/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by cnh, Thu Sep 27 02:00:24 2001 UTC revision 1.16 by heimbach, Tue May 11 21:55:14 2004 UTC
# Line 18  In principle, a variety of derived algor Line 18  In principle, a variety of derived algor
18  can be generated automatically in this way.  can be generated automatically in this way.
19    
20  The MITGCM has been adapted for use with the  The MITGCM has been adapted for use with the
21  Tangent linear and Adjoint Model Compiler (TAMC) and its succssor TAF  Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
22  (Transformation of Algorithms in Fortran), developed  (Transformation of Algorithms in Fortran), developed
23  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).  by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
24  The first application of the adjoint of the MITGCM for senistivity  The first application of the adjoint of the MITGCM for sensitivity
25  studies has been published by \cite{maro-eta:99}.  studies has been published by \cite{maro-eta:99}.
26  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint  \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
27  for ocean state estimation studies.  for ocean state estimation studies.
28    In the following we shall refer to TAMC and TAF synonymously,
29    except were explicitly stated otherwise.
30    
31  TAMC exploits the chain rule for computing the first  TAMC exploits the chain rule for computing the first
32  derivative of a function with  derivative of a function with
33  respect to a set of input variables.  respect to a set of input variables.
34  Treating a given forward code as a composition of operations --  Treating a given forward code as a composition of operations --
35  each line representing a compositional element -- the chain rule is  each line representing a compositional element, the chain rule is
36  rigorously applied to the code, line by line. The resulting  rigorously applied to the code, line by line. The resulting
37  tangent linear or adjoint code,  tangent linear or adjoint code,
38  then, may be thought of as the composition in  then, may be thought of as the composition in
39  forward or reverse order, respectively, of the  forward or reverse order, respectively, of the
40  Jacobian matrices of the forward code compositional elements.  Jacobian matrices of the forward code's compositional elements.
41    
42  %**********************************************************************  %**********************************************************************
43  \section{Some basic algebra}  \section{Some basic algebra}
# Line 50  $\vec{u}=(u_1,\ldots,u_m)$ Line 52  $\vec{u}=(u_1,\ldots,u_m)$
52  such as forcing functions) to the $n$-dimensional space  such as forcing functions) to the $n$-dimensional space
53  $V \subset I\!\!R^n$ of  $V \subset I\!\!R^n$ of
54  model output variable $\vec{v}=(v_1,\ldots,v_n)$  model output variable $\vec{v}=(v_1,\ldots,v_n)$
55  (model state, model diagnostcs, objective function, ...)  (model state, model diagnostics, objective function, ...)
56  under consideration,  under consideration,
57  %  %
58  \begin{equation}  \begin{equation}
# Line 105  In contrast to the full nonlinear model Line 107  In contrast to the full nonlinear model
107  $ M $ is just a matrix  $ M $ is just a matrix
108  which can readily be used to find the forward sensitivity of $\vec{v}$ to  which can readily be used to find the forward sensitivity of $\vec{v}$ to
109  perturbations in  $u$,  perturbations in  $u$,
110  but if there are very many input variables $(>>O(10^{6})$ for  but if there are very many input variables $(\gg O(10^{6})$ for
111  large-scale oceanographic application), it quickly becomes  large-scale oceanographic application), it quickly becomes
112  prohibitive to proceed directly as in (\ref{tangent_linear}),  prohibitive to proceed directly as in (\ref{tangent_linear}),
113  if the impact of each component $ {\bf e_{i}} $ is to be assessed.  if the impact of each component $ {\bf e_{i}} $ is to be assessed.
# Line 130  or a measure of some model-to-data misfi Line 132  or a measure of some model-to-data misfi
132  \label{compo}  \label{compo}
133  \end{eqnarray}  \end{eqnarray}
134  %  %
135  The linear approximation of $ {\cal J} $,  The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
136  \[  \[
137  {\cal J} \, \approx \, {\cal J}_0 \, + \, \delta {\cal J}  {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
138  \]  \]
139  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $  can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
140  w.r.t. their corresponding inner product  w.r.t. their corresponding inner product
# Line 168  transpose of $ A $, Line 170  transpose of $ A $,
170  \[  \[
171  A^{\ast} \, = \, A^T  A^{\ast} \, = \, A^T
172  \]  \]
173  and from eq. (\ref{tangent_linear}), we note that  and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
174    we note that
175  (omitting $|$'s):  (omitting $|$'s):
176  %  %
177  \begin{equation}  \begin{equation}
# Line 204  the adjoint variable of the model state Line 207  the adjoint variable of the model state
207  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.  $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
208    
209  The {\sf reverse} nature of the adjoint calculation can be readily  The {\sf reverse} nature of the adjoint calculation can be readily
210  seen as follows. Let us decompose ${\cal J}(u)$, thus:  seen as follows.
211    Consider a model integration which consists of $ \Lambda $
212    consecutive operations
213    $ {\cal M}_{\Lambda} (  {\cal M}_{\Lambda-1} (
214    ...... ( {\cal M}_{\lambda} (
215    ......
216    ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
217    where the ${\cal M}$'s could be the elementary steps, i.e. single lines
218    in the code of the model, or successive time steps of the
219    model integration,
220    starting at step 0 and moving up to step $\Lambda$, with intermediate
221    ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
222    ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
223    Let ${\cal J}$ be a cost function which explicitly depends on the
224    final state $\vec{v}$ only
225    (this restriction is for clarity reasons only).
226    %
227    ${\cal J}(u)$ may be decomposed according to:
228  %  %
229  \begin{equation}  \begin{equation}
230  {\cal J}({\cal M}(\vec{u})) \, = \,  {\cal J}({\cal M}(\vec{u})) \, = \,
# Line 215  seen as follows. Let us decompose ${\cal Line 235  seen as follows. Let us decompose ${\cal
235  \label{compos}  \label{compos}
236  \end{equation}  \end{equation}
237  %  %
238  where the ${\cal M}$'s could be the elementary steps, i.e. single lines  Then, according to the chain rule, the forward calculation reads,
239  in the code of the model,  in terms of the Jacobi matrices
 starting at step 0 and moving up to step $\Lambda$, with intermediate  
 ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final  
 ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$  
 Then, according to the chain rule the forward calculation reads in  
 terms of the Jacobi matrices  
240  (we've omitted the $ | $'s which, nevertheless are important  (we've omitted the $ | $'s which, nevertheless are important
241  to the aspect of {\it tangent} linearity;  to the aspect of {\it tangent} linearity;
242  note also that per definition  note also that by definition
243  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle  $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
244  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )  = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
245  %  %
# Line 259  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T Line 274  M_{\Lambda}^T \cdot \nabla_v {\cal J}^T
274  %  %
275  clearly expressing the reverse nature of the calculation.  clearly expressing the reverse nature of the calculation.
276  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.  Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
277  The intermediate steps $\lambda$ in  If the intermediate steps $\lambda$ in
278  eqn. (\ref{compos}) -- (\ref{reverse})  eqn. (\ref{compos}) -- (\ref{reverse})
279  could represent the model state (forward or adjoint) at each  represent the model state (forward or adjoint) at each
280  intermediate time step in which case  intermediate time step as noted above, then correspondingly,
281  $ {\cal M}(\vec{v}^{(\lambda)}) = \vec{v}^{(\lambda+1)} $, and correspondingly,  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
282  $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) = \delta \vec{v}^{(\lambda-1) \, \ast} $,  \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
283  but they can also be viewed more generally as  It thus becomes evident that the adjoint calculation also
284  single lines of code in the numerical algorithm.  yields the adjoint of each model state component
285  In both cases it becomes evident that the adjoint calculation  $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
 yields at the same time the adjoint of each model state component  
 $ \vec{v}^{(\lambda)} $ at each intermediate step $ l $, namely  
286  %  %
287  \begin{equation}  \begin{equation}
288  \boxed{  \boxed{
# Line 285  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \c Line 298  M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \c
298  %  %
299  in close analogy to eq. (\ref{adjoint})  in close analogy to eq. (\ref{adjoint})
300  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$  We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
301  are the Lagrange multipliers of the model state $ \vec{v}^{(\lambda)}$.  are the Lagrange multipliers of the model equations which determine
302    $ \vec{v}^{(\lambda)}$.
303    
304  In coponents, eq. (\ref{adjoint}) reads as follows.  In components, eq. (\ref{adjoint}) reads as follows.
