/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by heimbach, Fri Oct 5 22:22:20 2001 UTC revision 1.19 by heimbach, Tue Aug 2 22:26:58 2005 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    Author: Patrick Heimbach
5    
6  {\sf Automatic differentiation} (AD), also referred to as algorithmic  {\sf Automatic differentiation} (AD), also referred to as algorithmic
7  (or, more loosely, computational) differentiation, involves  (or, more loosely, computational) differentiation, involves
8  automatically deriving code to calculate  automatically deriving code to calculate
# Line 21  The MITGCM has been adapted for use with Line 23  The MITGCM has been adapted for use with
23  Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF  Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
24  (Transformation of Algorithms in Fortran), developed  (Transformation of Algorithms in Fortran), developed
25  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
26  The first application of the adjoint of the MITGCM for senistivity  The first application of the adjoint of the MITGCM for sensitivity
27  studies has been published by \cite{maro-eta:99}.  studies has been published by \cite{maro-eta:99}.
28  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
29  for ocean state estimation studies.  for ocean state estimation studies.
# Line 42  Jacobian matrices of the forward code's Line 44  Jacobian matrices of the forward code's
44  %**********************************************************************  %**********************************************************************
45  \section{Some basic algebra}  \section{Some basic algebra}
46  \label{sec_ad_algebra}  \label{sec_ad_algebra}
47    \begin{rawhtml}
48    <!-- CMIREDIR:sec_ad_algebra: -->
49    \end{rawhtml}
50  %**********************************************************************  %**********************************************************************
51    
52  Let $ \cal{M} $ be a general nonlinear, model, i.e. a  Let $ \cal{M} $ be a general nonlinear, model, i.e. a
# Line 52  $\vec{u}=(u_1,\ldots,u_m)$ Line 57  $\vec{u}=(u_1,\ldots,u_m)$
57  such as forcing functions) to the $n$-dimensional space  such as forcing functions) to the $n$-dimensional space
58  $V \subset I\!\!R^n$ of  $V \subset I\!\!R^n$ of
59  model output variable $\vec{v}=(v_1,\ldots,v_n)$  model output variable $\vec{v}=(v_1,\ldots,v_n)$
60  (model state, model diagnostcs, objective function, ...)  (model state, model diagnostics, objective function, ...)
61  under consideration,  under consideration,
62  %  %
63  \begin{equation}  \begin{equation}
# Line 220  model integration, Line 225  model integration,
225  starting at step 0 and moving up to step $\Lambda$, with intermediate  starting at step 0 and moving up to step $\Lambda$, with intermediate
226  ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final  ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
227  ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.  ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
228  Let ${\cal J}$ be a cost funciton which explicitly depends on the  Let ${\cal J}$ be a cost function which explicitly depends on the
229  final state $\vec{v}$ only  final state $\vec{v}$ only
230  (this restriction is for clarity reasons only).  (this restriction is for clarity reasons only).
231  %  %
# Line 301  We note in passing that that the $\delta Line 306  We note in passing that that the $\delta
306  are the Lagrange multipliers of the model equations which determine  are the Lagrange multipliers of the model equations which determine
307  $ \vec{v}^{(\lambda)}$.  $ \vec{v}^{(\lambda)}$.
308    
309  In coponents, eq. (\ref{adjoint}) reads as follows.  In components, eq. (\ref{adjoint}) reads as follows.
310  Let  Let
311  \[  \[
312  \begin{array}{rclcrcl}  \begin{array}{rclcrcl}
# Line 322  Let Line 327  Let
327  \end{array}  \end{array}
328  \]  \]
329  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
330  and their adjoint varaiables;  and their adjoint variables;
331  further  further
332  \[  \[
333  M \, = \, \left(  M \, = \, \left(
# Line 468  variables $u$ Line 473  variables $u$
473  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
474  In order to be able to solve for each component of the gradient  In order to be able to solve for each component of the gradient
475  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
476  a forward calulation has to be performed for each component seperately,  a forward calculation has to be performed for each component separately,
477  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
478  for  the $i$-th forward calculation.  for  the $i$-th forward calculation.
479  Then, (\ref{forward}) represents the  Then, (\ref{forward}) represents the
# Line 487  M^T \left( \nabla_v {\cal J}^T \left(\de Line 492  M^T \left( \nabla_v {\cal J}^T \left(\de
492  \nabla_u {\cal J}^T \cdot \delta \vec{J}  \nabla_u {\cal J}^T \cdot \delta \vec{J}
493  \]  \]
494  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
495  dimenison $ l $.  dimension $ l $.
496  In this case $ l $ reverse simulations have to be performed  In this case $ l $ reverse simulations have to be performed
497  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
498  Then, the reverse mode is more efficient as long as  Then, the reverse mode is more efficient as long as
499  $ l < n $, otherwise the forward mode is preferable.  $ l < n $, otherwise the forward mode is preferable.
500  Stricly, the reverse mode is called adjoint mode only for  Strictly, the reverse mode is called adjoint mode only for
501  $ l = 1 $.  $ l = 1 $.
502    
503  A detailed analysis of the underlying numerical operations  A detailed analysis of the underlying numerical operations
# Line 557  Because of the local character of the de Line 562  Because of the local character of the de
562  (a derivative is defined w.r.t. a point along the trajectory),  (a derivative is defined w.r.t. a point along the trajectory),
563  the intermediate results of the model trajectory  the intermediate results of the model trajectory
564  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
565  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
566  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
567    This is the case e.g. for nonlinear expressions
568    (momentum advection, nonlinear equation of state), state-dependent
569    conditional statements (parameterization schemes).
570  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
571  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
572  but in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
# Line 569  point of evaluation has to be recomputed Line 577  point of evaluation has to be recomputed
577    
578  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
579  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
580  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
581  It is depicted in \reffig{3levelcheck} for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
582  [as an example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
583  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
584  \begin{itemize}  \begin{itemize}
# Line 580  In a first step, the model trajectory is Line 588  In a first step, the model trajectory is
588  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
589  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
590  The model is then integrated along the full trajectory,  The model is then integrated along the full trajectory,
591  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
592  [i.e. 3 times, at  [i.e. 3 times, at
593  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
594    In addition, the cost function is computed, if needed.
595  %  %
596  \item [$lev2$]  \item [$lev2$]
597  In a second step each subsection itself is divided into  In a second step each subsection itself is divided into
598  $ {n}^{lev2} $ sub-subsections  $ {n}^{lev2} $ subsections
599  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
600  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
601  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
602  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
603  intermediate loop.  intermediate loop.
604  The model state is now stored at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
605  timestep  timestep
606  [i.e. 4 times, at  [i.e. 4 times, at
607  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
# Line 600  $ i = 0,1,2,3 $ corresponding to $ k_{i} Line 609  $ i = 0,1,2,3 $ corresponding to $ k_{i}
609  \item [$lev1$]  \item [$lev1$]
610  Finally, the model picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
611  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
612  the last sub-subsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
613  intermediate loop.  intermediate loop.
614  Within this sub-subsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
615  at every timestep  to memory at every timestep
616  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
617  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
618  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
619  and the model state of all peceeding timesteps along the last  and the model state of all preceding timesteps along the last
620  sub-subsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
621  in time along the last sub-subsection.  in time along the last subsection.
622  Thus, the adjoint can be computed along this last  The adjoint can thus be computed along this last
623  sub-subsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
624  %  %
625  \end{itemize}  \end{itemize}
626  %  %
627  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
