/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by heimbach, Fri Oct 5 22:22:20 2001 UTC revision 1.23 by jmc, Mon Aug 30 23:09:19 2010 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    Author: Patrick Heimbach
5    \label{ask_the_author:doc_ad_2}
6    
7  {\sf Automatic differentiation} (AD), also referred to as algorithmic  {\sf Automatic differentiation} (AD), also referred to as algorithmic
8  (or, more loosely, computational) differentiation, involves  (or, more loosely, computational) differentiation, involves
9  automatically deriving code to calculate  automatically deriving code to calculate partial derivatives from an
10  partial derivatives from an existing fully non-linear prognostic code.  existing fully non-linear prognostic code.  (see \cite{gri:00}).  A
11  (see \cite{gri:00}).  software tool is used that parses and transforms source files
12  A software tool is used that parses and transforms source files  according to a set of linguistic and mathematical rules.  AD tools are
13  according to a set of linguistic and mathematical rules.  like source-to-source translators in that they parse a program code as
14  AD tools are like source-to-source translators in that  input and produce a new program code as output
15  they parse a program code as input and produce a new program code  (we restrict our discussion to source-to-source tools, ignoring
16  as output.  operator-overloading tools).  However, unlike a
17  However, unlike a pure source-to-source translation, the output program  pure source-to-source translation, the output program represents a new
18  represents a new algorithm, such as the evaluation of the  algorithm, such as the evaluation of the Jacobian, the Hessian, or
19  Jacobian, the Hessian, or higher derivative operators.  higher derivative operators.  In principle, a variety of derived
20  In principle, a variety of derived algorithms  algorithms can be generated automatically in this way.
21  can be generated automatically in this way.  
22    MITgcm has been adapted for use with the Tangent linear and Adjoint
23  The MITGCM has been adapted for use with the  Model Compiler (TAMC) and its successor TAF (Transformation of
24  Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF  Algorithms in Fortran), developed by Ralf Giering (\cite{gie-kam:98},
25  (Transformation of Algorithms in Fortran), developed  \cite{gie:99,gie:00}).  The first application of the adjoint of MITgcm
26  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).  for sensitivity studies has been published by \cite{maro-eta:99}.
27  The first application of the adjoint of the MITGCM for senistivity  \cite{stam-etal:97,stam-etal:02} use MITgcm and its adjoint for ocean
28  studies has been published by \cite{maro-eta:99}.  state estimation studies.  In the following we shall refer to TAMC and
29  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint  TAF synonymously, except were explicitly stated otherwise.
30  for ocean state estimation studies.  
31  In the following we shall refer to TAMC and TAF synonymously,  As of mid-2007 we are also able to generate fairly efficient
32  except were explicitly stated otherwise.  adjoint code of the MITgcm using a new, open-source AD tool,
33    called OpenAD (see \cite{naum-etal:06,utke-etal:08}.
34  TAMC exploits the chain rule for computing the first  This enables us for the first time to compare adjoint models
35  derivative of a function with  generated from different AD tools, providing an additional
36  respect to a set of input variables.  accuracy check, complementary to finite-difference gradient checks.
37  Treating a given forward code as a composition of operations --  OpenAD and its application to  MITgcm is described in detail
38  each line representing a compositional element, the chain rule is  in section \ref{sec_ad_openad}.
39  rigorously applied to the code, line by line. The resulting  
40  tangent linear or adjoint code,  The AD tool exploits the chain rule for computing the first derivative of a
41  then, may be thought of as the composition in  function with respect to a set of input variables.  Treating a given
42  forward or reverse order, respectively, of the  forward code as a composition of operations -- each line representing
43  Jacobian matrices of the forward code's compositional elements.  a compositional element, the chain rule is rigorously applied to the
44    code, line by line. The resulting tangent linear or adjoint code,
45    then, may be thought of as the composition in forward or reverse
46    order, respectively, of the Jacobian matrices of the forward code's
47    compositional elements.
48    
49  %**********************************************************************  %**********************************************************************
50  \section{Some basic algebra}  \section{Some basic algebra}
51  \label{sec_ad_algebra}  \label{sec_ad_algebra}
52    \begin{rawhtml}
53    <!-- CMIREDIR:sec_ad_algebra: -->
54    \end{rawhtml}
55  %**********************************************************************  %**********************************************************************
56    
57  Let $ \cal{M} $ be a general nonlinear, model, i.e. a  Let $ \cal{M} $ be a general nonlinear, model, i.e. a
# Line 52  $\vec{u}=(u_1,\ldots,u_m)$ Line 62  $\vec{u}=(u_1,\ldots,u_m)$
62  such as forcing functions) to the $n$-dimensional space  such as forcing functions) to the $n$-dimensional space
63  $V \subset I\!\!R^n$ of  $V \subset I\!\!R^n$ of
64  model output variable $\vec{v}=(v_1,\ldots,v_n)$  model output variable $\vec{v}=(v_1,\ldots,v_n)$
65  (model state, model diagnostcs, objective function, ...)  (model state, model diagnostics, objective function, ...)
66  under consideration,  under consideration,
67  %  %
68  \begin{equation}  \begin{equation}
69  \begin{split}  \begin{aligned}
70  {\cal M} \, : & \, U \,\, \longrightarrow \, V \\  {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
71  ~      & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,  ~      & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
72  {\cal M}(\vec{u})  {\cal M}(\vec{u})
73  \label{fulloperator}  \label{fulloperator}
74  \end{split}  \end{aligned}
75  \end{equation}  \end{equation}
76  %  %
77  The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.  The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
# Line 141  w.r.t. their corresponding inner product Line 151  w.r.t. their corresponding inner product
151  $\left\langle \,\, , \,\, \right\rangle $  $\left\langle \,\, , \,\, \right\rangle $
152  %  %
153  \begin{equation}  \begin{equation}
154  \begin{split}  \begin{aligned}
155  {\cal J} & = \,  {\cal J} & = \,
156  {\cal J} |_{\vec{u}^{(0)}} \, + \,  {\cal J} |_{\vec{u}^{(0)}} \, + \,
157  \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle  \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
# Line 150  $\left\langle \,\, , \,\, \right\rangle Line 160  $\left\langle \,\, , \,\, \right\rangle
160  {\cal J} |_{\vec{v}^{(0)}} \, + \,  {\cal J} |_{\vec{v}^{(0)}} \, + \,
161  \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle  \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
162  \, + \, O(\delta \vec{v}^2)  \, + \, O(\delta \vec{v}^2)
163  \end{split}  \end{aligned}
164  \label{deljidentity}  \label{deljidentity}
165  \end{equation}  \end{equation}
166  %  %
# Line 191  the gradient $ \nabla _{u}{\cal J} $ can Line 201  the gradient $ \nabla _{u}{\cal J} $ can
201  invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $  invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
202  %  %
203  \begin{equation}  \begin{equation}
204  \begin{split}  \begin{aligned}
205  \nabla _{u}{\cal J}^T |_{\vec{u}} &  \nabla _{u}{\cal J}^T |_{\vec{u}} &
206  = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}}  \\  = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}}  \\
207  ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\  ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
208  ~ & = \, \delta \vec{u}^{\ast}  ~ & = \, \delta \vec{u}^{\ast}
209  \end{split}  \end{aligned}
210  \label{adjoint}  \label{adjoint}
211  \end{equation}  \end{equation}
212  %  %
# Line 220  model integration, Line 230  model integration,
230  starting at step 0 and moving up to step $\Lambda$, with intermediate  starting at step 0 and moving up to step $\Lambda$, with intermediate
231  ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final  ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
232  ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.  ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
233  Let ${\cal J}$ be a cost funciton which explicitly depends on the  Let ${\cal J}$ be a cost function which explicitly depends on the
234  final state $\vec{v}$ only  final state $\vec{v}$ only
235  (this restriction is for clarity reasons only).  (this restriction is for clarity reasons only).
236  %  %
# Line 244  $ \langle \, \nabla _{v}{\cal J}^T \, , Line 254  $ \langle \, \nabla _{v}{\cal J}^T \, ,
254  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
255  %  %
256  \begin{equation}  \begin{equation}
257  \begin{split}  \begin{aligned}
258  \nabla_v {\cal J} (M(\delta \vec{u})) & = \,  \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
259  \nabla_v {\cal J} \cdot M_{\Lambda}  \nabla_v {\cal J} \cdot M_{\Lambda}
260  \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot  \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
261  M_{1} \cdot M_{0} \cdot \delta \vec{u} \\  M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
262  ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\  ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
263  \end{split}  \end{aligned}
264  \label{forward}  \label{forward}
265  \end{equation}  \end{equation}
266  %  %
# Line 258  whereas in reverse mode we have Line 268  whereas in reverse mode we have
268  %  %
