/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Wed Aug 8 16:16:26 2001 UTC revision 1.20 by edhill, Wed Apr 5 02:27:33 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    Author: Patrick Heimbach
5    
6  {\sf Automatic differentiation} (AD), also referred to as algorithmic  {\sf Automatic differentiation} (AD), also referred to as algorithmic
7  (or, more loosely, computational) differentiation, involves  (or, more loosely, computational) differentiation, involves
8  automatically deriving code to calculate  automatically deriving code to calculate partial derivatives from an
9  partial derivatives from an existing fully non-linear prognostic code.  existing fully non-linear prognostic code.  (see \cite{gri:00}).  A
10  (see \cite{gri:00}).  software tool is used that parses and transforms source files
11  A software tool is used that parses and transforms source files  according to a set of linguistic and mathematical rules.  AD tools are
12  according to a set of linguistic and mathematical rules.  like source-to-source translators in that they parse a program code as
13  AD tools are like source-to-source translators in that  input and produce a new program code as output.  However, unlike a
14  they parse a program code as input and produce a new program code  pure source-to-source translation, the output program represents a new
15  as output.  algorithm, such as the evaluation of the Jacobian, the Hessian, or
16  However, unlike a pure source-to-source translation, the output program  higher derivative operators.  In principle, a variety of derived
17  represents a new algorithm, such as the evaluation of the  algorithms can be generated automatically in this way.
18  Jacobian, the Hessian, or higher derivative operators.  
19  In principle, a variety of derived algorithms  MITgcm has been adapted for use with the Tangent linear and Adjoint
20  can be generated automatically in this way.  Model Compiler (TAMC) and its successor TAF (Transformation of
21    Algorithms in Fortran), developed by Ralf Giering (\cite{gie-kam:98},
22  The MITGCM has been adapted for use with the  \cite{gie:99,gie:00}).  The first application of the adjoint of MITgcm
23  Tangent linear and Adjoint Model Compiler (TAMC) and its succssor TAF  for sensitivity studies has been published by \cite{maro-eta:99}.
24  (Transformation of Algorithms in Fortran), developed  \cite{sta-eta:97,sta-eta:01} use MITgcm and its adjoint for ocean
25  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).  state estimation studies.  In the following we shall refer to TAMC and
26  The first application of the adjoint of the MITGCM for senistivity  TAF synonymously, except were explicitly stated otherwise.
27  studies has been published by \cite{maro-eta:99}.  
28  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint  TAMC exploits the chain rule for computing the first derivative of a
29  for ocean state estimation studies.  function with respect to a set of input variables.  Treating a given
30    forward code as a composition of operations -- each line representing
31  TAMC exploits the chain rule for computing the first  a compositional element, the chain rule is rigorously applied to the
32  derivative of a function with  code, line by line. The resulting tangent linear or adjoint code,
33  respect to a set of input variables.  then, may be thought of as the composition in forward or reverse
34  Treating a given forward code as a composition of operations --  order, respectively, of the Jacobian matrices of the forward code's
35  each line representing a compositional element -- the chain rule is  compositional elements.
 rigorously applied to the code, line by line. The resulting  
 tangent linear or adjoint code,  
 then, may be thought of as the composition in  
 forward or reverse order, respectively, of the  
 Jacobian matrices of the forward code compositional elements.  
36    
37  %**********************************************************************  %**********************************************************************
38  \section{Some basic algebra}  \section{Some basic algebra}
39  \label{sec_ad_algebra}  \label{sec_ad_algebra}
40    \begin{rawhtml}
41    <!-- CMIREDIR:sec_ad_algebra: -->
42    \end{rawhtml}
43  %**********************************************************************  %**********************************************************************
44    
45  Let $ \cal{M} $ be a general nonlinear, model, i.e. a  Let $ \cal{M} $ be a general nonlinear, model, i.e. a
# Line 50  $\vec{u}=(u_1,\ldots,u_m)$ Line 50  $\vec{u}=(u_1,\ldots,u_m)$
50  such as forcing functions) to the $n$-dimensional space  such as forcing functions) to the $n$-dimensional space
51  $V \subset I\!\!R^n$ of  $V \subset I\!\!R^n$ of
52  model output variable $\vec{v}=(v_1,\ldots,v_n)$  model output variable $\vec{v}=(v_1,\ldots,v_n)$
53  (model state, model diagnostcs, objective function, ...)  (model state, model diagnostics, objective function, ...)
54  under consideration,  under consideration,
55  %  %
56  \begin{equation}  \begin{equation}
# Line 105  In contrast to the full nonlinear model Line 105  In contrast to the full nonlinear model
105  $ M $ is just a matrix  $ M $ is just a matrix
106  which can readily be used to find the forward sensitivity of $\vec{v}$ to  which can readily be used to find the forward sensitivity of $\vec{v}$ to
107  perturbations in  $u$,  perturbations in  $u$,
108  but if there are very many input variables $(>>O(10^{6})$ for  but if there are very many input variables $(\gg O(10^{6})$ for
109  large-scale oceanographic application), it quickly becomes  large-scale oceanographic application), it quickly becomes
110  prohibitive to proceed directly as in (\ref{tangent_linear}),  prohibitive to proceed directly as in (\ref{tangent_linear}),
111  if the impact of each component $ {\bf e_{i}} $ is to be assessed.  if the impact of each component $ {\bf e_{i}} $ is to be assessed.
# Line 130  or a measure of some model-to-data misfi Line 130  or a measure of some model-to-data misfi
130  \label{compo}  \label{compo}
131  \end{eqnarray}  \end{eqnarray}
132  %  %
133  The linear approximation of $ {\cal J} $,  The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
134  \[  \[
135  {\cal J} \, \approx \, {\cal J}_0 \, + \, \delta {\cal J}  {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
136  \]  \]
137  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
138  w.r.t. their corresponding inner product  w.r.t. their corresponding inner product
# Line 152  $\left\langle \,\, , \,\, \right\rangle Line 152  $\left\langle \,\, , \,\, \right\rangle
152  \label{deljidentity}  \label{deljidentity}
153  \end{equation}  \end{equation}
154  %  %
155  (note, that the gradient $ \nabla f $ is a pseudo-vector, therefore  (note, that the gradient $ \nabla f $ is a co-vector, therefore
156  its transpose is required in the above inner product).  its transpose is required in the above inner product).
157  Then, using the representation of  Then, using the representation of
158  $ \delta {\cal J} =  $ \delta {\cal J} =
# Line 168  transpose of $ A $, Line 168  transpose of $ A $,
168  \[  \[
169  A^{\ast} \, = \, A^T  A^{\ast} \, = \, A^T
170  \]  \]
171  and from eq. (\ref{tangent_linear}), we note that  and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
172    we note that
173  (omitting $|$'s):  (omitting $|$'s):
174  %  %
175  \begin{equation}  \begin{equation}
# Line 204  the adjoint variable of the model state Line 205  the adjoint variable of the model state
205  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
206    
207  The {\sf reverse} nature of the adjoint calculation can be readily  The {\sf reverse} nature of the adjoint calculation can be readily
208  seen as follows. Let us decompose ${\cal J}(u)$, thus:  seen as follows.
209    Consider a model integration which consists of $ \Lambda $
210    consecutive operations
211    $ {\cal M}_{\Lambda} (  {\cal M}_{\Lambda-1} (
212    ...... ( {\cal M}_{\lambda} (
213    ......
214    ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
215    where the ${\cal M}$'s could be the elementary steps, i.e. single lines
216    in the code of the model, or successive time steps of the
217    model integration,
218    starting at step 0 and moving up to step $\Lambda$, with intermediate
219    ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
220    ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
221    Let ${\cal J}$ be a cost function which explicitly depends on the
222    final state $\vec{v}$ only
223    (this restriction is for clarity reasons only).
224    %
225    ${\cal J}(u)$ may be decomposed according to:
226  %  %
227  \begin{equation}  \begin{equation}
228  {\cal J}({\cal M}(\vec{u})) \, = \,  {\cal J}({\cal M}(\vec{u})) \, = \,
# Line 215  seen as follows. Let us decompose ${\cal Line 233  seen as follows. Let us decompose ${\cal
233  \label{compos}  \label{compos}
234  \end{equation}  \end{equation}
235  %  %
236  where the ${\cal M}$'s could be the elementary steps, i.e. single lines  Then, according to the chain rule, the forward calculation reads,
237  in the code of the model,  in terms of the Jacobi matrices
 starting at step 0 and moving up to step $\Lambda$, with intermediate  
 ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final  
 ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$  
 Then, according to the chain rule the forward calculation reads in  
 terms of the Jacobi matrices  
238  (we've omitted the $ | $'s which, nevertheless are important  (we've omitted the $ | $'s which, nevertheless are important
239  to the aspect of {\it tangent} linearity;  to the aspect of {\it tangent} linearity;
240  note also that per definition  note also that by definition
241  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
242  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
243  %  %
# Line 259  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T Line 272  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T
272  %  %
273  clearly expressing the reverse nature of the calculation.  clearly expressing the reverse nature of the calculation.
274  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
275  The intermediate steps $\lambda$ in  If the intermediate steps $\lambda$ in
276  eqn. (\ref{compos}) -- (\ref{reverse})  eqn. (\ref{compos}) -- (\ref{reverse})