628  sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
629  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
630  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
631  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 627  $k_{1}^{lev3}$. Line 636  $k_{1}^{lev3}$.
636  For the full model trajectory of  For the full model trajectory of
637  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
638  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
639  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
640  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
641  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
642    to memory].
643  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
644  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
645  checkpointing level).  checkpointing level).
646  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
647  on the computing resources available.  on the computing resources available and may be adjusted by
648    adjusting the partitioning among the
649    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
650    
651  \begin{figure}[t!]  \begin{figure}[t!]
652  \centering  \begin{center}
653  %\psdraft  %\psdraft
654  \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}  %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
655  \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}  %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
656  \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}  %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
657  \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}  %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
658  \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}  %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
659  \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}  %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
660  \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}  %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
661  \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}  %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
662  \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}  %\mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
663    \resizebox{5.5in}{!}{\includegraphics{part5/checkpointing.eps}}
664  %\psfull  %\psfull
665  \caption  \end{center}
666  {Schematic view of intermediate dump and restart for  \caption{
667    Schematic view of intermediate dump and restart for
668  3-level checkpointing.}  3-level checkpointing.}
669  \label{fig:3levelcheck}  \label{fig:3levelcheck}
670  \end{figure}  \end{figure}
# Line 662  on the computing resources available. Line 676  on the computing resources available.
676  % \subsection{Error covariance estimate and Hessian matrix}  % \subsection{Error covariance estimate and Hessian matrix}
677  % \label{sec_hessian}  % \label{sec_hessian}
678    
679  \newpage  \newpage
680    
681  %**********************************************************************  %**********************************************************************
682  \section{AD-specific setup by example: sensitivity of carbon sequestration}  \section{TLM and ADM generation in general}
683  \label{sec_ad_setup_ex}  \label{sec_ad_setup_gen}
684    \begin{rawhtml}
685    <!-- CMIREDIR:sec_ad_setup_gen: -->
686    \end{rawhtml}
687  %**********************************************************************  %**********************************************************************
688    
689  The MITGCM has been adapted to enable AD using TAMC or TAF.  In this section we describe in a general fashion
690  The present description, therefore, is specific to the  the parts of the code that are relevant for automatic
691  use of TAMC or TAF as AD tool.  differentiation using the software tool TAF.
692  The following sections describe the steps which are necessary to  
693  generate a tangent linear or adjoint model of the MITGCM.  \input{part5/doc_ad_the_model}
694  We take as an example the sensitivity of carbon sequestration  
695  in the ocean.  The basic flow is depicted in \ref{fig:adthemodel}.
696  The AD-relevant hooks in the code are sketched in  If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined,
697  \reffig{adthemodel}, \reffig{adthemain}.  the driver routine
698    {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
699  \subsection{Overview of the experiment}  invokes the adjoint of this routine, {\it adthe\_main\_loop}
700    (case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or
701  We describe an adjoint sensitivity analysis of outgassing from  the tangent linear of this routine {\it g\_the\_main\_loop}
702  the ocean into the atmosphere of a carbon-like tracer injected  (case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}),
703  into the ocean interior (see \cite{hil-eta:01}).  which are the toplevel routines in terms of automatic differentiation.
704    The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop}
705  \subsubsection{Passive tracer equation}  are generated by TAF.
706    It contains both the forward integration of the full model, the
707  For this work the MITGCM was augmented with a thermodynamically  cost function calculation,
708  inactive tracer, $C$. Tracer residing in the ocean  any additional storing that is required for efficient checkpointing,
709  model surface layer is outgassed according to a relaxation time scale,  and the reverse integration of the adjoint model.
710  $\mu$. Within the ocean interior, the tracer is passively advected  
711  by the ocean model currents. The full equation for the time evolution  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
712  %  
713  \begin{equation}  In Fig. \ref{fig:adthemodel}
714  \label{carbon_ddt}  the structure of {\it adthe\_main\_loop} has been strongly
715  \frac{\partial C}{\partial t} \, = \,  simplified to focus on the essentials; in particular, no checkpointing
716  -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S  procedures are shown here.
717  \end{equation}  Prior to the call of {\it adthe\_main\_loop}, the routine
718  %  {\it ctrl\_unpack} is invoked to unpack the control vector
719  also includes a source term $S$. This term  or initialise the control variables.
720  represents interior sources of $C$ such as would arise due to  Following the call of {\it adthe\_main\_loop},
721  direct injection.  the routine {\it ctrl\_pack}
722  The velocity term, $U$, is the sum of the  is invoked to pack the control vector
723  model Eulerian circulation and an eddy-induced velocity, the latter  (cf. Section \ref{section_ctrl}).
724  parameterized according to Gent/McWilliams  If gradient checks are to be performed, the option
725  (\cite{gen-mcw:90, gen-eta:95}).  {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
726  The convection function, $\Gamma$, mixes $C$ vertically wherever the  the driver routine {\it grdchk\_main} is called after
727  fluid is locally statically unstable.  the gradient has been computed via the adjoint
728    (cf. Section \ref{section_grdchk}).
729  The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})  
730  is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface  %------------------------------------------------------------------
731  ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})  
732  is valid as a prognostic equation for small perturbations in oceanic  \subsection{General setup
733  carbon concentrations. This configuration provides a  \label{section_ad_setup}}
734  powerful tool for examining the impact of large-scale ocean circulation  
735  on $ CO_2 $ outgassing due to interior injections.  In order to configure AD-related setups the following packages need
736  As source we choose a constant in time injection of  to be enabled:
737  $ S = 1 \,\, {\rm mol / s}$.  {\it
738    \begin{table}[h!]
739  \subsubsection{Model configuration}  \begin{tabular}{l}
740    autodiff \\
741  The model configuration employed has a constant  ctrl \\
742  $4^\circ \times 4^\circ$ resolution horizontal grid and realistic  cost \\
743  geography and bathymetry. Twenty vertical layers are used with  grdchk \\
744  vertical spacing ranging  \end{tabular}
745  from 50 m near the surface to 815 m at depth.  \end{table}
746  Driven to steady-state by climatalogical wind-stress, heat and  }
747  fresh-water forcing the model reproduces well known large-scale  The packages are enabled by adding them to your experiment-specific
748  features of the ocean general circulation.  configuration file
749    {\it packages.conf} (see Section ???).
750  \subsubsection{Outgassing cost function}  
751    The following AD-specific CPP option files need to be customized:
 To quantify and understand outgassing due to injections of $C$  
 in eqn. (\ref{carbon_ddt}),  
 we define a cost function $ {\cal J} $ that measures the total amount of  
 tracer outgassed at each timestep:  
 %  
 \begin{equation}  
 \label{cost_tracer}  
 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt  
 \end{equation}  
 %  
 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,  
 from (\ref{carbon_ddt})  
 over the entire ocean surface area, $A$, and accumulates it  
 up to time $T$.  
 Physically, ${\cal J}$ can be thought of as representing the amount of  
 $CO_2$ that our model predicts would be outgassed following an  
 injection at rate $S$.  
 The sensitivity of ${\cal J}$ to the spatial location of $S$,  
 $\frac{\partial {\cal J}}{\partial S}$,  
 can be used to identify regions from which circulation  
 would cause $CO_2$ to rapidly outgas following injection  
 and regions in which $CO_2$ injections would remain effectively  
 sequesterd within the ocean.  
   