305  Let  Let
306  \[  \[
307  \begin{array}{rclcrcl}  \begin{array}{rclcrcl}
# Line 308  Let Line 322  Let
322  \end{array}  \end{array}
323  \]  \]
324  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,  denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
325  and their adjoint varaiables;  and their adjoint variables;
326  further  further
327  \[  \[
328  M \, = \, \left(  M \, = \, \left(
# Line 395  and the shorthand notation for the adjoi Line 409  and the shorthand notation for the adjoi
409  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}  $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
410  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,  {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
411  for intermediate components, yielding  for intermediate components, yielding
412  \[  \begin{equation}
413  \footnotesize  \small
414    \begin{split}
415  \left(  \left(
416  \begin{array}{c}  \begin{array}{c}
417  \delta v^{(\lambda) \, \ast}_1 \\  \delta v^{(\lambda) \, \ast}_1 \\
# Line 404  for intermediate components, yielding Line 419  for intermediate components, yielding
419  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\  \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
420  \end{array}  \end{array}
421  \right)  \right)
422  \, = \,  \, = &
423  \left(  \left(
424  \begin{array}{ccc}  \begin{array}{ccc}
425  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
426  & \ldots &  & \ldots \,\, \ldots &
427  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
428  \vdots & ~ & \vdots \\  \vdots & ~ & \vdots \\
429  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}  \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
430  & \ldots  &  & \ldots \,\, \ldots  &
431  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\  \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
432  \end{array}  \end{array}
433  \right)  \right)
 %  
434  \cdot  \cdot
435  %  %
436    \\ ~ & ~
437    \\ ~ &
438    %
439  \left(  \left(
440  \begin{array}{ccc}  \begin{array}{ccc}
441  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}  \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
# Line 431  for intermediate components, yielding Line 448  for intermediate components, yielding
448  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\  \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
449  \end{array}  \end{array}
450  \right)  \right)
451  \cdot \ldots \ldots \cdot  \cdot \, \ldots \, \cdot
452  \left(  \left(
453  \begin{array}{c}  \begin{array}{c}
454  \delta v^{\ast}_1 \\  \delta v^{\ast}_1 \\
# Line 439  for intermediate components, yielding Line 456  for intermediate components, yielding
456  \delta v^{\ast}_{n} \\  \delta v^{\ast}_{n} \\
457  \end{array}  \end{array}
458  \right)  \right)
459  \]  \end{split}
460    \end{equation}
461    
462  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in  Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
463  showing the advantage of the reverse over the forward mode  showing the advantage of the reverse over the forward mode
# Line 450  variables $u$ Line 468  variables $u$
468  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.  {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
469  In order to be able to solve for each component of the gradient  In order to be able to solve for each component of the gradient
470  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})  $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
471  a forward calulation has to be performed for each component seperately,  a forward calculation has to be performed for each component separately,
472  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $  i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
473  for  the $i$-th forward calculation.  for  the $i$-th forward calculation.
474  Then, (\ref{forward}) represents the  Then, (\ref{forward}) represents the
# Line 460  In contrast, eq. (\ref{reverse}) yields Line 478  In contrast, eq. (\ref{reverse}) yields
478  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients  gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
479  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.  $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
480    
481  Note, that in case $ {\cal J} $ is a vector-valued function  Note, that if $ {\cal J} $ is a vector-valued function
482  of dimension $ l > 1 $,  of dimension $ l > 1 $,
483  eq. (\ref{reverse}) has to be modified according to  eq. (\ref{reverse}) has to be modified according to
484  \[  \[
# Line 468  M^T \left( \nabla_v {\cal J}^T \left(\de Line 486  M^T \left( \nabla_v {\cal J}^T \left(\de
486  \, = \,  \, = \,
487  \nabla_u {\cal J}^T \cdot \delta \vec{J}  \nabla_u {\cal J}^T \cdot \delta \vec{J}
488  \]  \]
489  where now $ \delta \vec{J} \in I\!\!R $ is a vector of dimenison $ l $.  where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
490    dimension $ l $.
491  In this case $ l $ reverse simulations have to be performed  In this case $ l $ reverse simulations have to be performed
492  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.  for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
493  Then, the reverse mode is more efficient as long as  Then, the reverse mode is more efficient as long as
494  $ l < n $, otherwise the forward mode is preferable.  $ l < n $, otherwise the forward mode is preferable.
495  Stricly, the reverse mode is called adjoint mode only for  Strictly, the reverse mode is called adjoint mode only for
496  $ l = 1 $.  $ l = 1 $.
497    
498  A detailed analysis of the underlying numerical operations  A detailed analysis of the underlying numerical operations
# Line 503  operator onto the $j$-th component ${\bf Line 522  operator onto the $j$-th component ${\bf
522  \paragraph{Example 2:  \paragraph{Example 2:
523  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,  $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
524   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\   \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
525  The cost function represents the quadratic model vs.data misfit.  The cost function represents the quadratic model vs. data misfit.
526  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the  Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
527  operator which maps the model state space onto the data space.  operator which maps the model state space onto the data space.
528  Then, $ \nabla_v {\cal J} $ takes the form  Then, $ \nabla_v {\cal J} $ takes the form
# Line 534  H \cdot \left( {\cal H}(\vec{v}) - \vec{ Line 553  H \cdot \left( {\cal H}(\vec{v}) - \vec{
553    
554  We note an important aspect of the forward vs. reverse  We note an important aspect of the forward vs. reverse
555  mode calculation.  mode calculation.
556  Because of the locality of the derivative,  Because of the local character of the derivative
557    (a derivative is defined w.r.t. a point along the trajectory),
558  the intermediate results of the model trajectory  the intermediate results of the model trajectory
559  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
561  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562    This is the case e.g. for nonlinear expressions
563    (momentum advection, nonlinear equation of state), state-dependent
564    conditional statements (parameterization schemes).
565  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
566  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
567  in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
568  Thus, in the reverse mode the trajectory of the forward model  Thus, in the reverse mode the trajectory of the forward model
569  integration ${\cal M}$ has to be stored to be available in the reverse  integration ${\cal M}$ has to be stored to be available in the reverse
570  calculation. Alternatively, the model state would have to be  calculation. Alternatively, the complete model state up to the
571  recomputed whenever its value is required.  point of evaluation has to be recomputed whenever its value is required.
572    
573  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
574  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
575  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
576  It is depicted in Fig. ... for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
577  [as concrete example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
578  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
579  \begin{itemize}  \begin{itemize}
580  %  %
# Line 559  integration with a 1-hourly timestep in Line 582  integration with a 1-hourly timestep in
582  In a first step, the model trajectory is subdivided into  In a first step, the model trajectory is subdivided into
583  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
584  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
585  The model is then integrated over the full trajectory,  The model is then integrated along the full trajectory,
586  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
587  [i.e. 3 times, at  [i.e. 3 times, at
588  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
589    In addition, the cost function is computed, if needed.
590  %  %
591  \item [$lev2$]  \item [$lev2$]
592  In a second step each subsection is itself divided into  In a second step each subsection itself is divided into
593  $ {n}^{lev2} $ subsubsections  $ {n}^{lev2} $ subsections
594  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
595  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
596  $ v_{k_{n}^{lev3}} $ and is integrated forward in time over  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
597  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
598  intermediate loop.  intermediate loop.
599  The model state is now stored only at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