277  could represent the model state (forward or adjoint) at each  represent the model state (forward or adjoint) at each
278  intermediate time step in which case  intermediate time step as noted above, then correspondingly,
279  $ {\cal M}(\vec{v}^{(\lambda)}) = \vec{v}^{(\lambda+1)} $, and correspondingly,  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
280  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) = \delta \vec{v}^{(\lambda-1) \, \ast} $,  \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
281  but they can also be viewed more generally as  It thus becomes evident that the adjoint calculation also
282  single lines of code in the numerical algorithm.  yields the adjoint of each model state component
283  In both cases it becomes evident that the adjoint calculation  $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
 yields at the same time the adjoint of each model state component  
 $ \vec{v}^{(\lambda)} $ at each intermediate step $ l $, namely  
284  %  %
285  \begin{equation}  \begin{equation}
286  \boxed{  \boxed{
# Line 285  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \c Line 296  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \c
296  %  %
297  in close analogy to eq. (\ref{adjoint})  in close analogy to eq. (\ref{adjoint})
298  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
299  are the Lagrange multipliers of the model state $ \vec{v}^{(\lambda)}$.  are the Lagrange multipliers of the model equations which determine
300    $ \vec{v}^{(\lambda)}$.
301    
302  In coponents, eq. (\ref{adjoint}) reads as follows.  In components, eq. (\ref{adjoint}) reads as follows.
303  Let  Let
304  \[  \[
305  \begin{array}{rclcrcl}  \begin{array}{rclcrcl}
# Line 308  Let Line 320  Let
320  \end{array}  \end{array}
321  \]  \]
322  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
323  and their adjoint varaiables;  and their adjoint variables;
324  further  further
325  \[  \[
326  M \, = \, \left(  M \, = \, \left(
# Line 395  and the shorthand notation for the adjoi Line 407  and the shorthand notation for the adjoi
407  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
408  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
409  for intermediate components, yielding  for intermediate components, yielding
410  \[  \begin{equation}
411  \footnotesize  \small
412    \begin{split}
413  \left(  \left(
414  \begin{array}{c}  \begin{array}{c}
415  \delta v^{(\lambda) \, \ast}_1 \\  \delta v^{(\lambda) \, \ast}_1 \\
# Line 404  for intermediate components, yielding Line 417  for intermediate components, yielding
417  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
418  \end{array}  \end{array}
419  \right)  \right)
420  \, = \,  \, = &
421  \left(  \left(
422  \begin{array}{ccc}  \begin{array}{ccc}
423  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
424  & \ldots &  & \ldots \,\, \ldots &
425  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
426  \vdots & ~ & \vdots \\  \vdots & ~ & \vdots \\
427  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
428  & \ldots  &  & \ldots \,\, \ldots  &
429  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
430  \end{array}  \end{array}
431  \right)  \right)
 %  
432  \cdot  \cdot
433  %  %
434    \\ ~ & ~
435    \\ ~ &
436    %
437  \left(  \left(
438  \begin{array}{ccc}  \begin{array}{ccc}
439  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
# Line 431  for intermediate components, yielding Line 446  for intermediate components, yielding
446  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
447  \end{array}  \end{array}
448  \right)  \right)
449  \cdot \ldots \ldots \cdot  \cdot \, \ldots \, \cdot
450  \left(  \left(
451  \begin{array}{c}  \begin{array}{c}
452  \delta v^{\ast}_1 \\  \delta v^{\ast}_1 \\
# Line 439  for intermediate components, yielding Line 454  for intermediate components, yielding
454  \delta v^{\ast}_{n} \\  \delta v^{\ast}_{n} \\
455  \end{array}  \end{array}
456  \right)  \right)
457  \]  \end{split}
458    \end{equation}
459    
460  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
461  showing the advantage of the reverse over the forward mode  showing the advantage of the reverse over the forward mode
# Line 450  variables $u$ Line 466  variables $u$
466  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
467  In order to be able to solve for each component of the gradient  In order to be able to solve for each component of the gradient
468  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
469  a forward calulation has to be performed for each component seperately,  a forward calculation has to be performed for each component separately,
470  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
471  for  the $i$-th forward calculation.  for  the $i$-th forward calculation.
472  Then, (\ref{forward}) represents the  Then, (\ref{forward}) represents the
# Line 460  In contrast, eq. (\ref{reverse}) yields Line 476  In contrast, eq. (\ref{reverse}) yields
476  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
477  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
478    
479  Note, that in case $ {\cal J} $ is a vector-valued function  Note, that if $ {\cal J} $ is a vector-valued function
480  of dimension $ l > 1 $,  of dimension $ l > 1 $,
481  eq. (\ref{reverse}) has to be modified according to  eq. (\ref{reverse}) has to be modified according to
482  \[  \[
# Line 468  M^T \left( \nabla_v {\cal J}^T \left(\de Line 484  M^T \left( \nabla_v {\cal J}^T \left(\de
484  \, = \,  \, = \,
485  \nabla_u {\cal J}^T \cdot \delta \vec{J}  \nabla_u {\cal J}^T \cdot \delta \vec{J}
486  \]  \]
487  where now $ \delta \vec{J} \in I\!\!R $ is a vector of dimenison $ l $.  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
488    dimension $ l $.
489  In this case $ l $ reverse simulations have to be performed  In this case $ l $ reverse simulations have to be performed
490  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
491  Then, the reverse mode is more efficient as long as  Then, the reverse mode is more efficient as long as
492  $ l < n $, otherwise the forward mode is preferable.  $ l < n $, otherwise the forward mode is preferable.
493  Stricly, the reverse mode is called adjoint mode only for  Strictly, the reverse mode is called adjoint mode only for
494  $ l = 1 $.  $ l = 1 $.
495    
496  A detailed analysis of the underlying numerical operations  A detailed analysis of the underlying numerical operations
# Line 503  operator onto the $j$-th component ${\bf Line 520  operator onto the $j$-th component ${\bf
520  \paragraph{Example 2:  \paragraph{Example 2:
521  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
522   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
523  The cost function represents the quadratic model vs.data misfit.  The cost function represents the quadratic model vs. data misfit.
524  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
525  operator which maps the model state space onto the data space.  operator which maps the model state space onto the data space.
526  Then, $ \nabla_v {\cal J} $ takes the form  Then, $ \nabla_v {\cal J} $ takes the form
# Line 534  H \cdot \left( {\cal H}(\vec{v}) - \vec{ Line 551  H \cdot \left( {\cal H}(\vec{v}) - \vec{
551    
552  We note an important aspect of the forward vs. reverse  We note an important aspect of the forward vs. reverse
553  mode calculation.  mode calculation.
554  Because of the locality of the derivative,  Because of the local character of the derivative
555    (a derivative is defined w.r.t. a point along the trajectory),
556  the intermediate results of the model trajectory  the intermediate results of the model trajectory
557  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
558  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
559  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
560    This is the case e.g. for nonlinear expressions
561    (momentum advection, nonlinear equation of state), state-dependent
562    conditional statements (parameterization schemes).
563  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
564  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
565  in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
566  Thus, in the reverse mode the trajectory of the forward model  Thus, in the reverse mode the trajectory of the forward model
567  integration ${\cal M}$ has to be stored to be available in the reverse  integration ${\cal M}$ has to be stored to be available in the reverse
568  calculation. Alternatively, the model state would have to be  calculation. Alternatively, the complete model state up to the
569  recomputed whenever its value is required.  point of evaluation has to be recomputed whenever its value is required.
570    
571  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
572  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
573  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
574  It is depicted in Fig. ... for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
575  [as concrete example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
576  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
577  \begin{itemize}  \begin{itemize}
578  %  %
# Line 559  integration with a 1-hourly timestep in Line 580  integration with a 1-hourly timestep in
580  In a first step, the model trajectory is subdivided into  In a first step, the model trajectory is subdivided into
581  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
582  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
583  The model is then integrated over the full trajectory,  The model is then integrated along the full trajectory,
584  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
585  [i.e. 3 times, at  [i.e. 3 times, at
586  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
587    In addition, the cost function is computed, if needed.
588  %  %
589  \item [$lev2$]  \item [$lev2$]
590  In a second step each subsection is itself divided into  In a second step each subsection itself is divided into
591  $ {n}^{lev2} $ subsubsections  $ {n}^{lev2} $ subsections
592  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
593  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
594  $ v_{k_{n}^{lev3}} $ and is integrated forward in time over  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