 \subsection{Code configuration}  
   
 The model configuration for this experiment resides under the  
 directory {\it verification/carbon/}.  
 The code customisation routines are in {\it verification/carbon/code/}:  
752  %  %
753  \begin{itemize}  \begin{itemize}
754  %  %
755  \item {\it .genmakerc}  \item {\it ECCO\_CPPOPTIONS.h} \\
756  %  This header file collects CPP options for the packages
757  \item {\it COST\_CPPOPTIONS.h}  {\it autodiff, cost, ctrl} as well as AD-unrelated options for
758  %  the external forcing package {\it exf}.
759  \item {\it CPP\_EEOPTIONS.h}  \footnote{NOTE: These options are not set in their package-specific
760  %  headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
761  \item {\it CPP\_OPTIONS.h}  in the single header file {\it ECCO\_CPPOPTIONS.h}.
762  %  The package-specific header files serve as simple
763  \item {\it CTRL\_OPTIONS.h}  placeholders at this point.}
764  %  %
765  \item {\it ECCO\_OPTIONS.h}  \item {\it tamc.h} \\
766  %  This header configures the splitting of the time stepping loop
767  \item {\it SIZE.h}  w.r.t. the 3-level checkpointing (see section ???).
768  %  
 \item {\it adcommon.h}  
 %  
 \item {\it tamc.h}  
769  %  %
770  \end{itemize}  \end{itemize}
771    
772    %------------------------------------------------------------------
773    
774    \subsection{Building the AD code
775    \label{section_ad_build}}
776    
777    The build process of an AD code is very similar to building
778    the forward model. However, depending on which AD code one wishes
779    to generate, and on which AD tool is available (TAF or TAMC),
780    the following {\tt make} targets are available:
781    
782    \begin{table}[h!]
783    {\footnotesize
784    \begin{tabular}{ccll}
785    ~ & {\it AD-target} & {\it output} & {\it description} \\
786    \hline
787    \hline
788    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
789    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
790    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
791    ~ & ~ & ~ & useful for compiling on remote platforms \\
792    \hline
793    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
794    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
795    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
796    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
797    \hline
798    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
799    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
800    ~ & ~ & ~ & and compiles all code \\
801    ~ & ~ & ~ & (use of TAF is set as default) \\
802    \hline
803    \hline
804    \end{tabular}
805    }
806    \end{table}
807  %  %
808  The runtime flag and parameters settings are contained in  Here, the following placeholders are used
 {\it verification/carbon/input/},  
 together with the forcing fields and and restart files:  
809  %  %
810  \begin{itemize}  \begin{itemize}
811  %  %
812  \item {\it data}  \item [$<$TOOL$>$]
 %  
 \item {\it data.cost}  
 %  
 \item {\it data.ctrl}  
 %  
 \item {\it data.gmredi}  
813  %  %
814  \item {\it data.grdchk}  \begin{itemize}
 %  
 \item {\it data.optim}  
 %  
 \item {\it data.pkg}  
 %  
 \item {\it eedata}  
 %  
 \item {\it topog.bin}  
 %  
 \item {\it windx.bin, windy.bin}  
 %  
 \item {\it salt.bin, theta.bin}  
 %  
 \item {\it SSS.bin, SST.bin}  
815  %  %
816  \item {\it pickup*}  \item {\tt TAF}
817    \item {\tt TAMC}
818  %  %
819  \end{itemize}  \end{itemize}
820  %  %
821  Finally, the file to generate the adjoint code resides in  \item [$<$MODE$>$]
 $ adjoint/ $:  
822  %  %
823  \begin{itemize}  \begin{itemize}
824  %  %
825  \item {\it makefile}  \item {\tt ad} generates the adjoint model (ADM)
826    \item {\tt ftl} generates the tangent linear model (TLM)
827    \item {\tt svd} generates both ADM and TLM for \\
828    singular value decomposition (SVD) type calculations
829  %  %
830  \end{itemize}  \end{itemize}
831  %  %
832    \end{itemize}
833    
834  Below we describe the customisations of this files which are  For example, to generate the adjoint model using TAF after routines ({\tt .F})
835  specific to this experiment.  or headers ({\tt .h}) have been modified, but without compilation,
836    type {\tt make adtaf};
837  \subsubsection{File {\it .genmakerc}}  or, to generate the tangent linear model using TAMC without
838  This file overwrites default settings of {\it genmake}.  re-generating the input code, type {\tt make ftltamconly}.
 In the present example it is used to switch on the following  
 packages which are related to automatic differentiation  
 and are disabled by default: \\  
 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco gmredi grdchk kpp )}  \\  
 Other packages which are not needed are switched off: \\  
 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}  
   