600  timestep  timestep
601  [i.e. 4 times, at  [i.e. 4 times, at
602  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
603  %  %
604  \item [$lev1$]  \item [$lev1$]
605  Finally, the mode picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
606  $ v_{k_{n}^{lev2}} $ and is integrated forward in time over  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
607  the last subsubsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
608  intermediate loop.  intermediate loop.
609  Within this subsubsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
610  at every timestep  to memory at every timestep
611  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
612  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
613  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
614  and the model state of all peceeding timesteps over the last  and the model state of all preceding timesteps along the last
615  subsubsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
616  in time over the last subsubsection.  in time along the last subsection.
617  Thus, the adjoint can be computed over this last  The adjoint can thus be computed along this last
618  subsubsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
619  %  %
620  \end{itemize}  \end{itemize}
621  %  %
622  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
623  subsubsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
624  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
625  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
626  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 607  $k_{1}^{lev3}$. Line 631  $k_{1}^{lev3}$.
631  For the full model trajectory of  For the full model trajectory of
632  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
633  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
634  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
635  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
636  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
637    to memory].
638  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
639  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
640  checkpointing level).  checkpointing level).
641  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
642  on the computing resources available.  on the computing resources available and may be adjusted by
643    adjusting the partitioning among the
644    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
645    
646  \begin{figure}[t!]  \begin{figure}[t!]
647  \centering  \begin{center}
648  %\psdraft  %\psdraft
649  \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}  %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
650  \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}  %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
651  \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}  %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
652  \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}  %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
653  \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}  %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
654  \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}  %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
655  \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}  %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
656  \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}  %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
657  \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}  %\mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
658    \resizebox{5.5in}{!}{\includegraphics{part5/checkpointing.eps}}
659  %\psfull  %\psfull
660  \caption  \end{center}
661  {Schematic view of intermediate dump and restart for  \caption{
662    Schematic view of intermediate dump and restart for
663  3-level checkpointing.}  3-level checkpointing.}
664  \label{fig:erswns}  \label{fig:3levelcheck}
665  \end{figure}  \end{figure}
666    
667  \subsection{Optimal perturbations}  % \subsection{Optimal perturbations}
668  \label{optpert}  % \label{sec_optpert}
669    
670    
671  \subsection{Error covariance estimate and Hessian matrix}  % \subsection{Error covariance estimate and Hessian matrix}
672  \label{sec_hessian}  % \label{sec_hessian}
673    
674  \newpage  \newpage
675    
676  %**********************************************************************  %**********************************************************************
677  \section{AD-specific setup by example: sensitivity of carbon sequestration}  \section{TLM and ADM generation in general}
678  \label{sec_ad_setup_ex}  \label{sec_ad_setup_gen}
679  %**********************************************************************  %**********************************************************************
680    
681  The MITGCM has been adapted to enable AD using TAMC or TAF  In this section we describe in a general fashion
682  (we'll refer to TAMC and TAF interchangeably, except where  the parts of the code that are relevant for automatic
683  distinctions are explicitly mentioned).  differentiation using the software tool TAF.
684  The present description, therefore, is specific to the  
685  use of TAMC as AD tool.  \input{part5/doc_ad_the_model}
686  The following sections describe the steps which are necessary to  
687  generate a tangent linear or adjoint model of the MITGCM.  The basic flow is depicted in \ref{fig:adthemodel}.
688  We take as an example the sensitivity of carbon sequestration  If CPP option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
689  in the ocean.  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
690  The AD-relevant hooks in the code are sketched in  invokes the adjoint of this routine, {\it adthe\_main\_loop},
691  \reffig{adthemodel}, \reffig{adthemain}.  which is the toplevel routine in terms of automatic differentiation.
692    The routine {\it adthe\_main\_loop} has been generated by TAF.
693  \subsection{Overview of the experiment}  It contains both the forward integration of the full model, the
694    cost function calculation,
695  We describe an adjoint sensitivity analysis of outgassing from  any additional storing that is required for efficient checkpointing,
696  the ocean into the atmosphere of a carbon like tracer injected  and the reverse integration of the adjoint model.
697  into the ocean interior (see \cite{hil-eta:01}).  
698    [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
699  \subsubsection{Passive tracer equation}  
700    In Fig. \ref{fig:adthemodel}
701  For this work the MITGCM was augmented with a thermodynamically  the structure of {\it adthe\_main\_loop} has been strongly
702  inactive tracer, $C$. Tracer residing in the ocean  simplified to focus on the essentials; in particular, no checkpointing
703  model surface layer is outgassed according to a relaxation time scale,  procedures are shown here.
704  $\mu$. Within the ocean interior, the tracer is passively advected  Prior to the call of {\it adthe\_main\_loop}, the routine
705  by the ocean model currents. The full equation for the time evolution  {\it ctrl\_unpack} is invoked to unpack the control vector
706  %  or initialise the control variables.
707  \begin{equation}  Following the call of {\it adthe\_main\_loop},
708  \label{carbon_ddt}  the routine {\it ctrl\_pack}
709  \frac{\partial C}{\partial t} \, = \,  is invoked to pack the control vector
710  -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S  (cf. Section \ref{section_ctrl}).
711  \end{equation}  If gradient checks are to be performed, the option
712  %  {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
713  also includes a source term $S$. This term  the driver routine {\it grdchk\_main} is called after
714  represents interior sources of $C$ such as would arise due to  the gradient has been computed via the adjoint
715  direct injection.  (cf. Section \ref{section_grdchk}).
716  The velocity term, $U$, is the sum of the  
717  model Eulerian circulation and an eddy-induced velocity, the latter  %------------------------------------------------------------------
718  parameterized according to Gent/McWilliams (\cite{gen:90, dan:95}).  
719  The convection function, $\Gamma$, mixes $C$ vertically wherever the  \subsection{General setup
720  fluid is locally statically unstable.  \label{section_ad_setup}}
721    
722  The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})  In order to configure AD-related setups the following packages need
723  is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface  to be enabled:
724  ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})  {\it
725  is valid as a prognostic equation for small perturbations in oceanic  \begin{table}[h!]
726  carbon concentrations. This configuration provides a  \begin{tabular}{l}
727  powerful tool for examining the impact of large-scale ocean circulation  autodiff \\
728  on $ CO_2 $ outgassing due to interior injections.  ctrl \\
729  As source we choose a constant in time injection of  cost \\
730  $ S = 1 \,\, {\rm mol / s}$.  grdchk \\
731    \end{tabular}
732  \subsubsection{Model configuration}  \end{table}
733    }
734  The model configuration employed has a constant  The packages are enabled by adding them to your experiment-specific
735  $4^\circ \times 4^\circ$ resolution horizontal grid and realistic  configuration file
736  geography and bathymetry. Twenty vertical layers are used with  {\it packages.conf} (see Section ???).
737  vertical spacing ranging  
738  from 50 m near the surface to 815 m at depth.  The following AD-specific CPP option files need to be customized:
 Driven to steady-state by climatalogical wind-stress, heat and  
 fresh-water forcing the model reproduces well known large-scale  
 features of the ocean general circulation.  
   