595  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
596  intermediate loop.  intermediate loop.
597  The model state is now stored only at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
598  timestep  timestep
599  [i.e. 4 times, at  [i.e. 4 times, at
600  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
601  %  %
602  \item [$lev1$]  \item [$lev1$]
603  Finally, the mode picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
604  $ v_{k_{n}^{lev2}} $ and is integrated forward in time over  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
605  the last subsubsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
606  intermediate loop.  intermediate loop.
607  Within this subsubsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
608  at every timestep  to memory at every timestep
609  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
610  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
611  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
612  and the model state of all peceeding timesteps over the last  and the model state of all preceding timesteps along the last
613  subsubsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
614  in time over the last subsubsection.  in time along the last subsection.
615  Thus, the adjoint can be computed over this last  The adjoint can thus be computed along this last
616  subsubsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
617  %  %
618  \end{itemize}  \end{itemize}
619  %  %
620  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
621  subsubsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
622  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
623  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
624  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 607  $k_{1}^{lev3}$. Line 629  $k_{1}^{lev3}$.
629  For the full model trajectory of  For the full model trajectory of
630  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
631  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
632  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
633  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
634  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
635    to memory].
636  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
637  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
638  checkpointing level).  checkpointing level).
639  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
640  on the computing resources available.  on the computing resources available and may be adjusted by
641    adjusting the partitioning among the
642    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
643    
644  \begin{figure}[t!]  \begin{figure}[t!]
645  \centering  \begin{center}
646  %\psdraft  %\psdraft
647  \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}  %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
648  \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}  %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
649  \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}  %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
650  \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}  %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
651  \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}  %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
652  \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}  %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
653  \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}  %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
654  \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}  %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
655  \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}  %\mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
656    \resizebox{5.5in}{!}{\includegraphics{part5/checkpointing.eps}}
657  %\psfull  %\psfull
658  \caption  \end{center}
659  {Schematic view of intermediate dump and restart for  \caption{
660    Schematic view of intermediate dump and restart for
661  3-level checkpointing.}  3-level checkpointing.}
662  \label{fig:erswns}  \label{fig:3levelcheck}
663  \end{figure}  \end{figure}
664    
665  \subsection{Optimal perturbations}  % \subsection{Optimal perturbations}
666  \label{optpert}  % \label{sec_optpert}
667    
668    
669  \subsection{Error covariance estimate and Hessian matrix}  % \subsection{Error covariance estimate and Hessian matrix}
670  \label{sec_hessian}  % \label{sec_hessian}
671    
672  \newpage  \newpage
673    
674  %**********************************************************************  %**********************************************************************
675  \section{AD-specific setup by example: sensitivity of carbon sequestration}  \section{TLM and ADM generation in general}
676  \label{sec_ad_setup_ex}  \label{sec_ad_setup_gen}
677    \begin{rawhtml}
678    <!-- CMIREDIR:sec_ad_setup_gen: -->
679    \end{rawhtml}
680  %**********************************************************************  %**********************************************************************
681    
682  The MITGCM has been adapted to enable AD using TAMC or TAF  In this section we describe in a general fashion
683  (we'll refer to TAMC and TAF interchangeably, except where  the parts of the code that are relevant for automatic
684  distinctions are explicitly mentioned).  differentiation using the software tool TAF.
685  The present description, therefore, is specific to the  
686  use of TAMC as AD tool.  \input{part5/doc_ad_the_model}
687  The following sections describe the steps which are necessary to  
688  generate a tangent linear or adjoint model of the MITGCM.  The basic flow is depicted in \ref{fig:adthemodel}.
689  We take as an example the sensitivity of carbon sequestration  If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined,
690  in the ocean.  the driver routine
691  The AD-relevant hooks in the code are sketched in  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
692  \reffig{adthemodel}, \reffig{adthemain}.  invokes the adjoint of this routine, {\it adthe\_main\_loop}
693    (case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or
694  \subsection{Overview of the experiment}  the tangent linear of this routine {\it g\_the\_main\_loop}
695    (case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}),
696  We describe an adjoint sensitivity analysis of outgassing from  which are the toplevel routines in terms of automatic differentiation.
697  the ocean into the atmosphere of a carbon like tracer injected  The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop}
698  into the ocean interior (see \cite{hil-eta:01}).  are generated by TAF.
699    It contains both the forward integration of the full model, the
700  \subsubsection{Passive tracer equation}  cost function calculation,
701    any additional storing that is required for efficient checkpointing,
702  For this work the MITGCM was augmented with a thermodynamically  and the reverse integration of the adjoint model.
703  inactive tracer, $C$. Tracer residing in the ocean  
704  model surface layer is outgassed according to a relaxation time scale,  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
705  $\mu$. Within the ocean interior, the tracer is passively advected  
706  by the ocean model currents. The full equation for the time evolution  In Fig. \ref{fig:adthemodel}
707  %  the structure of {\it adthe\_main\_loop} has been strongly
708  \begin{equation}  simplified to focus on the essentials; in particular, no checkpointing
709  \label{carbon_ddt}  procedures are shown here.
710  \frac{\partial C}{\partial t} \, = \,  Prior to the call of {\it adthe\_main\_loop}, the routine
711  -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S  {\it ctrl\_unpack} is invoked to unpack the control vector
712  \end{equation}  or initialise the control variables.
713  %  Following the call of {\it adthe\_main\_loop},
714  also includes a source term $S$. This term  the routine {\it ctrl\_pack}
715  represents interior sources of $C$ such as would arise due to  is invoked to pack the control vector
716  direct injection.  (cf. Section \ref{section_ctrl}).
717  The velocity term, $U$, is the sum of the  If gradient checks are to be performed, the option
718  model Eulerian circulation and an eddy-induced velocity, the latter  {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
719  parameterized according to Gent/McWilliams (\cite{gen:90, dan:95}).  the driver routine {\it grdchk\_main} is called after
720  The convection function, $\Gamma$, mixes $C$ vertically wherever the  the gradient has been computed via the adjoint
721  fluid is locally statically unstable.  (cf. Section \ref{section_grdchk}).
722    
723  The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})  %------------------------------------------------------------------
724  is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface  
725  ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})  \subsection{General setup
726  is valid as a prognostic equation for small perturbations in oceanic  \label{section_ad_setup}}
727  carbon concentrations. This configuration provides a  
728  powerful tool for examining the impact of large-scale ocean circulation  In order to configure AD-related setups the following packages need
729  on $ CO_2 $ outgassing due to interior injections.  to be enabled:
730  As source we choose a constant in time injection of  {\it
731  $ S = 1 \,\, {\rm mol / s}$.  \begin{table}[h!]
732    \begin{tabular}{l}
733  \subsubsection{Model configuration}  autodiff \\
734    ctrl \\
735  The model configuration employed has a constant  cost \\
736  $4^\circ \times 4^\circ$ resolution horizontal grid and realistic  grdchk \\
737  geography and bathymetry. Twenty vertical layers are used with  \end{tabular}
738  vertical spacing ranging  \end{table}
739  from 50 m near the surface to 815 m at depth.  }
740  Driven to steady-state by climatalogical wind-stress, heat and  The packages are enabled by adding them to your experiment-specific
741  fresh-water forcing the model reproduces well known large-scale  configuration file
742  features of the ocean general circulation.  {\it packages.conf} (see Section ???).
743    
744  \subsubsection{Outgassing cost function}  The following AD-specific CPP option files need to be customized:
   