 \subsubsection{File {\it COST\_CPPOPTIONS.h,  CTRL\_OPTIONS.h}}  
   
 These files used to contain package-specific CPP-options  
 (see Section \ref{???}).  
 For technical reasons those options have been grouped together  
 in the file {\it ECCO\_OPTIONS.h}.  
 To retain the modularity, the files have been kept and contain  
 the standard include of the {\it CPP\_OPTIONS.h} file.  
   
 \subsubsection{File {\it CPP\_EEOPTIONS.h}}  
   
 This file contains 'wrapper'-specific CPP options.  
 It only needs to be changed if the code is to be run  
 in a parallel environment (see Section \ref{???}).  
   
 \subsubsection{File {\it CPP\_OPTIONS.h}}  
   
 This file contains model-specific CPP options  
 (see Section \ref{???}).  
 Most options are related to the forward model setup.  
 They are identical to the global steady circulation setup of  
 {\it verification/exp2/}.  
 The three options specific to this experiment are \\  
 \hspace*{4ex} {\tt \#define ALLOW\_PASSIVE\_TRACER} \\  
 This flag enables the code to carry through the  
 advection/diffusion of a passive tracer along the  
 model integration. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\  
 This flag enables the inclusion of some AD-related fields  
 concerning initialisation, link between control variables  
 and forward model variables, and the call to the top-level  
 forward/adjoint subroutine {\it adthe\_main\_loop}  
 instead of {\it the\_main\_loop}. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_GRADIENT\_CHECK} \\  
 This flag enables the gradient check package.  
 After computing the unperturbed cost function and its gradient,  
 a series of computations are performed for which \\  
 $\bullet$ an element of the control vector is perturbed \\  
 $\bullet$ the cost function w.r.t. the perturbed element is  
 computed \\  
 $\bullet$ the difference between the perturbed and unperturbed  
 cost function is computed to compute the finite difference gradient \\  
 $\bullet$ the finite difference gradient is compared with the  
 adjoint-generated gradient.  
 The gradient check package is further described in Section ???.  
   
 \subsubsection{File {\it ECCO\_OPTIONS.h}}  
839    
 The CPP options of several AD-related packages are grouped  
 in this file:  
 %  
 \begin{itemize}  
 %  
 \item  
 Adjoint support package: {\it pkg/autodiff/} \\  
 This package contains hand-written adjoint code such as  
 active file handling, flow directives for files which must not  
 be differentiated, and TAMC-specific header files. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\  
 defines TAMC-related features in the code. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\  
 enables the checkpointing feature of TAMC  
 (see Section \ref{???}).  
 In the present example a 3-level checkpointing is implemented.  
 The code contains the relevant store directives, common block  
 and tape initialisations, storing key computation,  
 and loop index handling.  
 The checkpointing length at each level is defined in  
 file {\it tamc.h}, cf. below.  
 %  
 \item Cost function package: {\it pkg/cost/} \\  
 This package contains all relevant routines for  
 initialising, accumulating and finalizing the cost function  
 (see Section \ref{???}). \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\  
 enables all general aspects of the cost function handling,  
 in particular the hooks in the foorward code for  
 initialising, accumulating and finalizing the cost function. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\  
 includes the call to the cost function for this  
 particular experiment, eqn. (\ref{cost_tracer}).  
 %  
 \item Control variable package: {\it pkg/ctrl/} \\  
 This package contains all relevant routines for  
 the handling of the control vector.  
 Each control variable can be enabled/disabled with its own flag: \\  
 \begin{tabular}{ll}  
 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &  
 initial temperature \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &  
 initial salinity \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &  
 initial passive tracer concentration \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &  
 zonal wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &  
 meridional wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &  
 freshwater flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &  
 heat flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_DIFFKR\_CONTROL} &  
 diapycnal diffusivity \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &  
 isopycnal diffusivity \\  
 \end{tabular}  
 %  
 \end{itemize}  
840    
841  \subsubsection{File {\it SIZE.h}}  A typical full build process to generate the ADM via TAF would
842    look like follows:
843    \begin{verbatim}
844    % mkdir build
845    % cd build
846    % ../../../tools/genmake2 -mods=../code_ad
847    % make depend
848    % make adall
849    \end{verbatim}
850    
851  The file contains the grid point dimensions of the forward  %------------------------------------------------------------------
 model. It is identical to the {\it verification/exp2/}: \\  
 \hspace*{4ex} {\tt sNx = 90} \\  
 \hspace*{4ex} {\tt sNy = 40} \\  
 \hspace*{4ex} {\tt Nr = 20} \\  
 It correpsponds to a single-tile/single-processor setup:  
 {\tt nSx = nSy = 1, nPx = nPy = 1},  
 with standard overlap dimensioning  
 {\tt OLx = OLy = 3}.  
   