 \subsubsection{Outgassing cost function}  
   
 To quantify and understand outgassing due to injections of $C$  
 in eqn. (\ref{carbon_ddt}),  
 we define a cost function $ {\cal J} $ that measures the total amount of  
 tracer outgassed at each timestep:  
 %  
 \begin{equation}  
 \label{cost_tracer}  
 {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt  
 \end{equation}  
 %  
 Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,  
 from (\ref{carbon_ddt})  
 over the entire ocean surface area, $A$, and accumulates it  
 up to time $T$.  
 Physically, ${\cal J}$ can be thought of as representing the amount of  
 $CO_2$ that our model predicts would be outgassed following an  
 injection at rate $S$.  
 The sensitivity of ${\cal J}$ to the spatial location of $S$,  
 $\frac{\partial {\cal J}}{\partial S}$,  
 can be used to identify regions from which circulation  
 would cause $CO_2$ to rapidly outgas following injection  
 and regions in which $CO_2$ injections would remain effectively  
 sequesterd within the ocean.  
   
 \subsection{Code configuration}  
   
 The model configuration for this experiment resides under the  
 directory {\it verification/carbon/}.  
 The code customisation routines are in {\it verification/carbon/code/}:  
739  %  %
740  \begin{itemize}  \begin{itemize}
741  %  %
742  \item {\it .genmakerc}  \item {\it ECCO\_CPPOPTIONS.h} \\
743  %  This header file collects CPP options for the packages
744  \item {\it COST\_CPPOPTIONS.h}  {\it autodiff, cost, ctrl} as well as AD-unrelated options for
745  %  the external forcing package {\it exf}.
746  \item {\it CPP\_EEOPTIONS.h}  \footnote{NOTE: These options are not set in their package-specific
747  %  headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
748  \item {\it CPP\_OPTIONS.h}  in the single header file {\it ECCO\_CPPOPTIONS.h}.
749  %  The package-specific header files serve as simple
750  \item {\it CTRL\_OPTIONS.h}  placeholders at this point.}
751  %  %
752  \item {\it ECCO\_OPTIONS.h}  \item {\it tamc.h} \\
753  %  This header configures the splitting of the time stepping loop
754  \item {\it SIZE.h}  w.r.t. the 3-level checkpointing (see section ???).
755  %  
 \item {\it adcommon.h}  
 %  
 \item {\it tamc.h}  
756  %  %
757  \end{itemize}  \end{itemize}
758    
759    %------------------------------------------------------------------
760    
761    \subsection{Building the AD code
762    \label{section_ad_build}}
763    
764    The build process of an AD code is very similar to building
765    the forward model. However, depending on which AD code one wishes
766    to generate, and on which AD tool is available (TAF or TAMC),
767    the following {\tt make} targets are available:
768    
769    \begin{table}[h!]
770    {\footnotesize
771    \begin{tabular}{ccll}
772    ~ & {\it AD-target} & {\it output} & {\it description} \\
773    \hline
774    \hline
775    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
776    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
777    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
778    ~ & ~ & ~ & useful for compiling on remote platforms \\
779    \hline
780    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
781    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
782    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
783    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
784    \hline
785    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
786    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
787    ~ & ~ & ~ & and compiles all code \\
788    ~ & ~ & ~ & (use of TAF is set as default) \\
789    \hline
790    \hline
791    \end{tabular}
792    }
793    \end{table}
794  %  %
795  The runtime flag and parameters settings are contained in  Here, the following placeholders are used
 {\it verification/carbon/input/},  
 together with the forcing fields and and restart files:  
796  %  %
797  \begin{itemize}  \begin{itemize}
798  %  %
799  \item {\it data}  \item [$<$TOOL$>$]
800  %  %
801  \item {\it data.cost}  \begin{itemize}
 %  
 \item {\it data.ctrl}  
 %  
 \item {\it data.pkg}  
 %  
 \item {\it eedata}  
 %  
 \item {\it topog.bin}  
 %  
 \item {\it windx.bin, windy.bin}  
 %  
 \item {\it salt.bin, theta.bin}  
 %  
 \item {\it SSS.bin, SST.bin}  
802  %  %
803  \item {\it pickup*}  \item {\tt TAF}
804    \item {\tt TAMC}
805  %  %
806  \end{itemize}  \end{itemize}
807  %  %
808  Finally, the file to generate the adjoint code resides in  \item [$<$MODE$>$]
 $ adjoint/ $:  
809  %  %
810  \begin{itemize}  \begin{itemize}
811  %  %
812  \item {\it makefile}  \item {\tt ad} generates the adjoint model (ADM)
813    \item {\tt ftl} generates the tangent linear model (TLM)
814    \item {\tt svd} generates both ADM and TLM for \\
815    singular value decomposition (SVD) type calculations
816  %  %
817  \end{itemize}  \end{itemize}
818  %  %
819    \end{itemize}
820    
821  Below we describe the customisations of this files which are  For example, to generate the adjoint model using TAF after routines ({\tt .F})
822  specific to this experiment.  or headers ({\tt .h}) have been modified, but without compilation,
823    type {\tt make adtaf};
824  \subsubsection{File {\it .genmakerc}}  or, to generate the tangent linear model using TAMC without
825  This file overwites default settings of {\it genmake}.  re-generating the input code, type {\tt make ftltamconly}.
 In the present example it is used to switch on the following  
 packages which are related to automatic differentiation  
 and are disabled by default: \\  
 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco )}  \\  
 Other packages which are not needed are switched off: \\  
 \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}  
   
 \subsubsection{File {\it COST\_CPPOPTIONS.h,  CTRL\_OPTIONS.h}}  
   
 These files used to contain package-specific CPP-options  
 (see Section \ref{???}).  
 For technical reasons those options have been grouped together  
 in the file {\it ECCO\_OPTIONS.h}.  
 To retain the modularity, the files have been kept and contain  
 the standard include of the {\it CPP\_OPTIONS.h} file.  
   
 \subsubsection{File {\it CPP\_EEOPTIONS.h}}  
   
 This file contains 'wrapper'-specific CPP options.  
 It only needs to be changed if the code is to be run  
 in  parallel environment (see Section \ref{???}).  
   