 To quantify and understand outgassing due to injections of $C$  
 in eqn. (\ref{carbon_ddt}),  
 we define a cost function $ {\cal J} $ that measures the total amount of  
 tracer outgassed at each timestep:  
 %  
 \begin{equation}  
 \label{cost_tracer}  
 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt  
 \end{equation}  
 %  
 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,  
 from (\ref{carbon_ddt})  
 over the entire ocean surface area, $A$, and accumulates it  
 up to time $T$.  
 Physically, ${\cal J}$ can be thought of as representing the amount of  
 $CO_2$ that our model predicts would be outgassed following an  
 injection at rate $S$.  
 The sensitivity of ${\cal J}$ to the spatial location of $S$,  
 $\frac{\partial {\cal J}}{\partial S}$,  
 can be used to identify regions from which circulation  
 would cause $CO_2$ to rapidly outgas following injection  
 and regions in which $CO_2$ injections would remain effectively  
 sequesterd within the ocean.  
   
 \subsection{Code configuration}  
   
 The model configuration for this experiment resides under the  
 directory {\it verification/carbon/}.  
 The code customisation routines are in {\it verification/carbon/code/}:  
745  %  %
746  \begin{itemize}  \begin{itemize}
747  %  %
748  \item {\it .genmakerc}  \item {\it ECCO\_CPPOPTIONS.h} \\
749  %  This header file collects CPP options for the packages
750  \item {\it COST\_CPPOPTIONS.h}  {\it autodiff, cost, ctrl} as well as AD-unrelated options for
751  %  the external forcing package {\it exf}.
752  \item {\it CPP\_EEOPTIONS.h}  \footnote{NOTE: These options are not set in their package-specific
753  %  headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
754  \item {\it CPP\_OPTIONS.h}  in the single header file {\it ECCO\_CPPOPTIONS.h}.
755  %  The package-specific header files serve as simple
756  \item {\it CTRL\_OPTIONS.h}  placeholders at this point.}
757  %  %
758  \item {\it ECCO\_OPTIONS.h}  \item {\it tamc.h} \\
759  %  This header configures the splitting of the time stepping loop
760  \item {\it SIZE.h}  w.r.t. the 3-level checkpointing (see section ???).
761  %  
 \item {\it adcommon.h}  
 %  
 \item {\it tamc.h}  
762  %  %
763  \end{itemize}  \end{itemize}
764    
765    %------------------------------------------------------------------
766    
767    \subsection{Building the AD code
768    \label{section_ad_build}}
769    
770    The build process of an AD code is very similar to building
771    the forward model. However, depending on which AD code one wishes
772    to generate, and on which AD tool is available (TAF or TAMC),
773    the following {\tt make} targets are available:
774    
775    \begin{table}[h!]
776    {\footnotesize
777    \begin{tabular}{ccll}
778    ~ & {\it AD-target} & {\it output} & {\it description} \\
779    \hline
780    \hline
781    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
782    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
783    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
784    ~ & ~ & ~ & useful for compiling on remote platforms \\
785    \hline
786    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
787    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
788    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
789    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
790    \hline
791    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
792    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
793    ~ & ~ & ~ & and compiles all code \\
794    ~ & ~ & ~ & (use of TAF is set as default) \\
795    \hline
796    \hline
797    \end{tabular}
798    }
799    \end{table}
800  %  %
801  The runtime flag and parameters settings are contained in  Here, the following placeholders are used
 {\it verification/carbon/input/},  
 together with the forcing fields and and restart files:  
802  %  %
803  \begin{itemize}  \begin{itemize}
804  %  %
805  \item {\it data}  \item [$<$TOOL$>$]
 %  
 \item {\it data.cost}  
 %  
 \item {\it data.ctrl}  
 %  
 \item {\it data.pkg}  
 %  
 \item {\it eedata}  
806  %  %
807  \item {\it topog.bin}  \begin{itemize}
 %  
 \item {\it windx.bin, windy.bin}  
 %  
 \item {\it salt.bin, theta.bin}  
 %  
 \item {\it SSS.bin, SST.bin}  
808  %  %
809  \item {\it pickup*}  \item {\tt TAF}
810    \item {\tt TAMC}
811  %  %
812  \end{itemize}  \end{itemize}
813  %  %
814  Finally, the file to generate the adjoint code resides in  \item [$<$MODE$>$]
 $ adjoint/ $:  
815  %  %
816  \begin{itemize}  \begin{itemize}
817  %  %
818  \item {\it makefile}  \item {\tt ad} generates the adjoint model (ADM)
819    \item {\tt ftl} generates the tangent linear model (TLM)
820    \item {\tt svd} generates both ADM and TLM for \\
821    singular value decomposition (SVD) type calculations
822  %  %
823  \end{itemize}  \end{itemize}
824  %  %
825    \end{itemize}
826    
827  Below we describe the customisations of this files which are  For example, to generate the adjoint model using TAF after routines ({\tt .F})
828  specific to this experiment.  or headers ({\tt .h}) have been modified, but without compilation,
829    type {\tt make adtaf};
830  \subsubsection{File {\it .genmakerc}}  or, to generate the tangent linear model using TAMC without
831  This file overwites default settings of {\it genmake}.  re-generating the input code, type {\tt make ftltamconly}.
 In the present example it is used to switch on the following  
 packages which are related to automatic differentiation  
 and are disabled by default: \\  
 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco )}  \\  
 Other packages which are not needed are switched off: \\  
 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}  
   
 \subsubsection{File {\it COST\_CPPOPTIONS.h,  CTRL\_OPTIONS.h}}  
   
 These files used to contain package-specific CPP-options  
 (see Section \ref{???}).  
 For technical reasons those options have been grouped together  
 in the file {\it ECCO\_OPTIONS.h}.  
 To retain the modularity, the files have been kept and contain  
 the standard include of the {\it CPP\_OPTIONS.h} file.  
   
 \subsubsection{File {\it CPP\_EEOPTIONS.h}}  
   
 This file contains 'wrapper'-specific CPP options.  
 It only needs to be changed if the code is to be run  
 in  parallel environment (see Section \ref{???}).  
   
 \subsubsection{File {\it CPP\_OPTIONS.h}}  
   
 This file contains model-specific CPP options  
 (see Section \ref{???}).  
 Most options are related to the forward model setup.  
 They are identical to the global steady circulation setup of  
 {\it verification/exp2/}.  
 The option specific to this experiment is \\  
 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\  
 This flag enables the inclusion of some AD-related fields  
 concerning initialisation, link between control variables  
 and forward model variables, and the call to the top-level  
 forward/adjoint subroutine {\it adthe\_main\_loop}  
 instead of {\it the\_main\_loop}.  
   
 \subsubsection{File {\it ECCO\_OPTIONS.h}}  
832    
 The CPP options of several AD-related packages are grouped  
 in this file:  
 %  
 \begin{itemize}  
 %  
 \item  
 Adjoint support package: {\it pkg/autodiff/} \\  
 This package contains hand-written adjoint code such as  
 active file handling, flow directives for files which must not  
 be differentiated, and TAMC-specific header files. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\  
 defines TAMC-related features in the code. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\  
 enables the checkpointing feature of TAMC  
 (see Section \ref{???}).  
 In the present example a 3-level checkpointing is implemented.  
 The code contains the relevant store directives, common block  
 and tape initialisations, storing key computation,  
 and loop index handling.  
 The checkpointing length at each level is defined in  
 file {\it tamc.h}, cf. below.  
 %  
 \item Cost function package: {\it pkg/cost/} \\  
 This package contains all relevant routines for  
 initialising, accumulating and finalizing the cost function  
 (see Section \ref{???}). \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\  
 enables all general aspects of the cost function handling,  
 in particular the hooks in the foorward code for  
 initialising, accumulating and finalizing the cost function. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\  
 includes the subroutine with the cost function for this  
 particular experiment, eqn. (\ref{cost_tracer}).  
 %  
 \item Control variable package: {\it pkg/ctrl/} \\  
 This package contains all relevant routines for  
 the handling of the control vector.  
 Each control variable can be enabled/disabled with its own flag: \\  
 \begin{tabular}{ll}  
 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &  
 initial temperature \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &  
 initial salinity \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &  
 initial passive tracer concentration \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &  
 zonal wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &  
 meridional wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &  
 freshwater flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &  
 heat flux \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_DIFFKR\_CONTROL} &  
 diapycnal diffusivity \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &  
 isopycnal diffusivity \\  
 \end{tabular}  
 %  
 \end{itemize}  
833    
834  \subsubsection{File {\it SIZE.h}}  A typical full build process to generate the ADM via TAF would
835    look like follows:
836    \begin{verbatim}
837    % mkdir build
838    % cd build
839    % ../../../tools/genmake2 -mods=../code_ad
840    % make depend
841    % make adall
842    \end{verbatim}
843    
844  The file contains the grid point dimensions of the forward  %------------------------------------------------------------------
 model. It is identical to the {\it verification/exp2/}: \\  
 \hspace*{4ex} {\tt sNx = 90} \\  
 \hspace*{4ex} {\tt sNy = 40} \\  
 \hspace*{4ex} {\tt Nr = 20} \\  
 It correpsponds to a single-tile/single-processor setup:  
 {\tt nSx = nSy = 1, nPx = nPy = 1},  
 with standard overlap dimensioning  
 {\tt OLx = OLy = 3}.  
   