269  \begin{equation}  \begin{equation}
270  \boxed{  \boxed{
271  \begin{split}  \begin{aligned}
272  M^T ( \nabla_v {\cal J}^T) & = \,  M^T ( \nabla_v {\cal J}^T) & = \,
273  M_{0}^T \cdot M_{1}^T  M_{0}^T \cdot M_{1}^T
274  \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot  \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
# Line 267  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T Line 277  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T
277  \cdot ...... \cdot  \cdot ...... \cdot
278  \nabla_{v^{(\lambda)}} {\cal J}^T \\  \nabla_{v^{(\lambda)}} {\cal J}^T \\
279  ~ & = \, \nabla_u {\cal J}^T  ~ & = \, \nabla_u {\cal J}^T
280  \end{split}  \end{aligned}
281  }  }
282  \label{reverse}  \label{reverse}
283  \end{equation}  \end{equation}
# Line 286  $ \vec{v}^{(\lambda)} $ at each intermed Line 296  $ \vec{v}^{(\lambda)} $ at each intermed
296  %  %
297  \begin{equation}  \begin{equation}
298  \boxed{  \boxed{
299  \begin{split}  \begin{aligned}
300  \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}  \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
301  & = \,  & = \,
302  M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot  M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
303  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
304  ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}  ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
305  \end{split}  \end{aligned}
306  }  }
307  \end{equation}  \end{equation}
308  %  %
# Line 301  We note in passing that that the $\delta Line 311  We note in passing that that the $\delta
311  are the Lagrange multipliers of the model equations which determine  are the Lagrange multipliers of the model equations which determine
312  $ \vec{v}^{(\lambda)}$.  $ \vec{v}^{(\lambda)}$.
313    
314  In coponents, eq. (\ref{adjoint}) reads as follows.  In components, eq. (\ref{adjoint}) reads as follows.
315  Let  Let
316  \[  \[
317  \begin{array}{rclcrcl}  \begin{array}{rclcrcl}
# Line 322  Let Line 332  Let
332  \end{array}  \end{array}
333  \]  \]
334  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
335  and their adjoint varaiables;  and their adjoint variables;
336  further  further
337  \[  \[
338  M \, = \, \left(  M \, = \, \left(
# Line 409  and the shorthand notation for the adjoi Line 419  and the shorthand notation for the adjoi
419  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
420  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
421  for intermediate components, yielding  for intermediate components, yielding
422    {\small
423  \begin{equation}  \begin{equation}
424  \small  \begin{aligned}
 \begin{split}  
425  \left(  \left(
426  \begin{array}{c}  \begin{array}{c}
427  \delta v^{(\lambda) \, \ast}_1 \\  \delta v^{(\lambda) \, \ast}_1 \\
# Line 456  for intermediate components, yielding Line 466  for intermediate components, yielding
466  \delta v^{\ast}_{n} \\  \delta v^{\ast}_{n} \\
467  \end{array}  \end{array}
468  \right)  \right)
469  \end{split}  \end{aligned}
470  \end{equation}  \end{equation}
471    }
472    
473  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
474  showing the advantage of the reverse over the forward mode  showing the advantage of the reverse over the forward mode
# Line 468  variables $u$ Line 479  variables $u$
479  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
480  In order to be able to solve for each component of the gradient  In order to be able to solve for each component of the gradient
481  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
482  a forward calulation has to be performed for each component seperately,  a forward calculation has to be performed for each component separately,
483  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
484  for  the $i$-th forward calculation.  for  the $i$-th forward calculation.
485  Then, (\ref{forward}) represents the  Then, (\ref{forward}) represents the
# Line 487  M^T \left( \nabla_v {\cal J}^T \left(\de Line 498  M^T \left( \nabla_v {\cal J}^T \left(\de
498  \nabla_u {\cal J}^T \cdot \delta \vec{J}  \nabla_u {\cal J}^T \cdot \delta \vec{J}
499  \]  \]
500  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
501  dimenison $ l $.  dimension $ l $.
502  In this case $ l $ reverse simulations have to be performed  In this case $ l $ reverse simulations have to be performed
503  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
504  Then, the reverse mode is more efficient as long as  Then, the reverse mode is more efficient as long as
505  $ l < n $, otherwise the forward mode is preferable.  $ l < n $, otherwise the forward mode is preferable.
506  Stricly, the reverse mode is called adjoint mode only for  Strictly, the reverse mode is called adjoint mode only for
507  $ l = 1 $.  $ l = 1 $.
508    
509  A detailed analysis of the underlying numerical operations  A detailed analysis of the underlying numerical operations
# Line 528  operator which maps the model state spac Line 539  operator which maps the model state spac
539  Then, $ \nabla_v {\cal J} $ takes the form  Then, $ \nabla_v {\cal J} $ takes the form
540  %  %
541  \begin{equation*}  \begin{equation*}
542  \begin{split}  \begin{aligned}
543  \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot  \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
544  \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\  \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
545  ~          & = \, 2 \sum_{j} \left\{ \sum_k  ~          & = \, 2 \sum_{j} \left\{ \sum_k
546  \frac{\partial {\cal H}_k}{\partial v_{j}}  \frac{\partial {\cal H}_k}{\partial v_{j}}
547  \left( {\cal H}_k (\vec{v}) - d_k \right)  \left( {\cal H}_k (\vec{v}) - d_k \right)
548  \right\} \, {\vec{f}_{j}} \\  \right\} \, {\vec{f}_{j}} \\
549  \end{split}  \end{aligned}
550  \end{equation*}  \end{equation*}
551  %  %
552  where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the  where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
# Line 557  Because of the local character of the de Line 568  Because of the local character of the de
568  (a derivative is defined w.r.t. a point along the trajectory),  (a derivative is defined w.r.t. a point along the trajectory),
569  the intermediate results of the model trajectory  the intermediate results of the model trajectory
570  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
571  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
572  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
573    This is the case e.g. for nonlinear expressions
574    (momentum advection, nonlinear equation of state), state-dependent
575    conditional statements (parameterization schemes).
576  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
577  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
578  but in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
# Line 569  point of evaluation has to be recomputed Line 583  point of evaluation has to be recomputed
583    
584  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
585  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
586  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
587  It is depicted in \reffig{3levelcheck} for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
588  [as an example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
589  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
590  \begin{itemize}  \begin{itemize}
# Line 580  In a first step, the model trajectory is Line 594  In a first step, the model trajectory is
594  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
595  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
596  The model is then integrated along the full trajectory,  The model is then integrated along the full trajectory,
597  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
598  [i.e. 3 times, at  [i.e. 3 times, at
599  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
600    In addition, the cost function is computed, if needed.
601  %  %
602  \item [$lev2$]  \item [$lev2$]
603  In a second step each subsection itself is divided into  In a second step each subsection itself is divided into
604  $ {n}^{lev2} $ sub-subsections  $ {n}^{lev2} $ subsections
605  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
606  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
607  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
608  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
609  intermediate loop.  intermediate loop.
610  The model state is now stored at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
611  timestep  timestep
612  [i.e. 4 times, at  [i.e. 4 times, at
613  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
# Line 600  $ i = 0,1,2,3 $ corresponding to $ k_{i} Line 615  $ i = 0,1,2,3 $ corresponding to $ k_{i}
615  \item [$lev1$]  \item [$lev1$]
616  Finally, the model picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
617  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
618  the last sub-subsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
619  intermediate loop.  intermediate loop.
620  Within this sub-subsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
621  at every timestep  to memory at every timestep
622  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
623  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
624  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
625  and the model state of all peceeding timesteps along the last  and the model state of all preceding timesteps along the last
626  sub-subsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
627  in time along the last sub-subsection.  in time along the last subsection.
628  Thus, the adjoint can be computed along this last  The adjoint can thus be computed along this last
629  sub-subsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
630  %  %
631  \end{itemize}  \end{itemize}
632  %  %