 \subsubsection{File {\it adcommon.h}}  
   
 This file contains common blocks of some adjoint variables  
 that are generated by TAMC.  
 The common blocks are used by the adjoint support routine  
 {\it addummy\_in\_stepping} which needs to access those variables:  
   
 \begin{tabular}{ll}  
 \hspace*{4ex} {\tt common /addynvars\_r/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_cd/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_diffkr/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_kapgm/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /adtr1\_r/} &  
 \hspace*{4ex} is related to {\it TR1.h} \\  
 \hspace*{4ex} {\tt common /adffields/} &  
 \hspace*{4ex} is related to {\it FFIELDS.h}\\  
 \end{tabular}  
852    
853  Note that if the structure of the common block changes in the  \subsection{The AD build process in detail
854  above header files of the forward code, the structure  \label{section_ad_build_detail}}
 of the adjoint common blocks will change accordingly.  
 Thus, it has to be made sure that the structure of the  
 adjoint common block in the hand-written file {\it adcommon.h}  
 complies with the automatically generated adjoint common blocks  
 in {\it adjoint\_model.F}.  
855    
856  \subsubsection{File {\it tamc.h}}  The {\tt make <MODE>all} target consists of the following procedures:
857    
858  This routine contains the dimensions for TAMC checkpointing.  \begin{enumerate}
859  %  %
860    \item
861    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
862    on which code ought to be generated. Depending on the {\tt make} target,
863    the contents is
864  \begin{itemize}  \begin{itemize}
865  %  \item
866  \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\  {\tt \#define ALLOW\_ADJOINT\_RUN}
867  3-level checkpointing is enabled, i.e. the timestepping  \item
868  is divided into three different levels (see Section \ref{???}).  {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
869  The model state of the outermost ({\tt nchklev\_3}) and the  \item
870  intermediate ({\tt nchklev\_2}) timestepping loop are stored to file  {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
 (handled in {\it the\_main\_loop}).  
 The innermost loop ({\tt nchklev\_1})  
 avoids I/O by storing all required variables  
 to common blocks. This storing may also be necessary if  
 no checkpointing is chosen  
 (nonlinear functions, if-statements, iterative loops, ...).  
 In the present example the dimensions are chosen as follows: \\  
 \hspace*{4ex} {\tt nchklev\_1      =  36 } \\  
 \hspace*{4ex} {\tt nchklev\_2      =  30 } \\  
 \hspace*{4ex} {\tt nchklev\_3      =  60 } \\  
 To guarantee that the checkpointing intervals span the entire  
 integration period the following relation must be satisfied: \\  
 \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\  
 where {\tt nTimeSteps} is either specified in {\it data}  
 or computed via \\  
 \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.  
 %  
 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\  
 No checkpointing is enabled.  
 In this case the relevant counter is {\tt nchklev\_0}.  
 Similar to above, the following relation has to be satisfied \\  
 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.  
 %  
871  \end{itemize}  \end{itemize}
   
