\it ctrl\_pack} collects all adjoint files
1624  and writes them to the compressed vector file  and writes them to the compressed vector file
1625  {\bf vector\_grad\_$<$k$>$}.  {\bf vector\_grad\_$<$k$>$}.
   
 \subsection{TLM and ADM generation via TAMC}  
   
   
   
 \subsection{Flow directives and adjoint support routines}  
   
 \subsection{Store directives and checkpointing}  
   
 \subsection{Gradient checks}  
   
 \subsection{Second derivative generation via TAMC}  
   
 \section{Example of adjoint code}  

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22