633  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
634  sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
635  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
636  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
637  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 627  $k_{1}^{lev3}$. Line 642  $k_{1}^{lev3}$.
642  For the full model trajectory of  For the full model trajectory of
643  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
644  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
645  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
646  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
647  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
648    to memory].
649  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
650  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
651  checkpointing level).  checkpointing level).
652  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
653  on the computing resources available.  on the computing resources available and may be adjusted by
654    adjusting the partitioning among the
655    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
656    
657  \begin{figure}[t!]  \begin{figure}[t!]
658  \centering  \begin{center}
659  %\psdraft  %\psdraft
660  \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}  %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
661  \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}  %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
662  \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}  %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
663  \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}  %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
664  \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}  %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
665  \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}  %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
666  \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}  %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
667  \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}  %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
668  \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}  %\mbox{\epsfig{file=s_autodiff/figs/checkpointing.eps, width=0.8\textwidth}}
669    \resizebox{5.5in}{!}{\includegraphics{s_autodiff/figs/checkpointing.eps}}
670  %\psfull  %\psfull
671  \caption  \end{center}
672  {Schematic view of intermediate dump and restart for  \caption{
673    Schematic view of intermediate dump and restart for
674  3-level checkpointing.}  3-level checkpointing.}
675  \label{fig:3levelcheck}  \label{fig:3levelcheck}
676  \end{figure}  \end{figure}
# Line 662  on the computing resources available. Line 682  on the computing resources available.
682  % \subsection{Error covariance estimate and Hessian matrix}  % \subsection{Error covariance estimate and Hessian matrix}
683  % \label{sec_hessian}  % \label{sec_hessian}
684    
685  \newpage  \newpage
686    
687  %**********************************************************************  %**********************************************************************
688  \section{AD-specific setup by example: sensitivity of carbon sequestration}  \section{TLM and ADM generation in general}
689  \label{sec_ad_setup_ex}  \label{sec_ad_setup_gen}
690    \begin{rawhtml}
691    <!-- CMIREDIR:sec_ad_setup_gen: -->
692    \end{rawhtml}
693  %**********************************************************************  %**********************************************************************
694    
695  The MITGCM has been adapted to enable AD using TAMC or TAF.  In this section we describe in a general fashion
696  The present description, therefore, is specific to the  the parts of the code that are relevant for automatic
697  use of TAMC or TAF as AD tool.  differentiation using the software tool TAF.
698  The following sections describe the steps which are necessary to  Modifications to use OpenAD are described in \ref{sec_ad_openad}.
699  generate a tangent linear or adjoint model of the MITGCM.  
700  We take as an example the sensitivity of carbon sequestration  \input{s_autodiff/text/doc_ad_the_model}
701  in the ocean.  
702  The AD-relevant hooks in the code are sketched in  The basic flow is depicted in \ref{fig:adthemodel}.
703  \reffig{adthemodel}, \reffig{adthemain}.  If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined,
704    the driver routine
705  \subsection{Overview of the experiment}  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
706    invokes the adjoint of this routine, {\it adthe\_main\_loop}
707  We describe an adjoint sensitivity analysis of outgassing from  (case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or
708  the ocean into the atmosphere of a carbon-like tracer injected  the tangent linear of this routine {\it g\_the\_main\_loop}
709  into the ocean interior (see \cite{hil-eta:01}).  (case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}),
710    which are the toplevel routines in terms of automatic differentiation.
711  \subsubsection{Passive tracer equation}  The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop}
712    are generated by TAF.
713  For this work the MITGCM was augmented with a thermodynamically  It contains both the forward integration of the full model, the
714  inactive tracer, $C$. Tracer residing in the ocean  cost function calculation,
715  model surface layer is outgassed according to a relaxation time scale,  any additional storing that is required for efficient checkpointing,
716  $\mu$. Within the ocean interior, the tracer is passively advected  and the reverse integration of the adjoint model.
717  by the ocean model currents. The full equation for the time evolution  
718  %  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
719  \begin{equation}  
720  \label{carbon_ddt}  In Fig. \ref{fig:adthemodel}
721  \frac{\partial C}{\partial t} \, = \,  the structure of {\it adthe\_main\_loop} has been strongly
722  -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S  simplified to focus on the essentials; in particular, no checkpointing
723  \end{equation}  procedures are shown here.
724  %  Prior to the call of {\it adthe\_main\_loop}, the routine
725  also includes a source term $S$. This term  {\it ctrl\_unpack} is invoked to unpack the control vector
726  represents interior sources of $C$ such as would arise due to  or initialise the control variables.
727  direct injection.  Following the call of {\it adthe\_main\_loop},
728  The velocity term, $U$, is the sum of the  the routine {\it ctrl\_pack}
729  model Eulerian circulation and an eddy-induced velocity, the latter  is invoked to pack the control vector
730  parameterized according to Gent/McWilliams  (cf. Section \ref{section_ctrl}).
731  (\cite{gen-mcw:90, gen-eta:95}).  If gradient checks are to be performed, the option
732  The convection function, $\Gamma$, mixes $C$ vertically wherever the  {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
733  fluid is locally statically unstable.  the driver routine {\it grdchk\_main} is called after
734    the gradient has been computed via the adjoint
735  The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})  (cf. Section \ref{sec:ad_gradient_check}).
736  is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface  
737  ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})  %------------------------------------------------------------------
738  is valid as a prognostic equation for small perturbations in oceanic  
739  carbon concentrations. This configuration provides a  \subsection{General setup
740  powerful tool for examining the impact of large-scale ocean circulation  \label{section_ad_setup}}
741  on $ CO_2 $ outgassing due to interior injections.  
742  As source we choose a constant in time injection of  In order to configure AD-related setups the following packages need
743  $ S = 1 \,\, {\rm mol / s}$.  to be enabled:
744    {\it
745  \subsubsection{Model configuration}  \begin{table}[!ht]
746    \begin{tabular}{l}
747  The model configuration employed has a constant  autodiff \\
748  $4^\circ \times 4^\circ$ resolution horizontal grid and realistic  ctrl \\
749  geography and bathymetry. Twenty vertical layers are used with  cost \\
750  vertical spacing ranging  grdchk \\
751  from 50 m near the surface to 815 m at depth.  \end{tabular}
752  Driven to steady-state by climatalogical wind-stress, heat and  \end{table}
753  fresh-water forcing the model reproduces well known large-scale  }
754  features of the ocean general circulation.  The packages are enabled by adding them to your experiment-specific
755    configuration file
756  \subsubsection{Outgassing cost function}  {\it packages.conf} (see Section ???).
757    
758  To quantify and understand outgassing due to injections of $C$  The following AD-specific CPP option files need to be customized:
 in eqn. (\ref{carbon_ddt}),  
 we define a cost function $ {\cal J} $ that measures the total amount of  
 tracer outgassed at each timestep:  
 %  
 \begin{equation}  
 \label{cost_tracer}  
 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt  
 \end{equation}  
 %  
 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,  
 from (\ref{carbon_ddt})  
 over the entire ocean surface area, $A$, and accumulates it  
 up to time $T$.  
 Physically, ${\cal J}$ can be thought of as representing the amount of  
 $CO_2$ that our model predicts would be outgassed following an  
 injection at rate $S$.  
 The sensitivity of ${\cal J}$ to the spatial location of $S$,  
 $\frac{\partial {\cal J}}{\partial S}$,  
 can be used to identify regions from which circulation  
 would cause $CO_2$ to rapidly outgas following injection  
 and regions in which $CO_2$ injections would remain effectively  
 sequesterd within the ocean.  
   