 The following parameters may be worth describing: \\  
872  %  %
873  \hspace*{4ex} {\tt isbyte} \\  \item
874  \hspace*{4ex} {\tt maxpass} \\  A single file {\tt <MODE>\_input\_code.f} is concatenated
875  ~  consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
876    and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
877  \subsubsection{File {\it makefile}}  %
878    \item
879  This file contains all relevant paramter flags and  The AD tool is invoked with the {\bf <MODE>\_<TOOL>\_FLAGS}.
880  lists to run TAMC or TAF.  The default AD tool flags in {\tt genmake2} can be overrwritten by
881  It is assumed that TAMC is available to you, either locally,  an {\tt adjoint\_options} file (similar to the platform-specific
882  being installed on your network, or remotely through the 'TAMC Utility'.  {\tt build\_options}, see Section ???.
883  TAMC is called with the command {\tt tamc} followed by a  The AD tool writes the resulting AD code into the file
884  number of options. They are described in detail in the  {\tt <MODE>\_input\_code\_ad.f}
885  TAMC manual \cite{gie:99}.  %
886  Here we briefly discuss the main flags used in the {\it makefile}  \item
887    A short sed script {\tt adjoint\_sed} is applied to
888    {\tt <MODE>\_input\_code\_ad.f}
889    to reinstate {\bf myThid} into the CALL argument list of active file I/O.
890    The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
891    %
892    \item
893    All routines are compiled and an executable is generated
894    (see Table ???).
895  %  %
896  \begin{itemize}  \end{enumerate}
897  \item [{\tt tamc}] {\tt  
898  -input <variable names>  \subsubsection{The list AD\_FILES and {\tt .list} files}
899  -output <variable name> -r4 ... \\  
900  -toplevel <S/R name> -reverse <file names>  Not all routines are presented to the AD tool.
901  }  Routines typically hidden are diagnostics routines which
902  \end{itemize}  do not influence the cost function, but may create
903    artificial flow dependencies such as I/O of active variables.
904    
905    {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
906    which contains all routines that are shown to the AD tool.
907    This list is put together from all files with suffix {\tt .list}
908    that {\tt genmake2} finds in its search directories.
909    The list file for the core MITgcm routines is in {\tt model/src/}
910    is called {\tt model\_ad\_diff.list}.
911    Note that no wrapper routine is shown to TAF. These are either
912    not visible at all to the AD code, or hand-written AD code
913    is available (see next section).
914    
915    Each package directory contains its package-specific
916    list file {\tt <PKG>\_ad\_diff.list}. For example,
917    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
918    Thus, enabling a package will automatically extend the
919    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
920    package-specific routines.
921    Note that you will need to regenerate the {\tt Makefile} if
922    you enable a package (e.g. by adding it to {\tt packages.conf})
923    and a {\tt Makefile} already exists.
924    
925    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
926    
927    TAMC and TAF can evaluate user-specified directives
928    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
929    The main categories of directives are STORE directives and
930    FLOW directives. Here, we are concerned with flow directives,
931    store directives are treated elsewhere.
932    
933    Flow directives enable the AD tool to evaluate how it should treat
934    routines that are 'hidden' by the user, i.e. routines which are
935    not contained in the {\bf AD\_FILES} list (see previous section),
936    but which are called in part of the code that the AD tool does see.
937    The flow directive tell the AD tool
938  %  %
939  \begin{itemize}  \begin{itemize}
940  %  %
941  \item {\tt -toplevel <S/R name>} \\  \item which subroutine arguments are input/output
942  Name of the toplevel routine, with respect to which the  \item which subroutine arguments are active
943  control flow analysis is performed.  \item which subroutine arguments are required to compute the cost
944  %  \item which subroutine arguments are dependent
 \item {\tt -input <variable names>} \\  
 List of independent variables $ u $ with respect to which the  
 dependent variable $ J $ is differentiated.  
 %  
 \item {\tt -output <variable name>} \\  
 Dependent variable $ J $  which is to be differentiated.  
 %  
 \item {\tt -reverse <file names>} \\  
 Adjoint code is generated to compute the sensitivity of an  
 independent variable w.r.t.  many dependent variables.  
 In the discussion of Section ???  
 the generated adjoint top-level routine computes the product  
 of the transposed Jacobian matrix $ M^T $ times  
 the gradient vector $ \nabla_v J $.  
 \\  
 {\tt <file names>} refers to the list of files {\it .f} which are to be  
 analyzed by TAMC. This list is generally smaller than the full list  
 of code to be compiled. The files not contained are either  
 above the top-level routine (some initialisations), or are  
 deliberately hidden from TAMC, either because hand-written  
 adjoint routines exist, or the routines must not (or don't have to)  
 be differentiated. For each routine which is part of the flow tree  
 of the top-level routine, but deliberately hidden from TAMC  
 (or for each package which contains such routines),  
 a corresponding file {\it .flow} exists containing flow directives  
 for TAMC.  
 %  
 \item {\tt -r4} \\  
 ~  
945  %  %
946  \end{itemize}  \end{itemize}
947    %
948    The syntax for the flow directives can be found in the
949    AD tool manuals.
950    
951    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
952    which contains all files with suffix{\tt .flow} that it finds
953    in its search directories.
954    The flow directives for the core MITgcm routines of
955    {\tt eesupp/src/} and {\tt model/src/}
956    reside in {\tt pkg/autodiff/}.
957    This directory also contains hand-written adjoint code
958    for the MITgcm WRAPPER (see Section ???).
959    
960    Flow directives for package-specific routines are contained in
961    the corresponding package directories in the file
962    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
963    {\tt ptracers\_ad.flow}.
964    
965    \subsubsection{Store directives for 3-level checkpointing}
966    
967    The storing that is required at each period of the
968    3-level checkpointing is controled by three
969    top-level headers.
970    
971  \subsubsection{File {\it data}}  \begin{verbatim}
972    do ilev_3 = 1, nchklev_3
973  \subsubsection{File {\it data.cost}}  #  include ``checkpoint_lev3.h''
974       do ilev_2 = 1, nchklev_2
975  \subsubsection{File {\it data.ctrl}}  #     include ``checkpoint_lev2.h''
976          do ilev_1 = 1, nchklev_1
977  \subsubsection{File {\it data.gmredi}}  #        include ``checkpoint_lev1.h''
978    
979  \subsubsection{File {\it data.grdchk}}  ...
980    
981  \subsubsection{File {\it data.optim}}        end do
982       end do
983  \subsubsection{File {\it data.pkg}}  end do
984    \end{verbatim}
 \subsubsection{File {\it eedata}}  
   
 \subsubsection{File {\it topog.bin}}  
   
 \subsubsection{File {\it windx.bin, windy.bin}}  
985    
986  \subsubsection{File {\it salt.bin, theta.bin}}  All files {\tt checkpoint\_lev?.h} are contained in directory
987    {\tt pkg/autodiff/}.
988    
 \subsubsection{File {\it SSS.bin, SST.bin}}  
989    
990  \subsubsection{File {\it pickup*}}  \subsubsection{Changing the default AD tool flags: ad\_options files}
991    
 \subsection{Compiling the model and its adjoint}  
992    
993  \newpage  \subsubsection{Hand-written adjoint code}
994    
995  %**********************************************************************  %------------------------------------------------------------------
 \section{TLM and ADM generation in general}  
 \label{sec_ad_setup_gen}  
 %**********************************************************************  
   