 \subsubsection{File {\it adcommon.h}}  
   
 This file contains common blocks of some adjoint variables  
 that are generated by TAMC.  
 The common blocks are used by the adjoint support routine  
 {\it addummy\_in\_stepping} which needs to access those variables:  
   
 \begin{tabular}{ll}  
 \hspace*{4ex} {\tt common /addynvars\_r/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_cd/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /adtr1\_r/} &  
 \hspace*{4ex} is related to {\it TR1.h} \\  
 \hspace*{4ex} {\tt common /adffields/} &  
 \hspace*{4ex} is related to {\it FFIELDS.h}\\  
 \end{tabular}  
845    
846  Note that if the structure of the common block changes in the  \subsection{The AD build process in detail
847  above header files of the forward code, the structure  \label{section_ad_build_detail}}
 of the adjoint common blocks will change accordingly.  
 Thus, it has to be made sure that the structure of the  
 adjoint common block in the hand-written file {\it adcommon.h}  
 complies with the automatically generated adjoint common blocks  
 in {\it adjoint\_model.F}.  
848    
849  \subsubsection{File {\it tamc.h}}  The {\tt make <MODE>all} target consists of the following procedures:
850    
851  This routine contains the dimensions for TAMC checkpointing.  \begin{enumerate}
852  %  %
853    \item
854    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
855    on which code ought to be generated. Depending on the {\tt make} target,
856    the contents is
857  \begin{itemize}  \begin{itemize}
858    \item
859    {\tt \#define ALLOW\_ADJOINT\_RUN}
860    \item
861    {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
862    \item
863    {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
864    \end{itemize}
865  %  %
866  \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\  \item
867  3-level checkpointing is enabled, i.e. the timestepping  A single file {\tt <MODE>\_input\_code.f} is concatenated
868  is divided into three different levels (see Section \ref{???}).  consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
869  The model state of the outermost ({\tt nchklev\_3}) and the  and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
870  itermediate ({\tt nchklev\_2}) timestepping loop are stored to file  %
871  (handled in {\it the\_main\_loop}).  \item
872  The innermost loop ({\tt nchklev\_1})  The AD tool is invoked with the {\bf <MODE>\_<TOOL>\_FLAGS}.
873  avoids I/O by storing all required variables  The default AD tool flags in {\tt genmake2} can be overrwritten by
874  to common blocks. This storing may also be necessary if  an {\tt adjoint\_options} file (similar to the platform-specific
875  no checkpointing is chosen  {\tt build\_options}, see Section ???.
876  (nonlinear functions, if-statements, iterative loops, ...).  The AD tool writes the resulting AD code into the file
877  In the present example the dimensions are chosen as follows: \\  {\tt <MODE>\_input\_code\_ad.f}
878  \hspace*{4ex} {\tt nchklev\_1      =  36 } \\  %
879  \hspace*{4ex} {\tt nchklev\_2      =  30 } \\  \item
880  \hspace*{4ex} {\tt nchklev\_3      =  60 } \\  A short sed script {\tt adjoint\_sed} is applied to
881  To guarantee that the checkpointing intervals span the entire  {\tt <MODE>\_input\_code\_ad.f}
882  integration period the relation \\  to reinstate {\bf myThid} into the CALL argument list of active file I/O.
883  \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\  The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
884  where {\tt nTimeSteps} is either specified in {\it data}  %
885  or computed via \\  \item
886  \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.  All routines are compiled and an executable is generated
887  %  (see Table ???).
 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\  
 No checkpointing is enabled.  
 In this case the relevant counter is {\tt nchklev\_0}.  
 Similar to above, the following relation has to be satisfied \\  
 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.  
888  %  %
889  \end{itemize}  \end{enumerate}
890    
891  \subsubsection{File {\it makefile}}  \subsubsection{The list AD\_FILES and {\tt .list} files}
892    
893  This file contains all relevant paramter flags and  Not all routines are presented to the AD tool.
894  lists to run TAMC.  Routines typically hidden are diagnostics routines which
895  It is assumed that TAMC is available to you, either locally,  do not influence the cost function, but may create
896  being installed on your network, or remotely through the 'TAMC Utility'.  artificial flow dependencies such as I/O of active variables.
897  TAMC is called with the command {\tt tamc} followed by a  
898  number of options. They are described in detail in the  {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
899  TAMC manual \cite{gie:99}.  which contains all routines that are shown to the AD tool.
900  Here we briefly discuss the main flags used in the {\it makefile}  This list is put together from all files with suffix {\tt .list}
901    that {\tt genmake2} finds in its search directories.
902    The list file for the core MITgcm routines is in {\tt model/src/}
903    is called {\tt model\_ad\_diff.list}.
904    Note that no wrapper routine is shown to TAF. These are either
905    not visible at all to the AD code, or hand-written AD code
906    is available (see next section).
907    
908    Each package directory contains its package-specific
909    list file {\tt <PKG>\_ad\_diff.list}. For example,
910    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
911    Thus, enabling a package will automatically extend the
912    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
913    package-specific routines.
914    Note that you will need to regenerate the {\tt Makefile} if
915    you enable a package (e.g. by adding it to {\tt packages.conf})
916    and a {\tt Makefile} already exists.
917    
918    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
919    
920    TAMC and TAF can evaluate user-specified directives
921    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
922    The main categories of directives are STORE directives and
923    FLOW directives. Here, we are concerned with flow directives,
924    store directives are treated elsewhere.
925    
926    Flow directives enable the AD tool to evaluate how it should treat
927    routines that are 'hidden' by the user, i.e. routines which are
928    not contained in the {\bf AD\_FILES} list (see previous section),
929    but which are called in part of the code that the AD tool does see.
930    The flow directive tell the AD tool
931  %  %
932  \begin{itemize}  \begin{itemize}
 \item [{\tt tamc}] {\tt  
 -input <variable names>  
 -output <variable name> ... \\  
 -toplevel <S/R name> -reverse <file names>  
 }  
 \end{itemize}  
933  %  %
934  \begin{itemize}  \item which subroutine arguments are input/output
935  %  \item which subroutine arguments are active
936  \item {\tt -toplevel <S/R name>} \\  \item which subroutine arguments are required to compute the cost
937  Name of the toplevel routine, with respect to which the  \item which subroutine arguments are dependent
 control flow analysis is performed.  
 %  
 \item {\tt -input <variable names>} \\  
 List of independent variables $ u $ with respect to which the  
 dependent variable $ J $ is differentiated.  
 %  
 \item {\tt -output <variable name>} \\  
 Dependent variable $ J $  which is to be differentiated.  
 %  
 \item {\tt -reverse <file names>} \\  
 Adjoint code is generated to compute the sensitivity of an  
 independent variable w.r.t.  many dependent variables.  
 The generated adjoint top-level routine computes the product  
 of the transposed Jacobian matrix $ M^T $ times  
 the gradient vector $ \nabla_v J $.  
 \\  
 {\tt <file names>} refers to the list of files {\it .f} which are to be  
 analyzed by TAMC. This list is generally smaller than the full list  
 of code to be compiled. The files not contained are either  
 above the top-level routine (some initialisations), or are  
 deliberately hidden from TAMC, either because hand-written  
 adjoint routines exist, or the routines must not (or don't have to)  
 be differentiated. For each routine which is part of the flow tree  
 of the top-level routine, but deliberately hidden from TAMC,  
 a corresponding file {\it .flow} exists containing flow directives  
 for TAMC.  
938  %  %
939  \end{itemize}  \end{itemize}
940    %
941    The syntax for the flow directives can be found in the
942    AD tool manuals.
943    
944    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
945    which contains all files with suffix{\tt .flow} that it finds
946    in its search directories.
947    The flow directives for the core MITgcm routines of
948    {\tt eesupp/src/} and {\tt model/src/}
949    reside in {\tt pkg/autodiff/}.
950    This directory also contains hand-written adjoint code
951    for the MITgcm WRAPPER (section \ref{chap:sarch}).
952    
953    Flow directives for package-specific routines are contained in
954    the corresponding package directories in the file
955    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
956    {\tt ptracers\_ad.flow}.
957    
958    \subsubsection{Store directives for 3-level checkpointing}
959    
960    The storing that is required at each period of the
961    3-level checkpointing is controled by three
962    top-level headers.
963    