 \subsection{Code configuration}  
   
 The model configuration for this experiment resides under the  
 directory {\it verification/carbon/}.  
 The code customisation routines are in {\it verification/carbon/code/}:  
759  %  %
760  \begin{itemize}  \begin{itemize}
761  %  %
762  \item {\it .genmakerc}  \item {\it ECCO\_CPPOPTIONS.h} \\
763  %  This header file collects CPP options for the packages
764  \item {\it COST\_CPPOPTIONS.h}  {\it autodiff, cost, ctrl} as well as AD-unrelated options for
765  %  the external forcing package {\it exf}.
766  \item {\it CPP\_EEOPTIONS.h}  \footnote{NOTE: These options are not set in their package-specific
767  %  headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
768  \item {\it CPP\_OPTIONS.h}  in the single header file {\it ECCO\_CPPOPTIONS.h}.
769  %  The package-specific header files serve as simple
770  \item {\it CTRL\_OPTIONS.h}  placeholders at this point.}
771  %  %
772  \item {\it ECCO\_OPTIONS.h}  \item {\it tamc.h} \\
773  %  This header configures the splitting of the time stepping loop
774  \item {\it SIZE.h}  w.r.t. the 3-level checkpointing (see section ???).
775  %  
 \item {\it adcommon.h}  
 %  
 \item {\it tamc.h}  
776  %  %
777  \end{itemize}  \end{itemize}
778    
779    %------------------------------------------------------------------
780    
781    \subsection{Building the AD code using TAF
782    \label{section_ad_build}}
783    
784    The build process of an AD code is very similar to building
785    the forward model. However, depending on which AD code one wishes
786    to generate, and on which AD tool is available (TAF or TAMC),
787    the following {\tt make} targets are available:
788    
789    \begin{table}[!ht]
790    {\footnotesize
791    \begin{tabular}{|ccll|}
792    \hline
793    ~ & {\it AD-target} & {\it output} & {\it description} \\
794    \hline
795    \hline
796    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
797    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
798    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
799    ~ & ~ & ~ & useful for compiling on remote platforms \\
800    \hline
801    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
802    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
803    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
804    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
805    \hline
806    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
807    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
808    ~ & ~ & ~ & and compiles all code \\
809    ~ & ~ & ~ & (use of TAF is set as default) \\
810    \hline
811    \end{tabular}
812    }
813    \end{table}
814  %  %
815  The runtime flag and parameters settings are contained in  Here, the following placeholders are used
 {\it verification/carbon/input/},  
 together with the forcing fields and and restart files:  
816  %  %
817  \begin{itemize}  \begin{itemize}
818  %  %
819  \item {\it data}  \item $<$TOOL$>$
 %  
 \item {\it data.cost}  
 %  
 \item {\it data.ctrl}  
 %  
 \item {\it data.gmredi}  
820  %  %
821  \item {\it data.grdchk}  \begin{itemize}
 %  
 \item {\it data.optim}  
 %  
 \item {\it data.pkg}  
 %  
 \item {\it eedata}  
 %  
 \item {\it topog.bin}  
 %  
 \item {\it windx.bin, windy.bin}  
 %  
 \item {\it salt.bin, theta.bin}  
 %  
 \item {\it SSS.bin, SST.bin}  
822  %  %
823  \item {\it pickup*}  \item {\tt TAF}
824    \item {\tt TAMC}
825  %  %
826  \end{itemize}  \end{itemize}
827  %  %
828  Finally, the file to generate the adjoint code resides in  \item $<$MODE$>$
 $ adjoint/ $:  
829  %  %
830  \begin{itemize}  \begin{itemize}
831  %  %
832  \item {\it makefile}  \item {\tt ad} generates the adjoint model (ADM)
833    \item {\tt ftl} generates the tangent linear model (TLM)
834    \item {\tt svd} generates both ADM and TLM for \\
835    singular value decomposition (SVD) type calculations
836  %  %
837  \end{itemize}  \end{itemize}
838  %  %
839    \end{itemize}
840    
841  Below we describe the customisations of this files which are  For example, to generate the adjoint model using TAF after routines ({\tt .F})
842  specific to this experiment.  or headers ({\tt .h}) have been modified, but without compilation,
843    type {\tt make adtaf};
844  \subsubsection{File {\it .genmakerc}}  or, to generate the tangent linear model using TAMC without
845  This file overwrites default settings of {\it genmake}.  re-generating the input code, type {\tt make ftltamconly}.
 In the present example it is used to switch on the following  
 packages which are related to automatic differentiation  
 and are disabled by default: \\  
 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco gmredi grdchk kpp )}  \\  
 Other packages which are not needed are switched off: \\  
 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}  
   
 \subsubsection{File {\it COST\_CPPOPTIONS.h,  CTRL\_OPTIONS.h}}  
   
 These files used to contain package-specific CPP-options  
 (see Section \ref{???}).  
 For technical reasons those options have been grouped together  
 in the file {\it ECCO\_OPTIONS.h}.  
 To retain the modularity, the files have been kept and contain  
 the standard include of the {\it CPP\_OPTIONS.h} file.  
   
 \subsubsection{File {\it CPP\_EEOPTIONS.h}}  
   
 This file contains 'wrapper'-specific CPP options.  
 It only needs to be changed if the code is to be run  
 in a parallel environment (see Section \ref{???}).  
   
 \subsubsection{File {\it CPP\_OPTIONS.h}}  
   
 This file contains model-specific CPP options  
 (see Section \ref{???}).  
 Most options are related to the forward model setup.  
 They are identical to the global steady circulation setup of  
 {\it verification/exp2/}.  
 The three options specific to this experiment are \\  
 \hspace*{4ex} {\tt \#define ALLOW\_PASSIVE\_TRACER} \\  
 This flag enables the code to carry through the  
 advection/diffusion of a passive tracer along the  
 model integration. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\  
 This flag enables the inclusion of some AD-related fields  
 concerning initialisation, link between control variables  
 and forward model variables, and the call to the top-level  
 forward/adjoint subroutine {\it adthe\_main\_loop}  
 instead of {\it the\_main\_loop}. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_GRADIENT\_CHECK} \\  
 This flag enables the gradient check package.  
 After computing the unperturbed cost function and its gradient,  
 a series of computations are performed for which \\  
 $\bullet$ an element of the control vector is perturbed \\  
 $\bullet$ the cost function w.r.t. the perturbed element is  
 computed \\  
 $\bullet$ the difference between the perturbed and unperturbed  
 cost function is computed to compute the finite difference gradient \\  
 $\bullet$ the finite difference gradient is compared with the  
 adjoint-generated gradient.  
 The gradient check package is further described in Section ???.  
   