 \subsubsection{File {\it CPP\_OPTIONS.h}}  
   
 This file contains model-specific CPP options  
 (see Section \ref{???}).  
 Most options are related to the forward model setup.  
 They are identical to the global steady circulation setup of  
 {\it verification/exp2/}.  
 The option specific to this experiment is \\  
 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\  
 This flag enables the inclusion of some AD-related fields  
 concerning initialisation, link between control variables  
 and forward model variables, and the call to the top-level  
 forward/adjoint subroutine {\it adthe\_main\_loop}  
 instead of {\it the\_main\_loop}.  
   
 \subsubsection{File {\it ECCO\_OPTIONS.h}}  
826    
 The CPP options of several AD-related packages are grouped  
 in this file:  
 %  
 \begin{itemize}  
 %  
 \item  
 Adjoint support package: {\it pkg/autodiff/} \\  
 This package contains hand-written adjoint code such as  
 active file handling, flow directives for files which must not  
 be differentiated, and TAMC-specific header files. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\  
 defines TAMC-related features in the code. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\  
 enables the checkpointing feature of TAMC  
 (see Section \ref{???}).  
 In the present example a 3-level checkpointing is implemented.  
 The code contains the relevant store directives, common block  
 and tape initialisations, storing key computation,  
 and loop index handling.  
 The checkpointing length at each level is defined in  
 file {\it tamc.h}, cf. below.  
 %  
 \item Cost function package: {\it pkg/cost/} \\  
 This package contains all relevant routines for  
 initialising, accumulating and finalizing the cost function  
 (see Section \ref{???}). \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST} \\  
 enables all general aspects of the cost function handling,  
 in particular the hooks in the foorward code for  
 initialising, accumulating and finalizing the cost function. \\  
 \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\  
 includes the subroutine with the cost function for this  
 particular experiment, eqn. (\ref{cost_tracer}).  
 %  
 \item Control variable package: {\it pkg/ctrl/} \\  
 This package contains all relevant routines for  
 the handling of the control vector.  
 Each control variable can be enabled/disabled with its own flag: \\  
 \begin{tabular}{ll}  
 \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &  
 initial temperature \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &  
 initial salinity \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &  
 initial passive tracer concentration \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &  
 zonal wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &  
 meridional wind stress \\  
 \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &  
 freshwater flux \\  
 \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &  
 heat flux \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_DIFFKR\_CONTROL} &  
 diapycnal diffusivity \\  
 \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &  
 isopycnal diffusivity \\  
 \end{tabular}  
 %  
 \end{itemize}  
827    
828  \subsubsection{File {\it SIZE.h}}  A typical full build process to generate the ADM via TAF would
829    look like follows:
830    \begin{verbatim}
831    % mkdir build
832    % cd build
833    % ../../../tools/genmake2 -mods=../code_ad
834    % make depend
835    % make adall
836    \end{verbatim}
837    
838  The file contains the grid point dimensions of the forward  %------------------------------------------------------------------
 model. It is identical to the {\it verification/exp2/}: \\  
 \hspace*{4ex} {\tt sNx = 90} \\  
 \hspace*{4ex} {\tt sNy = 40} \\  
 \hspace*{4ex} {\tt Nr = 20} \\  
 It correpsponds to a single-tile/single-processor setup:  
 {\tt nSx = nSy = 1, nPx = nPy = 1},  
 with standard overlap dimensioning  
 {\tt OLx = OLy = 3}.  
   
 \subsubsection{File {\it adcommon.h}}  
   
 This file contains common blocks of some adjoint variables  
 that are generated by TAMC.  
 The common blocks are used by the adjoint support routine  
 {\it addummy\_in\_stepping} which needs to access those variables:  
   