964  \subsubsection{File {\it data}}  \begin{verbatim}
965    do ilev_3 = 1, nchklev_3
966  \subsubsection{File {\it data.cost}}  #  include ``checkpoint_lev3.h''
967       do ilev_2 = 1, nchklev_2
968  \subsubsection{File {\it data.ctrl}}  #     include ``checkpoint_lev2.h''
969          do ilev_1 = 1, nchklev_1
970  \subsubsection{File {\it data.pkg}}  #        include ``checkpoint_lev1.h''
971    
972  \subsubsection{File {\it eedata}}  ...
973    
974  \subsubsection{File {\it topog.bin}}        end do
975       end do
976  \subsubsection{File {\it windx.bin, windy.bin}}  end do
977    \end{verbatim}
 \subsubsection{File {\it salt.bin, theta.bin}}  
978    
979  \subsubsection{File {\it SSS.bin, SST.bin}}  All files {\tt checkpoint\_lev?.h} are contained in directory
980    {\tt pkg/autodiff/}.
981    
 \subsubsection{File {\it pickup*}}  
982    
983  \subsection{Compiling the model and its adjoint}  \subsubsection{Changing the default AD tool flags: ad\_options files}
984    
 \newpage  
985    
986  %**********************************************************************  \subsubsection{Hand-written adjoint code}
 \section{TLM and ADM code generation in general}  
 \label{sec_ad_setup_gen}  
 %**********************************************************************  
987    
988  In this section we describe in a general fashion  %------------------------------------------------------------------
 the parts of the code that are relevant for automatic  
 differentiation using the software tool TAMC.  
989    
990  \subsection{The cost function (dependent variable)}  \subsection{The cost function (dependent variable)
991    \label{section_cost}}
992    
993  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
994  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
995  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
996  The input is referred to as the  The input are referred to as the
997  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
998  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
999  (parameter setting, initialisation, incrementation,  (parameter setting, initialization, accumulation,
1000  final evaluation), are controled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
1001    The aspects relevant to the treatment of the independent variables
1002    are controlled by the package {\it pkg/ctrl} and will be treated
1003    in the next section.
1004    
1005    \input{part5/doc_cost_flow}
1006    
1007    \subsubsection{Enabling the package}
1008    
 \subsubsection{genmake and CPP options}  
 %  
 \begin{itemize}  
 %  
 \item  
1009  \fbox{  \fbox{
1010  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1011  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1012  \end{minipage}  \end{minipage}
1013  }  }
1014  \end{itemize}  \begin{itemize}
 %  
 The directory {\it pkg/cost} can be included to the  
 compile list in 3 different ways (cf. Section \ref{???}):  
1015  %  %
1016  \begin{enumerate}  \item
1017    The package is enabled by adding {\it cost} to your file {\it packages.conf}
1018    (see Section ???)
1019  %  %
1020  \item {\it genmake}: \\  \item
1021  Change the default settngs in the file {\it genmake} by adding  
1022  {\bf cost} to the {\bf enable} list (not recommended).  
1023  %  \end{itemize}
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1024  %  %
1025  \end{enumerate}  
1026  Since the cost function is usually used in conjunction with  N.B.: In general the following packages ought to be enabled
1027  automatic differentiation, the CPP option  simultaneously: {\it autodiff, cost, ctrl}.
 {\bf ALLOW\_ADJOINT\_RUN} should be defined  
 (file {\it CPP\_OPTIONS.h}).  
1028  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1029  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1030  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1031  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1032    Since the cost function is usually used in conjunction with
1033    automatic differentiation, the CPP option
1034    {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1035    {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1036    should be defined.
1037    
1038  \subsubsection{Initialisation}  \subsubsection{Initialization}
1039  %  %
1040  The initialisation of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1041  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1042  %  %
1043  \begin{itemize}  \begin{itemize}
1044  %  %
# Line 1152  Variables: {\it cost\_init} Line 1068  Variables: {\it cost\_init}
1068  }  }
1069  \\  \\
1070  This S/R  This S/R
1071  initialises the different cost function contributions.  initializes the different cost function contributions.
1072  The contribtion for the present example is {\bf objf\_tracer}  The contribution for the present example is {\bf objf\_tracer}
1073  which is defined on each tile (bi,bj).  which is defined on each tile (bi,bj).
1074  %  %
1075  \end{itemize}  \end{itemize}
1076  %  %
1077  \subsubsection{Incrementation}  \subsubsection{Accumulation}
1078  %  %
1079  \begin{itemize}  \begin{itemize}
1080  %  %
# Line 1196  from each contribution and sums over all Line 1112  from each contribution and sums over all
1112  \begin{equation}  \begin{equation}
1113  {\cal J} \, = \,  {\cal J} \, = \,
1114  {\rm fc} \, = \,  {\rm fc} \, = \,
1115  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1116  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1117  \end{equation}  \end{equation}
1118  %  %
# Line 1206  The total cost function {\bf fc} will be Line 1122  The total cost function {\bf fc} will be
1122  tamc -output 'fc' ...  tamc -output 'fc' ...
1123  \end{verbatim}  \end{verbatim}
1124    
1125  \begin{figure}[t!]  %%%% \end{document}
 \input{part5/doc_ad_the_model}  
 \label{fig:adthemodel}  
 \caption{~}  
 \end{figure}  
1126    
 \begin{figure}  
1127  \input{part5/doc_ad_the_main}  \input{part5/doc_ad_the_main}
 \label{fig:adthemain}  
 \caption{~}  
 \end{figure}  
1128    
1129  \subsection{The control variables (independent variables)}  \subsection{The control variables (independent variables)
1130    \label{section_ctrl}}
1131    
1132  The control variables are a subset of the model input  The control variables are a subset of the model input
1133  (initial conditions, boundary conditions, model parameters).  (initial conditions, boundary conditions, model parameters).
1134  Here we identify them with the variable $ \vec{u} $.  Here we identify them with the variable $ \vec{u} $.
1135  All intermediate variables whose derivative w.r.t. control  All intermediate variables whose derivative w.r.t. control
1136  variables don't vanish are called {\sf active variables}.  variables do not vanish are called {\sf active variables}.
1137  All subroutines whose derivative w.r.t. the control variables  All subroutines whose derivative w.r.t. the control variables
1138  don't vanish are called {\sf active routines}.  don't vanish are called {\sf active routines}.
1139  Read and write operations from and to file can be viewed  Read and write operations from and to file can be viewed
# Line 1232  as variable assignments. Therefore, file Line 1141  as variable assignments. Therefore, file
1141  active variables are written and from which active variables  active variables are written and from which active variables
1142  are read are called {\sf active files}.  are read are called {\sf active files}.
1143  All aspects relevant to the treatment of the control variables  All aspects relevant to the treatment of the control variables
1144  (parameter setting, initialisation, perturbation)  (parameter setting, initialization, perturbation)
1145  are controled by the package {\it pkg/ctrl}.  are controlled by the package {\it pkg/ctrl}.
1146    
1147    \input{part5/doc_ctrl_flow}
1148    
1149  \subsubsection{genmake and CPP options}  \subsubsection{genmake and CPP options}
1150  %  %
# Line 1249  are controled by the package {\it pkg/ct Line 1160  are controled by the package {\it pkg/ct
1160  %  %
1161  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1162  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1163  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1164    package, cf. previous section).
1165  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1166  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1167    
1168  \subsubsection{Initialisation}  \subsubsection{Initialization}
1169  %  %
1170  \begin{itemize}  \begin{itemize}
1171  %  %
# Line 1290  and their gradients: {\it ctrl\_unpack} Line 1202  and their gradients: {\it ctrl\_unpack}
1202  \\  \\
1203  %  %
1204  Two important issues related to the handling of the control  Two important issues related to the handling of the control
1205  variables in the MITGCM need to be addressed.  variables in MITgcm need to be addressed.
1206  First, in order to save memory, the control variable arrays  First, in order to save memory, the control variable arrays
1207  are not kept in memory, but rather read from file and added  are not kept in memory, but rather read from file and added
1208  to the initial (or first guess) fields.  to the initial fields during the model initialization phase.
1209  Similarly, the corresponding adjoint fields which represent  Similarly, the corresponding adjoint fields which represent
1210  the gradient of the cost function w.r.t. the control variables  the gradient of the cost function w.r.t. the control variables