 \subsubsection{File {\it ECCO\_OPTIONS.h}}  
846    
 The CPP options of several AD-related packages are grouped  
 in this file:  
 %  
 \begin{itemize}  
 %  
 \item  
 Adjoint support package: {\it pkg/autodiff/} \\  
 This package contains hand-written adjoint code such as  
 active file handling, flow directives for files which must not  
 be differentiated, and TAMC-specific header files. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\  
 defines TAMC-related features in the code. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\  
 enables the checkpointing feature of TAMC  
 (see Section \ref{???}).  
 In the present example a 3-level checkpointing is implemented.  
 The code contains the relevant store directives, common block  
 and tape initialisations, storing key computation,  
 and loop index handling.  
 The checkpointing length at each level is defined in  
 file {\it tamc.h}, cf. below.  
 %  
 \item Cost function package: {\it pkg/cost/} \\  
 This package contains all relevant routines for  
 initialising, accumulating and finalizing the cost function  
 (see Section \ref{???}). \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\  
 enables all general aspects of the cost function handling,  
 in particular the hooks in the foorward code for  
 initialising, accumulating and finalizing the cost function. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\  
 includes the call to the cost function for this  
 particular experiment, eqn. (\ref{cost_tracer}).  
 %  
 \item Control variable package: {\it pkg/ctrl/} \\  
 This package contains all relevant routines for  
 the handling of the control vector.  
 Each control variable can be enabled/disabled with its own flag: \\  
 \begin{tabular}{ll}  
 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &  
 initial temperature \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &  
 initial salinity \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &  
 initial passive tracer concentration \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &  
 zonal wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &  
 meridional wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &  
 freshwater flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &  
 heat flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_DIFFKR\_CONTROL} &  
 diapycnal diffusivity \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &  
 isopycnal diffusivity \\  
 \end{tabular}  
 %  
 \end{itemize}  
847    
848  \subsubsection{File {\it SIZE.h}}  A typical full build process to generate the ADM via TAF would
849    look like follows:
850    \begin{verbatim}
851    % mkdir build
852    % cd build
853    % ../../../tools/genmake2 -mods=../code_ad
854    % make depend
855    % make adall
856    \end{verbatim}
857    
858  The file contains the grid point dimensions of the forward  %------------------------------------------------------------------
 model. It is identical to the {\it verification/exp2/}: \\  
 \hspace*{4ex} {\tt sNx = 90} \\  
 \hspace*{4ex} {\tt sNy = 40} \\  
 \hspace*{4ex} {\tt Nr = 20} \\  
 It correpsponds to a single-tile/single-processor setup:  
 {\tt nSx = nSy = 1, nPx = nPy = 1},  
 with standard overlap dimensioning  
 {\tt OLx = OLy = 3}.  
   
 \subsubsection{File {\it adcommon.h}}  
   
 This file contains common blocks of some adjoint variables  
 that are generated by TAMC.  
 The common blocks are used by the adjoint support routine  
 {\it addummy\_in\_stepping} which needs to access those variables:  
   
 \begin{tabular}{ll}  
 \hspace*{4ex} {\tt common /addynvars\_r/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_cd/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_diffkr/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_kapgm/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /adtr1\_r/} &  
 \hspace*{4ex} is related to {\it TR1.h} \\  
 \hspace*{4ex} {\tt common /adffields/} &  
 \hspace*{4ex} is related to {\it FFIELDS.h}\\  
 \end{tabular}  
859    
860  Note that if the structure of the common block changes in the  \subsection{The AD build process in detail
861  above header files of the forward code, the structure  \label{section_ad_build_detail}}
 of the adjoint common blocks will change accordingly.  
 Thus, it has to be made sure that the structure of the  
 adjoint common block in the hand-written file {\it adcommon.h}  
 complies with the automatically generated adjoint common blocks  
 in {\it adjoint\_model.F}.  
862    
863  \subsubsection{File {\it tamc.h}}  The {\tt make <MODE>all} target consists of the following procedures:
864    
865  This routine contains the dimensions for TAMC checkpointing.  \begin{enumerate}
866  %  %
867    \item
868    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
869    on which code ought to be generated. Depending on the {\tt make} target,
870    the contents is one of the following:
871  \begin{itemize}  \begin{itemize}
872  %  \item
873  \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\  {\tt \#define ALLOW\_ADJOINT\_RUN}
874  3-level checkpointing is enabled, i.e. the timestepping  \item
875  is divided into three different levels (see Section \ref{???}).  {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
876  The model state of the outermost ({\tt nchklev\_3}) and the  \item
877  intermediate ({\tt nchklev\_2}) timestepping loop are stored to file  {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
 (handled in {\it the\_main\_loop}).  
 The innermost loop ({\tt nchklev\_1})  
 avoids I/O by storing all required variables  
 to common blocks. This storing may also be necessary if  
 no checkpointing is chosen  
 (nonlinear functions, if-statements, iterative loops, ...).  
 In the present example the dimensions are chosen as follows: \\  
 \hspace*{4ex} {\tt nchklev\_1      =  36 } \\  
 \hspace*{4ex} {\tt nchklev\_2      =  30 } \\  
 \hspace*{4ex} {\tt nchklev\_3      =  60 } \\  
 To guarantee that the checkpointing intervals span the entire  
 integration period the following relation must be satisfied: \\  
 \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\  
 where {\tt nTimeSteps} is either specified in {\it data}  
 or computed via \\  
 \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.  
 %  
 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\  
 No checkpointing is enabled.  
 In this case the relevant counter is {\tt nchklev\_0}.  
 Similar to above, the following relation has to be satisfied \\  
 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.  
 %  
878  \end{itemize}  \end{itemize}
   