 \begin{tabular}{ll}  
 \hspace*{4ex} {\tt common /addynvars\_r/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /addynvars\_cd/} &  
 \hspace*{4ex} is related to {\it DYNVARS.h} \\  
 \hspace*{4ex} {\tt common /adtr1\_r/} &  
 \hspace*{4ex} is related to {\it TR1.h} \\  
 \hspace*{4ex} {\tt common /adffields/} &  
 \hspace*{4ex} is related to {\it FFIELDS.h}\\  
 \end{tabular}  
839    
840  Note that if the structure of the common block changes in the  \subsection{The AD build process in detail
841  above header files of the forward code, the structure  \label{section_ad_build_detail}}
 of the adjoint common blocks will change accordingly.  
 Thus, it has to be made sure that the structure of the  
 adjoint common block in the hand-written file {\it adcommon.h}  
 complies with the automatically generated adjoint common blocks  
 in {\it adjoint\_model.F}.  
842    
843  \subsubsection{File {\it tamc.h}}  The {\tt make <MODE>all} target consists of the following procedures:
844    
845  This routine contains the dimensions for TAMC checkpointing.  \begin{enumerate}
846  %  %
847    \item
848    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
849    on which code ought to be generated. Depending on the {\tt make} target,
850    the contents is
851  \begin{itemize}  \begin{itemize}
852    \item
853    {\tt \#define ALLOW\_ADJOINT\_RUN}
854    \item
855    {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
856    \item
857    {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
858    \end{itemize}
859  %  %
860  \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\  \item
861  3-level checkpointing is enabled, i.e. the timestepping  A single file {\tt <MODE>\_input\_code.f} is concatenated
862  is divided into three different levels (see Section \ref{???}).  consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
863  The model state of the outermost ({\tt nchklev\_3}) and the  and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
864  itermediate ({\tt nchklev\_2}) timestepping loop are stored to file  %
865  (handled in {\it the\_main\_loop}).  \item
866  The innermost loop ({\tt nchklev\_1})  The AD tool is invoked with the {\bf <MODE>\_<TOOL>\_FLAGS}.
867  avoids I/O by storing all required variables  The default AD tool flags in {\tt genmake2} can be overrwritten by
868  to common blocks. This storing may also be necessary if  an {\tt adjoint\_options} file (similar to the platform-specific
869  no checkpointing is chosen  {\tt build\_options}, see Section ???.
870  (nonlinear functions, if-statements, iterative loops, ...).  The AD tool writes the resulting AD code into the file
871  In the present example the dimensions are chosen as follows: \\  {\tt <MODE>\_input\_code\_ad.f}
872  \hspace*{4ex} {\tt nchklev\_1      =  36 } \\  %
873  \hspace*{4ex} {\tt nchklev\_2      =  30 } \\  \item
874  \hspace*{4ex} {\tt nchklev\_3      =  60 } \\  A short sed script {\tt adjoint\_sed} is applied to
875  To guarantee that the checkpointing intervals span the entire  {\tt <MODE>\_input\_code\_ad.f}
876  integration period the relation \\  to reinstate {\bf myThid} into the CALL argument list of active file I/O.
877  \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\  The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
878  where {\tt nTimeSteps} is either specified in {\it data}  %
879  or computed via \\  \item
880  \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.  All routines are compiled and an executable is generated
881  %  (see Table ???).
 \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\  
 No checkpointing is enabled.  
 In this case the relevant counter is {\tt nchklev\_0}.  
 Similar to above, the following relation has to be satisfied \\  
 \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.  
882  %  %
883  \end{itemize}  \end{enumerate}
884    
885  \subsubsection{File {\it makefile}}  \subsubsection{The list AD\_FILES and {\tt .list} files}
886    
887  This file contains all relevant paramter flags and  Not all routines are presented to the AD tool.
888  lists to run TAMC.  Routines typically hidden are diagnostics routines which
889  It is assumed that TAMC is available to you, either locally,  do not influence the cost function, but may create
890  being installed on your network, or remotely through the 'TAMC Utility'.  artificial flow dependencies such as I/O of active variables.
891  TAMC is called with the command {\tt tamc} followed by a  
892  number of options. They are described in detail in the  {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
893  TAMC manual \cite{gie:99}.  which contains all routines that are shown to the AD tool.
894  Here we briefly discuss the main flags used in the {\it makefile}  This list is put together from all files with suffix {\tt .list}
895    that {\tt genmake2} finds in its search directories.
896    The list file for the core MITgcm routines is in {\tt model/src/}
897    is called {\tt model\_ad\_diff.list}.
898    Note that no wrapper routine is shown to TAF. These are either
899    not visible at all to the AD code, or hand-written AD code
900    is available (see next section).
901    
902    Each package directory contains its package-specific
903    list file {\tt <PKG>\_ad\_diff.list}. For example,
904    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
905    Thus, enabling a package will automatically extend the
906    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
907    package-specific routines.
908    Note that you will need to regenerate the {\tt Makefile} if
909    you enable a package (e.g. by adding it to {\tt packages.conf})
910    and a {\tt Makefile} already exists.
911    
912    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
913    
914    TAMC and TAF can evaluate user-specified directives
915    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
916    The main categories of directives are STORE directives and
917    FLOW directives. Here, we are concerned with flow directives,
918    store directives are treated elsewhere.
919    
920    Flow directives enable the AD tool to evaluate how it should treat
921    routines that are 'hidden' by the user, i.e. routines which are
922    not contained in the {\bf AD\_FILES} list (see previous section),
923    but which are called in part of the code that the AD tool does see.
924    The flow directive tell the AD tool
925  %  %
926  \begin{itemize}  \begin{itemize}
 \item [{\tt tamc}] {\tt  
 -input <variable names>  
 -output <variable name> ... \\  
 -toplevel <S/R name> -reverse <file names>  
 }  
 \end{itemize}  
927  %  %
928  \begin{itemize}  \item which subroutine arguments are input/output
929  %  \item which subroutine arguments are active
930  \item {\tt -toplevel <S/R name>} \\  \item which subroutine arguments are required to compute the cost
931  Name of the toplevel routine, with respect to which the  \item which subroutine arguments are dependent
 control flow analysis is performed.  
 %  
 \item {\tt -input <variable names>} \\  
 List of independent variables $ u $ with respect to which the  
 dependent variable $ J $ is differentiated.  
 %  
 \item {\tt -output <variable name>} \\  
 Dependent variable $ J $  which is to be differentiated.  
 %  
 \item {\tt -reverse <file names>} \\  
 Adjoint code is generated to compute the sensitivity of an  
 independent variable w.r.t.  many dependent variables.  
 The generated adjoint top-level routine computes the product  
 of the transposed Jacobian matrix $ M^T $ times  