1211  are written to to file.  are written to file at the end of the adjoint integration.
1212  Second, in addition to the files holding the 2-dim. and 3-dim.  Second, in addition to the files holding the 2-dim. and 3-dim.
1213  control variables and the gradient, a 1-dim. {\sf control vector}  control variables and the corresponding cost gradients,
1214    a 1-dim. {\sf control vector}
1215  and {\sf gradient vector} are written to file. They contain  and {\sf gradient vector} are written to file. They contain
1216  only the wet points of the control variables and the corresponding  only the wet points of the control variables and the corresponding
1217  gradient.  gradient.
1218  This leads to a significant data compression.  This leads to a significant data compression.
1219  Furthermore, the control and the gradient vector can be passed to a  Furthermore, an option is available
1220    ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1221    non-dimensionalise the control and gradient vector,
1222    which otherwise would contain different pieces of different
1223    magnitudes and units.
1224    Finally, the control and gradient vector can be passed to a
1225  minimization routine if an update of the control variables  minimization routine if an update of the control variables
1226  is sought as part of a minimization exercise.  is sought as part of a minimization exercise.
1227    
# Line 1314  and gradient are generated and initialis Line 1232  and gradient are generated and initialis
1232    
1233  \subsubsection{Perturbation of the independent variables}  \subsubsection{Perturbation of the independent variables}
1234  %  %
1235  The dependency chain for differentiation starts  The dependency flow for differentiation w.r.t. the controls
1236  with adding a perturbation onto the the input variable,  starts with adding a perturbation onto the input variable,
1237  thus defining the independent or control variables for TAMC.  thus defining the independent or control variables for TAMC.
1238  Three classes of controls may be considered:  Three types of controls may be considered:
1239  %  %
1240  \begin{itemize}  \begin{itemize}
1241  %  %
# Line 1332  Three classes of controls may be conside Line 1250  Three classes of controls may be conside
1250  Consider as an example the initial tracer distribution  Consider as an example the initial tracer distribution
1251  {\bf tr1} as control variable.  {\bf tr1} as control variable.
1252  After {\bf tr1} has been initialised in  After {\bf tr1} has been initialised in
1253  {\it ini\_tr1} (dynamical variables including  {\it ini\_tr1} (dynamical variables such as
1254  temperature and salinity are initialised in {\it ini\_fields}),  temperature and salinity are initialised in {\it ini\_fields}),
1255  a perturbation anomaly is added to the field in S/R  a perturbation anomaly is added to the field in S/R
1256  {\it ctrl\_map\_ini}  {\it ctrl\_map\_ini}
# Line 1345  u         & = \, u_{[0]} \, + \, \Delta Line 1263  u         & = \, u_{[0]} \, + \, \Delta
1263  \end{split}  \end{split}
1264  \end{equation}  \end{equation}
1265  %  %
1266  In principle {\bf xx\_tr1} is a 3-dim. global array  {\bf xx\_tr1} is a 3-dim. global array
1267  holding the perturbation. In the case of a simple  holding the perturbation. In the case of a simple
1268  sensitivity study this array is identical to zero.  sensitivity study this array is identical to zero.
1269  However, it's specification is essential since TAMC  However, it's specification is essential in the context
1270    of automatic differentiation since TAMC
1271  treats the corresponding line in the code symbolically  treats the corresponding line in the code symbolically
1272  when determining the differentiation chain and its origin.  when determining the differentiation chain and its origin.
1273  Thus, the variable names are part of the argument list  Thus, the variable names are part of the argument list
# Line 1358  when calling TAMC: Line 1277  when calling TAMC:
1277  tamc -input 'xx_tr1 ...' ...  tamc -input 'xx_tr1 ...' ...
1278  \end{verbatim}  \end{verbatim}
1279  %  %
1280  Now, as mentioned above, the MITGCM avoids maintaining  Now, as mentioned above, MITgcm avoids maintaining
1281  an array for each control variable by reading the  an array for each control variable by reading the
1282  perturbation to a temporary array from file.  perturbation to a temporary array from file.
1283  To ensure the symbolic link to be recognized by TAMC, a scalar  To ensure the symbolic link to be recognized by TAMC, a scalar
# Line 1366  dummy variable {\bf xx\_tr1\_dummy} is i Line 1285  dummy variable {\bf xx\_tr1\_dummy} is i
1285  and an 'active read' routine of the adjoint support  and an 'active read' routine of the adjoint support
1286  package {\it pkg/autodiff} is invoked.  package {\it pkg/autodiff} is invoked.
1287  The read-procedure is tagged with the variable  The read-procedure is tagged with the variable
1288  {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the  {\bf xx\_tr1\_dummy} enabling TAMC to recognize the
1289  initialisation of the perturbation.  initialization of the perturbation.
1290  The modified call of TAMC thus reads  The modified call of TAMC thus reads
1291  %  %
1292  \begin{verbatim}  \begin{verbatim}
# Line 1386  in the code takes on the form Line 1305  in the code takes on the form
1305  %  %
1306  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1307  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1308  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1309    a reset.
1310  The 'active file' routines have been designed  The 'active file' routines have been designed
1311  to support active read and corresponding active write  to support active read and corresponding adjoint active write
1312  operations.  operations (and vice versa).
1313  %  %
1314  \item  \item
1315  \fbox{  \fbox{
# Line 1406  with the symbolic perturbation taking pl Line 1326  with the symbolic perturbation taking pl
1326  Note however an important difference:  Note however an important difference:
1327  Since the boundary values are time dependent with a new  Since the boundary values are time dependent with a new
1328  forcing field applied at each time steps,  forcing field applied at each time steps,
1329  the general problem may be be thought of as  the general problem may be thought of as
1330  a new control variable at each time step, i.e.  a new control variable at each time step
1331    (or, if the perturbation is averaged over a certain period,
1332    at each $ N $ timesteps), i.e.
1333  \[  \[
1334  u_{\rm forcing} \, = \,  u_{\rm forcing} \, = \,
1335  \{ \, u_{\rm forcing} ( t_n ) \, \}_{  \{ \, u_{\rm forcing} ( t_n ) \, \}_{
# Line 1432  calendar ({\it cal}~) and external forci Line 1354  calendar ({\it cal}~) and external forci
1354  %  %
1355  This routine is not yet implemented, but would proceed  This routine is not yet implemented, but would proceed
1356  proceed along the same lines as the initial value sensitivity.  proceed along the same lines as the initial value sensitivity.
1357    The mixing parameters {\bf diffkr} and {\bf kapgm}
1358    are currently added as controls in {\it ctrl\_map\_ini.F}.
1359  %  %
1360  \end{itemize}  \end{itemize}
1361  %  %
1362    
1363  \subsubsection{Output of adjoint variables and gradient}  \subsubsection{Output of adjoint variables and gradient}
1364  %  %
1365  Two ways exist to generate output of adjoint fields.  Several ways exist to generate output of adjoint fields.
1366  %  %
1367  \begin{itemize}  \begin{itemize}
1368  %  %
1369  \item  \item
1370  \fbox{  \fbox{
1371  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1372  {\it ctrl\_pack}:  {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1373  \end{minipage}  \end{minipage}
1374  }  }
1375  \\  \\
 At the end of the forward/adjoint integration, the S/R  
 {\it ctrl\_pack} is called which mirrors S/R {\it ctrl\_unpack}.  
 It writes the following files:  
 %  
1376  \begin{itemize}  \begin{itemize}
1377  %  %
1378  \item {\bf xx\_...}: the control variable fields  \item {\bf xx\_...}: the control variable fields \\
1379    Before the forward integration, the control
1380    variables are read from file {\bf xx\_ ...} and added to
1381    the model field.
1382  %  %
1383  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1384  $ \nabla _{u}{\cal J} $ for each control variable,  $ \nabla _{u}{\cal J} $ for each control variable \\
1385    After the adjoint integration the corresponding adjoint
1386    variables are written to {\bf adxx\_ ...}.
1387    %
1388    \end{itemize}
1389  %  %
1390  \item {\bf vector\_ctrl}: the control vector  \item
1391    \fbox{
1392    \begin{minipage}{12cm}
1393    {\it ctrl\_unpack, ctrl\_pack}:
1394    \end{minipage}
1395    }
1396    \\
1397    %
1398    \begin{itemize}
1399  %  %
1400  \item {\bf vector\_grad}: the gradient vector  \item {\bf vector\_ctrl}: the control vector \\
1401    At the very beginning of the model initialization,
1402    the updated compressed control vector is read (or initialised)
1403    and distributed to 2-dim. and 3-dim. control variable fields.
1404    %
1405    \item {\bf vector\_grad}: the gradient vector \\
1406    At the very end of the adjoint integration,
1407    the 2-dim. and 3-dim. adjoint variables are read,
1408    compressed to a single vector and written to file.
1409  %  %
1410  \end{itemize}  \end{itemize}