 The following parameters may be worth describing: \\  
879  %  %
880  \hspace*{4ex} {\tt isbyte} \\  \item
881  \hspace*{4ex} {\tt maxpass} \\  A single file {\tt <MODE>\_input\_code.f} is concatenated
882  ~  consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
883    and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
884  \subsubsection{File {\it makefile}}  %
885    \item
886  This file contains all relevant paramter flags and  The AD tool is invoked with the {\tt <MODE>\_<TOOL>\_FLAGS}.
887  lists to run TAMC or TAF.  The default AD tool flags in {\tt genmake2} can be overrwritten by
888  It is assumed that TAMC is available to you, either locally,  an {\tt adjoint\_options} file (similar to the platform-specific
889  being installed on your network, or remotely through the 'TAMC Utility'.  {\tt build\_options}, see Section ???.
890  TAMC is called with the command {\tt tamc} followed by a  The AD tool writes the resulting AD code into the file
891  number of options. They are described in detail in the  {\tt <MODE>\_input\_code\_ad.f}
892  TAMC manual \cite{gie:99}.  %
893  Here we briefly discuss the main flags used in the {\it makefile}  \item
894    A short sed script {\tt adjoint\_sed} is applied to
895    {\tt <MODE>\_input\_code\_ad.f}
896    to reinstate {\bf myThid} into the CALL argument list of active file I/O.
897    The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
898    %
899    \item
900    All routines are compiled and an executable is generated
901    (see Table ???).
902  %  %
903  \begin{itemize}  \end{enumerate}
904  \item [{\tt tamc}] {\tt  
905  -input <variable names>  \subsubsection{The list AD\_FILES and {\tt .list} files}
906  -output <variable name> -r4 ... \\  
907  -toplevel <S/R name> -reverse <file names>  Not all routines are presented to the AD tool.
908  }  Routines typically hidden are diagnostics routines which
909  \end{itemize}  do not influence the cost function, but may create
910    artificial flow dependencies such as I/O of active variables.
911    
912    {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
913    which contains all routines that are shown to the AD tool.
914    This list is put together from all files with suffix {\tt .list}
915    that {\tt genmake2} finds in its search directories.
916    The list file for the core MITgcm routines is in {\tt model/src/}
917    is called {\tt model\_ad\_diff.list}.
918    Note that no wrapper routine is shown to TAF. These are either
919    not visible at all to the AD code, or hand-written AD code
920    is available (see next section).
921    
922    Each package directory contains its package-specific
923    list file {\tt <PKG>\_ad\_diff.list}. For example,
924    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
925    Thus, enabling a package will automatically extend the
926    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
927    package-specific routines.
928    Note that you will need to regenerate the {\tt Makefile} if
929    you enable a package (e.g. by adding it to {\tt packages.conf})
930    and a {\tt Makefile} already exists.
931    
932    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
933    
934    TAMC and TAF can evaluate user-specified directives
935    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
936    The main categories of directives are STORE directives and
937    FLOW directives. Here, we are concerned with flow directives,
938    store directives are treated elsewhere.
939    
940    Flow directives enable the AD tool to evaluate how it should treat
941    routines that are 'hidden' by the user, i.e. routines which are
942    not contained in the {\bf AD\_FILES} list (see previous section),
943    but which are called in part of the code that the AD tool does see.
944    The flow directive tell the AD tool
945  %  %
946  \begin{itemize}  \begin{itemize}
947  %  %
948  \item {\tt -toplevel <S/R name>} \\  \item which subroutine arguments are input/output
949  Name of the toplevel routine, with respect to which the  \item which subroutine arguments are active
950  control flow analysis is performed.  \item which subroutine arguments are required to compute the cost
951  %  \item which subroutine arguments are dependent
 \item {\tt -input <variable names>} \\  
 List of independent variables $ u $ with respect to which the  
 dependent variable $ J $ is differentiated.  
 %  
 \item {\tt -output <variable name>} \\  
 Dependent variable $ J $  which is to be differentiated.  
 %  
 \item {\tt -reverse <file names>} \\  
 Adjoint code is generated to compute the sensitivity of an  
 independent variable w.r.t.  many dependent variables.  
 In the discussion of Section ???  
 the generated adjoint top-level routine computes the product  
 of the transposed Jacobian matrix $ M^T $ times  
 the gradient vector $ \nabla_v J $.  
 \\  
 {\tt <file names>} refers to the list of files {\it .f} which are to be  
 analyzed by TAMC. This list is generally smaller than the full list  
 of code to be compiled. The files not contained are either  
 above the top-level routine (some initialisations), or are  
 deliberately hidden from TAMC, either because hand-written  
 adjoint routines exist, or the routines must not (or don't have to)  
 be differentiated. For each routine which is part of the flow tree  
 of the top-level routine, but deliberately hidden from TAMC  
 (or for each package which contains such routines),  
 a corresponding file {\it .flow} exists containing flow directives  
 for TAMC.  
 %  
 \item {\tt -r4} \\  
 ~  
952  %  %
953  \end{itemize}  \end{itemize}
954    %
955    The syntax for the flow directives can be found in the
956    AD tool manuals.
957    
958    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
959    which contains all files with suffix{\tt .flow} that it finds
960    in its search directories.
961    The flow directives for the core MITgcm routines of
962    {\tt eesupp/src/} and {\tt model/src/}
963    reside in {\tt pkg/autodiff/}.
964    This directory also contains hand-written adjoint code
965    for the MITgcm WRAPPER (section \ref{chap:sarch}).
966    
967    Flow directives for package-specific routines are contained in
968    the corresponding package directories in the file
969    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
970    {\tt ptracers\_ad.flow}.
971    
972    \subsubsection{Store directives for 3-level checkpointing}
973    
974    The storing that is required at each period of the
975    3-level checkpointing is controled by three
976    top-level headers.
977    
978  \subsubsection{File {\it data}}  \begin{verbatim}
979    do ilev_3 = 1, nchklev_3
980  \subsubsection{File {\it data.cost}}  #  include ``checkpoint_lev3.h''
981       do ilev_2 = 1, nchklev_2
982  \subsubsection{File {\it data.ctrl}}  #     include ``checkpoint_lev2.h''
983          do ilev_1 = 1, nchklev_1
984  \subsubsection{File {\it data.gmredi}}  #        include ``checkpoint_lev1.h''
985    
986  \subsubsection{File {\it data.grdchk}}  ...
987    
988  \subsubsection{File {\it data.optim}}        end do
989       end do
990  \subsubsection{File {\it data.pkg}}  end do
991    \end{verbatim}
 \subsubsection{File {\it eedata}}  
   
 \subsubsection{File {\it topog.bin}}  
   
 \subsubsection{File {\it windx.bin, windy.bin}}  
992    
993  \subsubsection{File {\it salt.bin, theta.bin}}  All files {\tt checkpoint\_lev?.h} are contained in directory
994    {\tt pkg/autodiff/}.
995    
 \subsubsection{File {\it SSS.bin, SST.bin}}  
996    
997  \subsubsection{File {\it pickup*}}  \subsubsection{Changing the default AD tool flags: ad\_options files}
998    
 \subsection{Compiling the model and its adjoint}  
999    
1000  \newpage  \subsubsection{Hand-written adjoint code}
1001    
1002  %**********************************************************************  %------------------------------------------------------------------
 \section{TLM and ADM generation in general}  
 \label{sec_ad_setup_gen}  
 %**********************************************************************  
   
 In this section we describe in a general fashion  
 the parts of the code that are relevant for automatic  
 differentiation using the software tool TAMC.  
   
 \begin{figure}[b!]  
 \input{part5/doc_ad_the_model}  
 \caption{~}  
 \label{fig:adthemodel}  
 \end{figure}  
   