 In this section we describe in a general fashion  
 the parts of the code that are relevant for automatic  
 differentiation using the software tool TAMC.  
   
 \begin{figure}[b!]  
 \input{part5/doc_ad_the_model}  
 \caption{~}  
 \label{fig:adthemodel}  
 \end{figure}  
   
 The basic flow is depicted in \reffig{adthemodel}.  
 If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine  
 {\it the\_model\_main}, instead of calling {\it the\_main\_loop},  
 invokes the adjoint of this routine, {\it adthe\_main\_loop},  
 which is the toplevel routine in terms of reverse mode computation.  
 The routine {\it adthe\_main\_loop} has been generated using TAMC.  
 It contains both the forward integration of the full model,  
 any additional storing that is required for efficient checkpointing,  
 and the reverse integration of the adjoint model.  
 The structure of {\it adthe\_main\_loop} has been strongly  
 simplified for clarification; in particular, no checkpointing  
 procedures are shown here.  
 Prior to the call of {\it adthe\_main\_loop}, the routine  
 {\it ctrl\_unpack} is invoked to unpack the control vector,  
 and following that call, the routine {\it ctrl\_pack}  
 is invoked to pack the control vector  
 (cf. Section \ref{section_ctrl}).  
 If gradient checks are to be performed, the option  
 {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case  
 the driver routine {\it grdchk\_main} is called after  
 the gradient has been computed via the adjoint  
 (cf. Section \ref{section_grdchk}).  
996    
997  \subsection{The cost function (dependent variable)  \subsection{The cost function (dependent variable)
998  \label{section_cost}}  \label{section_cost}}
# Line 1165  the gradient has been computed via the a Line 1000  the gradient has been computed via the a
1000  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1001  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
1002  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1003  The input is referred to as the  The input are referred to as the
1004  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
1005  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
1006  (parameter setting, initialisation, accumulation,  (parameter setting, initialization, accumulation,
1007  final evaluation), are controlled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
1008    The aspects relevant to the treatment of the independent variables
1009    are controlled by the package {\it pkg/ctrl} and will be treated
1010    in the next section.
1011    
 \begin{figure}[h!]  
1012  \input{part5/doc_cost_flow}  \input{part5/doc_cost_flow}
 \caption{~}  
 \label{fig:costflow}  
 \end{figure}  
1013    
1014  \subsubsection{genmake and CPP options}  \subsubsection{Enabling the package}
1015  %  
 \begin{itemize}  
 %  
 \item  
1016  \fbox{  \fbox{
1017  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1018  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1019  \end{minipage}  \end{minipage}
1020  }  }
1021  \end{itemize}  \begin{itemize}
 %  
 The directory {\it pkg/cost} can be included to the  
 compile list in 3 different ways (cf. Section \ref{???}):  
1022  %  %
1023  \begin{enumerate}  \item
1024    The package is enabled by adding {\it cost} to your file {\it packages.conf}
1025    (see Section ???)
1026  %  %
1027  \item {\it genmake}: \\  \item
1028  Change the default settings in the file {\it genmake} by adding  
1029  {\bf cost} to the {\bf enable} list (not recommended).  
1030  %  \end{itemize}
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1031  %  %
1032  \end{enumerate}  
1033    N.B.: In general the following packages ought to be enabled
1034    simultaneously: {\it autodiff, cost, ctrl}.
1035  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1036  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1037  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1038  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1039  Since the cost function is usually used in conjunction with  Since the cost function is usually used in conjunction with
1040  automatic differentiation, the CPP option  automatic differentiation, the CPP option
1041  {\bf ALLOW\_ADJOINT\_RUN} should be defined  {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1042  (file {\it CPP\_OPTIONS.h}).  {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1043    should be defined.
1044    
1045  \subsubsection{Initialisation}  \subsubsection{Initialization}
1046  %  %
1047  The initialisation of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1048  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1049  %  %
1050  \begin{itemize}  \begin{itemize}
1051  %  %
# Line 1250  Variables: {\it cost\_init} Line 1075  Variables: {\it cost\_init}
1075  }  }
1076  \\  \\
1077  This S/R  This S/R
1078  initialises the different cost function contributions.  initializes the different cost function contributions.
1079  The contribtion for the present example is {\bf objf\_tracer}  The contribution for the present example is {\bf objf\_tracer}
1080  which is defined on each tile (bi,bj).  which is defined on each tile (bi,bj).
1081  %  %
1082  \end{itemize}  \end{itemize}
# Line 1294  from each contribution and sums over all Line 1119  from each contribution and sums over all
1119  \begin{equation}  \begin{equation}
1120  {\cal J} \, = \,  {\cal J} \, = \,
1121  {\rm fc} \, = \,  {\rm fc} \, = \,
1122  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1123  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1124  \end{equation}  \end{equation}
1125  %  %
# Line 1306  tamc -output 'fc' ... Line 1131  tamc -output 'fc' ...
1131    
1132  %%%% \end{document}  %%%% \end{document}
1133    
 \begin{figure}  
1134  \input{part5/doc_ad_the_main}  \input{part5/doc_ad_the_main}
 \caption{~}  
 \label{fig:adthemain}  
 \end{figure}  
1135    
1136  \subsection{The control variables (independent variables)  \subsection{The control variables (independent variables)
1137  \label{section_ctrl}}  \label{section_ctrl}}
# Line 1327  as variable assignments. Therefore, file Line 1148  as variable assignments. Therefore, file
1148  active variables are written and from which active variables  active variables are written and from which active variables
1149  are read are called {\sf active files}.  are read are called {\sf active files}.
1150  All aspects relevant to the treatment of the control variables  All aspects relevant to the treatment of the control variables
1151  (parameter setting, initialisation, perturbation)  (parameter setting, initialization, perturbation)
1152  are controled by the package {\it pkg/ctrl}.  are controlled by the package {\it pkg/ctrl}.
1153    