 the gradient vector $ \nabla_v J $.  
 \\  
 {\tt <file names>} refers to the list of files {\it .f} which are to be  
 analyzed by TAMC. This list is generally smaller than the full list  
 of code to be compiled. The files not contained are either  
 above the top-level routine (some initialisations), or are  
 deliberately hidden from TAMC, either because hand-written  
 adjoint routines exist, or the routines must not (or don't have to)  
 be differentiated. For each routine which is part of the flow tree  
 of the top-level routine, but deliberately hidden from TAMC,  
 a corresponding file {\it .flow} exists containing flow directives  
 for TAMC.  
932  %  %
933  \end{itemize}  \end{itemize}
934    %
935    The syntax for the flow directives can be found in the
936    AD tool manuals.
937    
938    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
939    which contains all files with suffix{\tt .flow} that it finds
940    in its search directories.
941    The flow directives for the core MITgcm routines of
942    {\tt eesupp/src/} and {\tt model/src/}
943    reside in {\tt pkg/autodiff/}.
944    This directory also contains hand-written adjoint code
945    for the MITgcm WRAPPER (see Section ???).
946    
947    Flow directives for package-specific routines are contained in
948    the corresponding package directories in the file
949    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
950    {\tt ptracers\_ad.flow}.
951    
952    \subsubsection{Store directives for 3-level checkpointing}
953    
954    The storing that is required at each period of the
955    3-level checkpointing is controled by three
956    top-level headers.
957    
958  \subsubsection{File {\it data}}  \begin{verbatim}
959    do ilev_3 = 1, nchklev_3
960  \subsubsection{File {\it data.cost}}  #  include ``checkpoint_lev3.h''
961       do ilev_2 = 1, nchklev_2
962  \subsubsection{File {\it data.ctrl}}  #     include ``checkpoint_lev2.h''
963          do ilev_1 = 1, nchklev_1
964  \subsubsection{File {\it data.pkg}}  #        include ``checkpoint_lev1.h''
965    
966  \subsubsection{File {\it eedata}}  ...
967    
968  \subsubsection{File {\it topog.bin}}        end do
969       end do
970  \subsubsection{File {\it windx.bin, windy.bin}}  end do
971    \end{verbatim}
 \subsubsection{File {\it salt.bin, theta.bin}}  
972    
973  \subsubsection{File {\it SSS.bin, SST.bin}}  All files {\tt checkpoint\_lev?.h} are contained in directory
974    {\tt pkg/autodiff/}.
975    
 \subsubsection{File {\it pickup*}}  
976    
977  \subsection{Compiling the model and its adjoint}  \subsubsection{Changing the default AD tool flags: ad\_options files}
978    
 \newpage  
979    
980  %**********************************************************************  \subsubsection{Hand-written adjoint code}
 \section{TLM and ADM code generation in general}  
 \label{sec_ad_setup_gen}  
 %**********************************************************************  
981    
982  In this section we describe in a general fashion  %------------------------------------------------------------------
 the parts of the code that are relevant for automatic  
 differentiation using the software tool TAMC.  
983    
984  \subsection{The cost function (dependent variable)}  \subsection{The cost function (dependent variable)
985    \label{section_cost}}
986    
987  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
988  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
989  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
990  The input is referred to as the  The input are referred to as the
991  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
992  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
993  (parameter setting, initialisation, incrementation,  (parameter setting, initialization, accumulation,
994  final evaluation), are controled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
995    The aspects relevant to the treatment of the independent variables
996    are controlled by the package {\it pkg/ctrl} and will be treated
997    in the next section.
998    
999    \input{part5/doc_cost_flow}
1000    
1001    \subsubsection{Enabling the package}
1002    
 \subsubsection{genmake and CPP options}  
 %  
 \begin{itemize}  
 %  
 \item  
1003  \fbox{  \fbox{
1004  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1005  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1006  \end{minipage}  \end{minipage}
1007  }  }
1008  \end{itemize}  \begin{itemize}
 %  
 The directory {\it pkg/cost} can be included to the  
 compile list in 3 different ways (cf. Section \ref{???}):  
1009  %  %
1010  \begin{enumerate}  \item
1011    The package is enabled by adding {\it cost} to your file {\it packages.conf}
1012    (see Section ???)
1013  %  %
1014  \item {\it genmake}: \\  \item
1015  Change the default settngs in the file {\it genmake} by adding  
1016  {\bf cost} to the {\bf enable} list (not recommended).  
1017  %  \end{itemize}
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1018  %  %
1019  \end{enumerate}  
1020  Since the cost function is usually used in conjunction with  N.B.: In general the following packages ought to be enabled
1021  automatic differentiation, the CPP option  simultaneously: {\it autodiff, cost, ctrl}.
 {\bf ALLOW\_ADJOINT\_RUN} should be defined  
 (file {\it CPP\_OPTIONS.h}).  
1022  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1023  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1024  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1025  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1026    Since the cost function is usually used in conjunction with
1027    automatic differentiation, the CPP option
1028    {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1029    {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1030    should be defined.
1031    
1032  \subsubsection{Initialisation}  \subsubsection{Initialization}
1033  %  %
1034  The initialisation of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1035  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1036  %  %
1037  \begin{itemize}  \begin{itemize}
1038  %  %
# Line 1152  Variables: {\it cost\_init} Line 1062  Variables: {\it cost\_init}
1062  }  }
1063  \\  \\
1064  This S/R  This S/R
1065  initialises the different cost function contributions.  initializes the different cost function contributions.
1066  The contribtion for the present example is {\bf objf\_tracer}  The contribution for the present example is {\bf objf\_tracer}
1067  which is defined on each tile (bi,bj).  which is defined on each tile (bi,bj).
1068  %  %
1069  \end{itemize}  \end{itemize}
1070  %  %
1071  \subsubsection{Incrementation}  \subsubsection{Accumulation}
1072  %  %
1073  \begin{itemize}  \begin{itemize}
1074  %  %
# Line 1196  from each contribution and sums over all Line 1106  from each contribution and sums over all
1106  \begin{equation}  \begin{equation}
1107  {\cal J} \, = \,  {\cal J} \, = \,
1108  {\rm fc} \, = \,  {\rm fc} \, = \,
1109  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1110  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1111  \end{equation}  \end{equation}
1112  %  %
# Line 1206  The total cost function {\bf fc} will be Line 1116  The total cost function {\bf fc} will be
1116  tamc -output 'fc' ...  tamc -output 'fc' ...
1117  \end{verbatim}  \end{verbatim}
1118    
 \begin{figure}[t!]  
 \input{part5/doc_ad_the_model}  
 \label{fig:adthemodel}  
 \caption{~}  
 \end{figure}  
   