 The basic flow is depicted in \reffig{adthemodel}.  
 If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine  
 {\it the\_model\_main}, instead of calling {\it the\_main\_loop},  
 invokes the adjoint of this routine, {\it adthe\_main\_loop},  
 which is the toplevel routine in terms of reverse mode computation.  
 The routine {\it adthe\_main\_loop} has been generated using TAMC.  
 It contains both the forward integration of the full model,  
 any additional storing that is required for efficient checkpointing,  
 and the reverse integration of the adjoint model.  
 The structure of {\it adthe\_main\_loop} has been strongly  
 simplified for clarification; in particular, no checkpointing  
 procedures are shown here.  
 Prior to the call of {\it adthe\_main\_loop}, the routine  
 {\it ctrl\_unpack} is invoked to unpack the control vector,  
 and following that call, the routine {\it ctrl\_pack}  
 is invoked to pack the control vector  
 (cf. Section \ref{section_ctrl}).  
 If gradient checks are to be performed, the option  
 {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case  
 the driver routine {\it grdchk\_main} is called after  
 the gradient has been computed via the adjoint  
 (cf. Section \ref{section_grdchk}).  
1003    
1004  \subsection{The cost function (dependent variable)  \subsection{The cost function (dependent variable)
1005  \label{section_cost}}  \label{section_cost}}
# Line 1165  the gradient has been computed via the a Line 1007  the gradient has been computed via the a
1007  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1008  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
1009  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1010  The input is referred to as the  The input are referred to as the
1011  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
1012  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
1013  (parameter setting, initialisation, accumulation,  (parameter setting, initialization, accumulation,
1014  final evaluation), are controlled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
1015    The aspects relevant to the treatment of the independent variables
1016    are controlled by the package {\it pkg/ctrl} and will be treated
1017    in the next section.
1018    
1019  \begin{figure}[h!]  \input{s_autodiff/text/doc_cost_flow}
1020  \input{part5/doc_cost_flow}  
1021  \caption{~}  \subsubsection{Enabling the package}
 \label{fig:costflow}  
 \end{figure}  
1022    
 \subsubsection{genmake and CPP options}  
 %  
 \begin{itemize}  
 %  
 \item  
1023  \fbox{  \fbox{
1024  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1025  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1026  \end{minipage}  \end{minipage}
1027  }  }
1028  \end{itemize}  \begin{itemize}
1029  %  %
1030  The directory {\it pkg/cost} can be included to the  \item
1031  compile list in 3 different ways (cf. Section \ref{???}):  The package is enabled by adding {\it cost} to your file {\it packages.conf}
1032    (see Section ???)
1033  %  %
1034  \begin{enumerate}  \item
1035  %  
1036  \item {\it genmake}: \\  
1037  Change the default settings in the file {\it genmake} by adding  \end{itemize}
 {\bf cost} to the {\bf enable} list (not recommended).  
 %  
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1038  %  %
1039  \end{enumerate}  
1040    N.B.: In general the following packages ought to be enabled
1041    simultaneously: {\it autodiff, cost, ctrl}.
1042  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1043  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1044  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1045  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1046  Since the cost function is usually used in conjunction with  Since the cost function is usually used in conjunction with
1047  automatic differentiation, the CPP option  automatic differentiation, the CPP option
1048  {\bf ALLOW\_ADJOINT\_RUN} should be defined  {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1049  (file {\it CPP\_OPTIONS.h}).  {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1050    should be defined.
1051    
1052  \subsubsection{Initialisation}  \subsubsection{Initialization}
1053  %  %
1054  The initialisation of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1055  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1056  %  %
1057  \begin{itemize}  \begin{itemize}
1058  %  %
# Line 1250  Variables: {\it cost\_init} Line 1082  Variables: {\it cost\_init}
1082  }  }
1083  \\  \\
1084  This S/R  This S/R
1085  initialises the different cost function contributions.  initializes the different cost function contributions.
1086  The contribtion for the present example is {\bf objf\_tracer}  The contribution for the present example is {\bf objf\_tracer}
1087  which is defined on each tile (bi,bj).  which is defined on each tile (bi,bj).
1088  %  %
1089  \end{itemize}  \end{itemize}
# Line 1274  Within this 'driver' routine, S/R are ca Line 1106  Within this 'driver' routine, S/R are ca
1106  the chosen cost function contributions.  the chosen cost function contributions.
1107  In the present example ({\bf ALLOW\_COST\_TRACER}),  In the present example ({\bf ALLOW\_COST\_TRACER}),
1108  S/R {\it cost\_tracer} is called.  S/R {\it cost\_tracer} is called.
1109  It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).  It accumulates {\bf objf\_tracer} according to eqn. (\ref{ask_the_author:doc_ad_2}).
1110  %  %
1111  \subsubsection{Finalize all contributions}  \subsubsection{Finalize all contributions}
1112  %  %
# Line 1294  from each contribution and sums over all Line 1126  from each contribution and sums over all
1126  \begin{equation}  \begin{equation}
1127  {\cal J} \, = \,  {\cal J} \, = \,
1128  {\rm fc} \, = \,  {\rm fc} \, = \,
1129  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1130  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1131  \end{equation}  \end{equation}
1132  %  %
1133  The total cost function {\bf fc} will be the  The total cost function {\bf fc} will be the
1134  'dependent' variable in the argument list for TAMC, i.e.  'dependent' variable in the argument list for TAF, i.e.
1135  \begin{verbatim}  \begin{verbatim}
1136  tamc -output 'fc' ...  taf -output 'fc' ...
1137  \end{verbatim}  \end{verbatim}
1138    
1139  %%%% \end{document}  %%%% \end{document}
1140    
1141  \begin{figure}  \input{s_autodiff/text/doc_ad_the_main}
 \input{part5/doc_ad_the_main}  
 \caption{~}  
 \label{fig:adthemain}  
 \end{figure}  
1142    
1143  \subsection{The control variables (independent variables)  \subsection{The control variables (independent variables)
1144  \label{section_ctrl}}  \label{section_ctrl}}
# Line 1327  as variable assignments. Therefore, file Line 1155  as variable assignments. Therefore, file
1155  active variables are written and from which active variables  active variables are written and from which active variables
1156  are read are called {\sf active files}.  are read are called {\sf active files}.
1157  All aspects relevant to the treatment of the control variables  All aspects relevant to the treatment of the control variables
1158  (parameter setting, initialisation, perturbation)  (parameter setting, initialization, perturbation)
1159  are controled by the package {\it pkg/ctrl}.  are controlled by the package {\it pkg/ctrl}.
1160    
1161  \begin{figure}[h!]  \input{s_autodiff/text/doc_ctrl_flow}
 \input{part5/doc_ctrl_flow}  
 \caption{~}  
 \label{fig:ctrlflow}  
 \end{figure}  
1162    
1163  \subsubsection{genmake and CPP options}  \subsubsection{genmake and CPP options}
1164  %  %
# Line 1350  are controled by the package {\it pkg/ct Line 1174  are controled by the package {\it pkg/ct
1174  %  %
1175  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1176  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1177  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1178    package, cf. previous section).
1179  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1180  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1181    
1182  \subsubsection{Initialisation}  \subsubsection{Initialization}
1183  %  %
1184  \begin{itemize}  \begin{itemize}
1185  %  %
# Line 1391  and their gradients: {\it ctrl\_unpack} Line 1216  and their gradients: {\it ctrl\_unpack}
1216  \\  \\
1217  %  %
1218  Two important issues related to the handling of the control  Two important issues related to the handling of the control
1219  variables in the MITGCM need to be addressed.  variables in MITgcm need to be addressed.
1220  First, in order to save memory, the control variable arrays  First, in order to save memory, the control variable arrays
1221  are not kept in memory, but rather read from file and added  are not kept in memory, but rather read from file and added
1222  to the initial fields during the model initialisation phase.  to the initial fields during the model initialization phase.
1223  Similarly, the corresponding adjoint fields which represent  Similarly, the corresponding adjoint fields which represent
1224  the gradient of the cost function w.r.t. the control variables  the gradient of the cost function w.r.t. the control variables
1225  are written to file at the end of the adjoint integration.  are written to file at the end of the adjoint integration.
# Line 1423  and gradient are generated and initialis Line 1248  and gradient are generated and initialis
1248  %  %
1249  The dependency flow for differentiation w.r.t. the controls  The dependency flow for differentiation w.r.t. the controls