 \begin{figure}[h!]  
1154  \input{part5/doc_ctrl_flow}  \input{part5/doc_ctrl_flow}
 \caption{~}  
 \label{fig:ctrlflow}  
 \end{figure}  
1155    
1156  \subsubsection{genmake and CPP options}  \subsubsection{genmake and CPP options}
1157  %  %
# Line 1350  are controled by the package {\it pkg/ct Line 1167  are controled by the package {\it pkg/ct
1167  %  %
1168  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1169  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1170  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1171    package, cf. previous section).
1172  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1173  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1174    
1175  \subsubsection{Initialisation}  \subsubsection{Initialization}
1176  %  %
1177  \begin{itemize}  \begin{itemize}
1178  %  %
# Line 1394  Two important issues related to the hand Line 1212  Two important issues related to the hand
1212  variables in the MITGCM need to be addressed.  variables in the MITGCM need to be addressed.
1213  First, in order to save memory, the control variable arrays  First, in order to save memory, the control variable arrays
1214  are not kept in memory, but rather read from file and added  are not kept in memory, but rather read from file and added
1215  to the initial fields during the model initialisation phase.  to the initial fields during the model initialization phase.
1216  Similarly, the corresponding adjoint fields which represent  Similarly, the corresponding adjoint fields which represent
1217  the gradient of the cost function w.r.t. the control variables  the gradient of the cost function w.r.t. the control variables
1218  are written to file at the end of the adjoint integration.  are written to file at the end of the adjoint integration.
# Line 1474  dummy variable {\bf xx\_tr1\_dummy} is i Line 1292  dummy variable {\bf xx\_tr1\_dummy} is i
1292  and an 'active read' routine of the adjoint support  and an 'active read' routine of the adjoint support
1293  package {\it pkg/autodiff} is invoked.  package {\it pkg/autodiff} is invoked.
1294  The read-procedure is tagged with the variable  The read-procedure is tagged with the variable
1295  {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the  {\bf xx\_tr1\_dummy} enabling TAMC to recognize the
1296  initialisation of the perturbation.  initialization of the perturbation.
1297  The modified call of TAMC thus reads  The modified call of TAMC thus reads
1298  %  %
1299  \begin{verbatim}  \begin{verbatim}
# Line 1494  in the code takes on the form Line 1312  in the code takes on the form
1312  %  %
1313  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1314  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1315  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1316    a reset.
1317  The 'active file' routines have been designed  The 'active file' routines have been designed
1318  to support active read and corresponding adjoint active write  to support active read and corresponding adjoint active write
1319  operations (and vice versa).  operations (and vice versa).
# Line 1586  variables are written to {\bf adxx\_ ... Line 1405  variables are written to {\bf adxx\_ ...
1405  \begin{itemize}  \begin{itemize}
1406  %  %
1407  \item {\bf vector\_ctrl}: the control vector \\  \item {\bf vector\_ctrl}: the control vector \\
1408  At the very beginning of the model initialisation,  At the very beginning of the model initialization,
1409  the updated compressed control vector is read (or initialised)  the updated compressed control vector is read (or initialised)
1410  and distributed to 2-dim. and 3-dim. control variable fields.  and distributed to 2-dim. and 3-dim. control variable fields.
1411  %  %
# Line 1611  at intermediate times can be written usi Line 1430  at intermediate times can be written usi
1430  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1431  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1432  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1433    The procedure is enabled using via the CPP-option
1434    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1435  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1436  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1437  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1438    The adjoint common blocks are extracted from the adjoint code
1439    via the header file {\it adcommon.h}.
1440    
1441  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1442  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1640  the common blocks Line 1463  the common blocks
1463  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1464  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1465  access to the adjoint variables.  access to the adjoint variables.
1466    
1467    {\bf WARNING:} If the structure of the common blocks
1468    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1469    similar changes will occur in the adjoint common blocks.
1470    Therefore, consistency between the TAMC-generated common blocks
1471    and those in {\it adcommon.h} have to be checked.
1472  %  %
1473  \end{itemize}  \end{itemize}
1474    
# Line 1654  The gradient $ \nabla _{u}{\cal J} |_{u_ Line 1483  The gradient $ \nabla _{u}{\cal J} |_{u_
1483  with the value of the cost function itself $ {\cal J}(u_{[k]}) $  with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1484  at iteration step $ k $ serve  at iteration step $ k $ serve
1485  as input to a minimization routine (e.g. quasi-Newton method,  as input to a minimization routine (e.g. quasi-Newton method,
1486  conjugate gradient, ... \cite{gil_lem:89})  conjugate gradient, ... \cite{gil-lem:89})
1487  to compute an update in the  to compute an update in the
1488  control variable for iteration step $k+1$  control variable for iteration step $k+1$
1489  \[  \[
# Line 1785  to {\it adxx\_...$<$k$>$}, again via the Line 1614  to {\it adxx\_...$<$k$>$}, again via the
1614  Finally, {\it ctrl\_pack} collects all adjoint files  Finally, {\it ctrl\_pack} collects all adjoint files
1615  and writes them to the compressed vector file  and writes them to the compressed vector file
1616  {\bf vector\_grad\_$<$k$>$}.  {\bf vector\_grad\_$<$k$>$}.
   
 \subsection{TLM and ADM generation via TAMC}  
   
   
   
 \subsection{Flow directives and adjoint support routines \label{section_flowdir}}  
   
 \subsection{Store directives and checkpointing \label{section_checkpointing}}  
   
 \subsection{Gradient checks \label{section_grdchk}}  
   
 \subsection{Second derivative generation via TAMC}  
   
 \section{Example of adjoint code}  

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22