1411  %  %
# Line 1474  $ \nabla _{u}{\cal J} $ for each control Line 1417  $ \nabla _{u}{\cal J} $ for each control
1417  }  }
1418  \\  \\
1419  In addition to writing the gradient at the end of the  In addition to writing the gradient at the end of the
1420  forward/adjoint integration, many more adjoint variables,  forward/adjoint integration, many more adjoint variables
1421  representing the Lagrange multipliers of the model state  of the model state
1422  w.r.t. the model state  at intermediate times can be written using S/R
 at different times can be written using S/R  
1423  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1424  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1425  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1426    The procedure is enabled using via the CPP-option
1427    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1428  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1429  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1430  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1431    The adjoint common blocks are extracted from the adjoint code
1432    via the header file {\it adcommon.h}.
1433    
1434  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1435  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1491  than generated automatically. Line 1437  than generated automatically.
1437  Appropriate flow directives ({\it dummy\_in\_stepping.flow})  Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1438  ensure that TAMC does not automatically  ensure that TAMC does not automatically
1439  generate {\it addummy\_in\_stepping} by trying to differentiate  generate {\it addummy\_in\_stepping} by trying to differentiate
1440  {\it dummy\_in\_stepping}, but rather takes the hand-written routine.  {\it dummy\_in\_stepping}, but instead refers to
1441    the hand-written routine.
1442    
1443  {\it dummy\_in\_stepping} is called in the forward code  {\it dummy\_in\_stepping} is called in the forward code
1444  at the beginning of each  at the beginning of each
# Line 1501  each timestep in the adjoint calculation Line 1448  each timestep in the adjoint calculation
1448  {\it addynamics}.  {\it addynamics}.
1449    
1450  {\it addummy\_in\_stepping} includes the header files  {\it addummy\_in\_stepping} includes the header files
1451  {\it adffields.h, addynamics.h, adtr1.h}.  {\it adcommon.h}.
1452  These header files are also hand-written. They contain  This header file is also hand-written. It contains
1453  the common blocks {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},  the common blocks
1454    {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1455    {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1456  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1457  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1458  access to the adjoint variables.  access to the adjoint variables.
1459    
1460    {\bf WARNING:} If the structure of the common blocks
1461    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1462    similar changes will occur in the adjoint common blocks.
1463    Therefore, consistency between the TAMC-generated common blocks
1464    and those in {\it adcommon.h} have to be checked.
1465  %  %
1466  \end{itemize}  \end{itemize}
1467    
# Line 1521  The gradient $ \nabla _{u}{\cal J} |_{u_ Line 1476  The gradient $ \nabla _{u}{\cal J} |_{u_
1476  with the value of the cost function itself $ {\cal J}(u_{[k]}) $  with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1477  at iteration step $ k $ serve  at iteration step $ k $ serve
1478  as input to a minimization routine (e.g. quasi-Newton method,  as input to a minimization routine (e.g. quasi-Newton method,
1479  conjugate gradient, ...) to compute an update in the  conjugate gradient, ... \cite{gil-lem:89})
1480    to compute an update in the
1481  control variable for iteration step $k+1$  control variable for iteration step $k+1$
1482  \[  \[
1483  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}
# Line 1535  Tab. \ref{???} sketches the flow between Line 1491  Tab. \ref{???} sketches the flow between
1491  and the minimization routine.  and the minimization routine.
1492    
1493  \begin{eqnarray*}  \begin{eqnarray*}
1494  \footnotesize  \scriptsize
1495  \begin{array}{ccccc}  \begin{array}{ccccc}
1496  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\
1497  {\Big\downarrow}  {\Big\downarrow}
# Line 1552  v_{[k]} = M \left( u_{[k]} \right) & Line 1508  v_{[k]} = M \left( u_{[k]} \right) &
1508  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1509  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1510  \hline  \hline
1511    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1512    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1513    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1514  \hline  \hline
1515  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1516  \multicolumn{1}{|c}{  \multicolumn{1}{|c}{
1517  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1518  T\!\!^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &  T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1519  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1520  ad \, v_{[k]} (\delta {\cal J}) =  ad \, v_{[k]} (\delta {\cal J}) =
1521  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
# Line 1565  ad \, v_{[k]} (\delta {\cal J}) = Line 1524  ad \, v_{[k]} (\delta {\cal J}) =
1524  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1525  \hline  \hline
1526   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1527  ~ & ~ &  \hspace*{15ex}{\Bigg\downarrow}  
1528  {\cal J}_{[k]} \qquad {\Bigg\downarrow}  \qquad \nabla_u {\cal J}_{[k]}  \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1529   & ~ & ~ \\   & ~ & ~ & ~ & ~ \\
1530   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1531  \hline  \hline
1532  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
# Line 1595  The corresponding I/O flow looks as foll Line 1554  The corresponding I/O flow looks as foll
1554    
1555  \vspace*{0.5cm}  \vspace*{0.5cm}
1556    
1557    {\scriptsize
1558  \begin{tabular}{ccccc}  \begin{tabular}{ccccc}
1559  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1560  {\big\downarrow}  & ~ & ~ & ~ & ~ \\  {\big\downarrow}  & ~ & ~ & ~ & ~ \\
# Line 1605  The corresponding I/O flow looks as foll Line 1565  The corresponding I/O flow looks as foll
1565  \cline{3-3}  \cline{3-3}
1566  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1567  \multicolumn{1}{|c|}{~} & ~ & ~ \\  \multicolumn{1}{|c|}{~} & ~ & ~ \\
1568  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} & $\longrightarrow$ &  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1569    $\stackrel{\mbox{read}}{\longrightarrow}$ &
1570  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1571  \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}    \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}  
1572  & ~ & ~ \\  & ~ & ~ \\
1573  \cline{3-3}  \cline{3-3}
1574  ~ & ~ & ~ & ~ & ~ \\  ~ & ~ & $\downarrow$ & ~ & ~ \\
1575  \cline{3-3}  \cline{3-3}
1576  ~ & ~ &  ~ & ~ &
1577  \multicolumn{1}{|c|}{~} & ~ &  \multicolumn{1}{|c|}{~} & ~ &
1578  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\
1579  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1580  $\longrightarrow$ &  $\stackrel{\mbox{write}}{\longrightarrow}$ &
1581  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1582  ~ & ~ & \multicolumn{1}{|c|}{~}    ~ & ~ & \multicolumn{1}{|c|}{~}  
1583  & ~ & \multicolumn{1}{l}{\bf \vdots} \\  & ~ & \multicolumn{1}{l}{\bf \vdots} \\
# Line 1628  $\longrightarrow$ & Line 1589  $\longrightarrow$ &
1589  ~ & ~ & ~ & ~ &  {\big\downarrow} \\  ~ & ~ & ~ & ~ &  {\big\downarrow} \\
1590  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\
1591  \end{tabular}  \end{tabular}
1592    }
1593    
1594  \vspace*{0.5cm}  \vspace*{0.5cm}
1595    
1596    
1597  {\it ctrl\_unpack} reads in the updated control vector  {\it ctrl\_unpack} reads the updated control vector
1598  {\bf vector\_ctrl\_$<$k$>$}.  {\bf vector\_ctrl\_$<$k$>$}.
1599  It distributes the different control variables to  It distributes the different control variables to
1600  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1601  During the forward integration the control variables  At the start of the forward integration the control variables
1602  are read from {\it xx\_...$<$k$>$}.  are read from {\it xx\_...$<$k$>$} and added to the
1603  Correspondingly, the adjoint fields are written  field.
1604    Correspondingly, at the end of the adjoint integration
1605    the adjoint fields are written
1606  to {\it adxx\_...$<$k$>$}, again via the active file routines.  to {\it adxx\_...$<$k$>$}, again via the active file routines.
1607  Finally, {\it ctrl\_pack} collects all adjoint field files  Finally, {\it ctrl\_pack} collects all adjoint files
1608  and writes them to the compressed vector file  and writes them to the compressed vector file
1609  {\bf vector\_grad\_$<$k$>$}.  {\bf vector\_grad\_$<$k$>$}.
   
 \subsection{TLM and ADM generation via TAMC}  
   
   
   
 \subsection{Flow directives and adjoint support routines}  
   
 \subsection{Store directives and checkpointing}  
   
 \subsection{Gradient checks}  
   
 \subsection{Second derivative generation via TAMC}  
   
 \section{Example of adjoint code}  

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.20

  ViewVC Help
Powered by ViewVC 1.1.22