1250  starts with adding a perturbation onto the input variable,  starts with adding a perturbation onto the input variable,
1251  thus defining the independent or control variables for TAMC.  thus defining the independent or control variables for TAF.
1252  Three types of controls may be considered:  Three types of controls may be considered:
1253  %  %
1254  \begin{itemize}  \begin{itemize}
# Line 1444  temperature and salinity are initialised Line 1269  temperature and salinity are initialised
1269  a perturbation anomaly is added to the field in S/R  a perturbation anomaly is added to the field in S/R
1270  {\it ctrl\_map\_ini}  {\it ctrl\_map\_ini}
1271  %  %
1272    %\begin{eqnarray}
1273  \begin{equation}  \begin{equation}
1274  \begin{split}  \begin{aligned}
1275  u         & = \, u_{[0]} \, + \, \Delta u \\  u         & = \, u_{[0]} \, + \, \Delta u \\
1276  {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)  {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1277  \label{perturb}  \label{perturb}
1278  \end{split}  \end{aligned}
1279  \end{equation}  \end{equation}
1280    %\end{eqnarray}
1281  %  %
1282  {\bf xx\_tr1} is a 3-dim. global array  {\bf xx\_tr1} is a 3-dim. global array
1283  holding the perturbation. In the case of a simple  holding the perturbation. In the case of a simple
1284  sensitivity study this array is identical to zero.  sensitivity study this array is identical to zero.
1285  However, it's specification is essential in the context  However, it's specification is essential in the context
1286  of automatic differentiation since TAMC  of automatic differentiation since TAF
1287  treats the corresponding line in the code symbolically  treats the corresponding line in the code symbolically
1288  when determining the differentiation chain and its origin.  when determining the differentiation chain and its origin.
1289  Thus, the variable names are part of the argument list  Thus, the variable names are part of the argument list
1290  when calling TAMC:  when calling TAF:
1291  %  %
1292  \begin{verbatim}  \begin{verbatim}
1293  tamc -input 'xx_tr1 ...' ...  taf -input 'xx_tr1 ...' ...
1294  \end{verbatim}  \end{verbatim}
1295  %  %
1296  Now, as mentioned above, the MITGCM avoids maintaining  Now, as mentioned above, MITgcm avoids maintaining
1297  an array for each control variable by reading the  an array for each control variable by reading the
1298  perturbation to a temporary array from file.  perturbation to a temporary array from file.
1299  To ensure the symbolic link to be recognized by TAMC, a scalar  To ensure the symbolic link to be recognized by TAF, a scalar
1300  dummy variable {\bf xx\_tr1\_dummy} is introduced  dummy variable {\bf xx\_tr1\_dummy} is introduced
1301  and an 'active read' routine of the adjoint support  and an 'active read' routine of the adjoint support
1302  package {\it pkg/autodiff} is invoked.  package {\it pkg/autodiff} is invoked.
1303  The read-procedure is tagged with the variable  The read-procedure is tagged with the variable
1304  {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the  {\bf xx\_tr1\_dummy} enabling TAF to recognize the
1305  initialisation of the perturbation.  initialization of the perturbation.
1306  The modified call of TAMC thus reads  The modified call of TAF thus reads
1307  %  %
1308  \begin{verbatim}  \begin{verbatim}
1309  tamc -input 'xx_tr1_dummy ...' ...  taf -input 'xx_tr1_dummy ...' ...
1310  \end{verbatim}  \end{verbatim}
1311  %  %
1312  and the modified operation to (\ref{perturb})  and the modified operation to (\ref{perturb})
# Line 1494  in the code takes on the form Line 1321  in the code takes on the form
1321  %  %
1322  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1323  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1324  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1325    a reset.
1326  The 'active file' routines have been designed  The 'active file' routines have been designed
1327  to support active read and corresponding adjoint active write  to support active read and corresponding adjoint active write
1328  operations (and vice versa).  operations (and vice versa).
# Line 1586  variables are written to {\bf adxx\_ ... Line 1414  variables are written to {\bf adxx\_ ...
1414  \begin{itemize}  \begin{itemize}
1415  %  %
1416  \item {\bf vector\_ctrl}: the control vector \\  \item {\bf vector\_ctrl}: the control vector \\
1417  At the very beginning of the model initialisation,  At the very beginning of the model initialization,
1418  the updated compressed control vector is read (or initialised)  the updated compressed control vector is read (or initialised)
1419  and distributed to 2-dim. and 3-dim. control variable fields.  and distributed to 2-dim. and 3-dim. control variable fields.
1420  %  %
# Line 1611  at intermediate times can be written usi Line 1439  at intermediate times can be written usi
1439  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1440  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1441  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1442    The procedure is enabled using via the CPP-option
1443    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1444  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1445  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1446  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1447    The adjoint common blocks are extracted from the adjoint code
1448    via the header file {\it adcommon.h}.
1449    
1450  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1451  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1640  the common blocks Line 1472  the common blocks
1472  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1473  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1474  access to the adjoint variables.  access to the adjoint variables.
1475    
1476    {\bf WARNING:} If the structure of the common blocks
1477    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1478    similar changes will occur in the adjoint common blocks.
1479    Therefore, consistency between the TAMC-generated common blocks
1480    and those in {\it adcommon.h} have to be checked.
1481  %  %
1482  \end{itemize}  \end{itemize}
1483    
# Line 1654  The gradient $ \nabla _{u}{\cal J} |_{u_ Line 1492  The gradient $ \nabla _{u}{\cal J} |_{u_
1492  with the value of the cost function itself $ {\cal J}(u_{[k]}) $  with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1493  at iteration step $ k $ serve  at iteration step $ k $ serve
1494  as input to a minimization routine (e.g. quasi-Newton method,  as input to a minimization routine (e.g. quasi-Newton method,
1495  conjugate gradient, ... \cite{gil_lem:89})  conjugate gradient, ... \cite{gil-lem:89})
1496  to compute an update in the  to compute an update in the
1497  control variable for iteration step $k+1$  control variable for iteration step $k+1$
1498  \[  \[
# Line 1665  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delt Line 1503  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delt
1503  $ u_{[k+1]} $ then serves as input for a forward/adjoint run  $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1504  to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step  to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1505  $ k+1 $.  $ k+1 $.
1506  Tab. \ref{???} sketches the flow between forward/adjoint model  Tab. \ref{ask_the_author:doc_ad_2} sketches the flow between forward/adjoint model
1507  and the minimization routine.  and the minimization routine.
1508    
1509    {\scriptsize
1510  \begin{eqnarray*}  \begin{eqnarray*}
 \scriptsize  
1511  \begin{array}{ccccc}  \begin{array}{ccccc}
1512  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\
1513  {\Big\downarrow}  {\Big\downarrow}
# Line 1720  ad \, v_{[k]} (\delta {\cal J}) = Line 1558  ad \, v_{[k]} (\delta {\cal J}) =
1558   ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\   ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1559  \end{array}  \end{array}
1560  \end{eqnarray*}  \end{eqnarray*}
1561    }
1562    
1563  The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide  The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1564  the link between the model and the minimization routine.  the link between the model and the minimization routine.
1565  As described in Section \ref{???}  As described in Section \ref{ask_the_author:doc_ad_2}
1566  the {\it unpack} and {\it pack} routines read and write  the {\it unpack} and {\it pack} routines read and write
1567  control and gradient {\it vectors} which are compressed  control and gradient {\it vectors} which are compressed
1568  to contain only wet points, in addition to the full  to contain only wet points, in addition to the full
# Line 1785  to {\it adxx\_...$<$k$>$}, again via the Line 1624  to {\it adxx\_...$<$k$>$}, again via the
1624  Finally, {\it ctrl\_pack} collects all adjoint files  Finally, {\it ctrl\_pack} collects all adjoint files
1625  and writes them to the compressed vector file  and writes them to the compressed vector file
1626  {\bf vector\_grad\_$<$k$>$}.  {\bf vector\_grad\_$<$k$>$}.
   
 \subsection{TLM and ADM generation via TAMC}  
   
   
   
 \subsection{Flow directives and adjoint support routines \label{section_flowdir}}  
   
 \subsection{Store directives and checkpointing \label{section_checkpointing}}  
   
 \subsection{Gradient checks \label{section_grdchk}}  
   
 \subsection{Second derivative generation via TAMC}  
   
 \section{Example of adjoint code}  

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22