1119  %%%% \end{document}  %%%% \end{document}
1120    
 \begin{figure}  
1121  \input{part5/doc_ad_the_main}  \input{part5/doc_ad_the_main}
 \label{fig:adthemain}  
 \caption{~}  
 \end{figure}  
1122    
1123  \subsection{The control variables (independent variables)}  \subsection{The control variables (independent variables)
1124    \label{section_ctrl}}
1125    
1126  The control variables are a subset of the model input  The control variables are a subset of the model input
1127  (initial conditions, boundary conditions, model parameters).  (initial conditions, boundary conditions, model parameters).
1128  Here we identify them with the variable $ \vec{u} $.  Here we identify them with the variable $ \vec{u} $.
1129  All intermediate variables whose derivative w.r.t. control  All intermediate variables whose derivative w.r.t. control
1130  variables don't vanish are called {\sf active variables}.  variables do not vanish are called {\sf active variables}.
1131  All subroutines whose derivative w.r.t. the control variables  All subroutines whose derivative w.r.t. the control variables
1132  don't vanish are called {\sf active routines}.  don't vanish are called {\sf active routines}.
1133  Read and write operations from and to file can be viewed  Read and write operations from and to file can be viewed
# Line 1234  as variable assignments. Therefore, file Line 1135  as variable assignments. Therefore, file
1135  active variables are written and from which active variables  active variables are written and from which active variables
1136  are read are called {\sf active files}.  are read are called {\sf active files}.
1137  All aspects relevant to the treatment of the control variables  All aspects relevant to the treatment of the control variables
1138  (parameter setting, initialisation, perturbation)  (parameter setting, initialization, perturbation)
1139  are controled by the package {\it pkg/ctrl}.  are controlled by the package {\it pkg/ctrl}.
1140    
1141    \input{part5/doc_ctrl_flow}
1142    
1143  \subsubsection{genmake and CPP options}  \subsubsection{genmake and CPP options}
1144  %  %
# Line 1251  are controled by the package {\it pkg/ct Line 1154  are controled by the package {\it pkg/ct
1154  %  %
1155  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1156  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1157  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1158    package, cf. previous section).
1159  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1160  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1161    
1162  \subsubsection{Initialisation}  \subsubsection{Initialization}
1163  %  %
1164  \begin{itemize}  \begin{itemize}
1165  %  %
# Line 1295  Two important issues related to the hand Line 1199  Two important issues related to the hand
1199  variables in the MITGCM need to be addressed.  variables in the MITGCM need to be addressed.
1200  First, in order to save memory, the control variable arrays  First, in order to save memory, the control variable arrays
1201  are not kept in memory, but rather read from file and added  are not kept in memory, but rather read from file and added
1202  to the initial (or first guess) fields.  to the initial fields during the model initialization phase.
1203  Similarly, the corresponding adjoint fields which represent  Similarly, the corresponding adjoint fields which represent
1204  the gradient of the cost function w.r.t. the control variables  the gradient of the cost function w.r.t. the control variables
1205  are written to to file.  are written to file at the end of the adjoint integration.
1206  Second, in addition to the files holding the 2-dim. and 3-dim.  Second, in addition to the files holding the 2-dim. and 3-dim.
1207  control variables and the gradient, a 1-dim. {\sf control vector}  control variables and the corresponding cost gradients,
1208    a 1-dim. {\sf control vector}
1209  and {\sf gradient vector} are written to file. They contain  and {\sf gradient vector} are written to file. They contain
1210  only the wet points of the control variables and the corresponding  only the wet points of the control variables and the corresponding
1211  gradient.  gradient.
1212  This leads to a significant data compression.  This leads to a significant data compression.
1213  Furthermore, the control and the gradient vector can be passed to a  Furthermore, an option is available
1214    ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1215    non-dimensionalise the control and gradient vector,
1216    which otherwise would contain different pieces of different
1217    magnitudes and units.
1218    Finally, the control and gradient vector can be passed to a
1219  minimization routine if an update of the control variables  minimization routine if an update of the control variables
1220  is sought as part of a minimization exercise.  is sought as part of a minimization exercise.
1221    
# Line 1316  and gradient are generated and initialis Line 1226  and gradient are generated and initialis
1226    
1227  \subsubsection{Perturbation of the independent variables}  \subsubsection{Perturbation of the independent variables}
1228  %  %
1229  The dependency chain for differentiation starts  The dependency flow for differentiation w.r.t. the controls
1230  with adding a perturbation onto the the input variable,  starts with adding a perturbation onto the input variable,
1231  thus defining the independent or control variables for TAMC.  thus defining the independent or control variables for TAMC.
1232  Three classes of controls may be considered:  Three types of controls may be considered:
1233  %  %
1234  \begin{itemize}  \begin{itemize}
1235  %  %
# Line 1334  Three classes of controls may be conside Line 1244  Three classes of controls may be conside
1244  Consider as an example the initial tracer distribution  Consider as an example the initial tracer distribution
1245  {\bf tr1} as control variable.  {\bf tr1} as control variable.
1246  After {\bf tr1} has been initialised in  After {\bf tr1} has been initialised in
1247  {\it ini\_tr1} (dynamical variables including  {\it ini\_tr1} (dynamical variables such as
1248  temperature and salinity are initialised in {\it ini\_fields}),  temperature and salinity are initialised in {\it ini\_fields}),
1249  a perturbation anomaly is added to the field in S/R  a perturbation anomaly is added to the field in S/R
1250  {\it ctrl\_map\_ini}  {\it ctrl\_map\_ini}
# Line 1347  u         & = \, u_{[0]} \, + \, \Delta Line 1257  u         & = \, u_{[0]} \, + \, \Delta
1257  \end{split}  \end{split}
1258  \end{equation}  \end{equation}
1259  %  %
1260  In principle {\bf xx\_tr1} is a 3-dim. global array  {\bf xx\_tr1} is a 3-dim. global array
1261  holding the perturbation. In the case of a simple  holding the perturbation. In the case of a simple
1262  sensitivity study this array is identical to zero.  sensitivity study this array is identical to zero.
1263  However, it's specification is essential since TAMC  However, it's specification is essential in the context
1264    of automatic differentiation since TAMC
1265  treats the corresponding line in the code symbolically  treats the corresponding line in the code symbolically
1266  when determining the differentiation chain and its origin.  when determining the differentiation chain and its origin.
1267  Thus, the variable names are part of the argument list  Thus, the variable names are part of the argument list
# Line 1368  dummy variable {\bf xx\_tr1\_dummy} is i Line 1279  dummy variable {\bf xx\_tr1\_dummy} is i
1279  and an 'active read' routine of the adjoint support  and an 'active read' routine of the adjoint support
1280  package {\it pkg/autodiff} is invoked.  package {\it pkg/autodiff} is invoked.
1281  The read-procedure is tagged with the variable  The read-procedure is tagged with the variable
1282  {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the  {\bf xx\_tr1\_dummy} enabling TAMC to recognize the
1283  initialisation of the perturbation.  initialization of the perturbation.
1284  The modified call of TAMC thus reads  The modified call of TAMC thus reads
1285  %  %
1286  \begin{verbatim}  \begin{verbatim}
# Line 1388  in the code takes on the form Line 1299  in the code takes on the form
1299  %  %
1300  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1301  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1302  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1303    a reset.
1304  The 'active file' routines have been designed  The 'active file' routines have been designed
1305  to support active read and corresponding active write  to support active read and corresponding adjoint active write
1306  operations.  operations (and vice versa).
1307  %  %
1308  \item  \item
1309  \fbox{  \fbox{
# Line 1408  with the symbolic perturbation taking pl Line 1320  with the symbolic perturbation taking pl
1320  Note however an important difference:  Note however an important difference:
1321  Since the boundary values are time dependent with a new  Since the boundary values are time dependent with a new
1322  forcing field applied at each time steps,  forcing field applied at each time steps,
1323  the general problem may be be thought of as  the general problem may be thought of as
1324  a new control variable at each time step, i.e.  a new control variable at each time step
1325    (or, if the perturbation is averaged over a certain period,
1326    at each $ N $ timesteps), i.e.
1327  \[  \[
1328  u_{\rm forcing} \, = \,  u_{\rm forcing} \, = \,
1329  \{ \, u_{\rm forcing} ( t_n ) \, \}_{  \{ \, u_{\rm forcing} ( t_n ) \, \}_{
# Line 1434  calendar ({\it cal}~) and external forci Line 1348  calendar ({\it cal}~) and external forci
1348  %  %
1349  This routine is not yet implemented, but would proceed  This routine is not yet implemented, but would proceed
1350  proceed along the same lines as the initial value sensitivity.  proceed along the same lines as the initial value sensitivity.
1351    The mixing parameters {\bf diffkr} and {\bf kapgm}
1352    are currently added as controls in {\it ctrl\_map\_ini.F}.
1353  %  %
1354  \end{itemize}  \end{itemize}
1355  %  %
1356    
1357  \subsubsection{Output of adjoint variables and gradient}  \subsubsection{Output of adjoint variables and gradient}
1358  %  %
1359  Two ways exist to generate output of adjoint fields.  Several ways exist to generate output of adjoint fields.
1360  %  %
1361  \begin{itemize}  \begin{itemize}
1362  %  %
1363  \item  \item
1364  \fbox{  \fbox{
1365  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1366  {\it ctrl\_pack}:  {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1367  \end{minipage}  \end{minipage}
1368  }  }
1369  \\  \\
 At the end of the forward/adjoint integration, the S/R  
 {\it ctrl\_pack} is called which mirrors S/R {\it ctrl\_unpack}.  
 It writes the following files:  
 %  
1370  \begin{itemize}  \begin{itemize}
1371  %  %
1372  \item {\bf xx\_...}: the control variable fields  \item {\bf xx\_...}: the control variable fields \\
1373    Before the forward integration, the control
1374    variables are read from file {\bf xx\_ ...} and added to
1375    the model field.
1376  %  %
1377  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient  \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1378  $ \nabla _{u}{\cal J} $ for each control variable,  $ \nabla _{u}{\cal J} $ for each control variable \\
1379    After the adjoint integration the corresponding adjoint
1380    variables are written to {\bf adxx\_ ...}.
1381    %
1382    \end{itemize}
1383  %  %
1384  \item {\bf vector\_ctrl}: the control vector  \item
1385    \fbox{
1386    \begin{minipage}{12cm}
1387    {\it ctrl\_unpack, ctrl\_pack}:
1388    \end{minipage}
1389    }
1390    \\
1391    %
1392    \begin{itemize}
1393  %  %
1394  \item {\bf vector\_grad}: the gradient vector  \item {\bf vector\_ctrl}: the control vector \\
1395    At the very beginning of the model initialization,
1396    the updated compressed control vector is read (or initialised)
1397    and distributed to 2-dim. and 3-dim. control variable fields.
1398    %
1399    \item {\bf vector\_grad}: the gradient vector \\
1400    At the very end of the adjoint integration,
1401    the 2-dim. and 3-dim. adjoint variables are read,
1402    compressed to a single vector and written to file.
1403  %  %
1404  \end{itemize}  \end{itemize}
1405  %  %
# Line 1476  $ \nabla _{u}{\cal J} $ for each control Line 1411  $ \nabla _{u}{\cal J} $ for each control
1411  }  }
1412  \\  \\
1413  In addition to writing the gradient at the end of the  In addition to writing the gradient at the end of the
1414  forward/adjoint integration, many more adjoint variables,  forward/adjoint integration, many more adjoint variables
1415  representing the Lagrange multipliers of the model state  of the model state
1416  w.r.t. the model state  at intermediate times can be written using S/R
 at different times can be written using S/R  
1417  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1418  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1419  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1420    The procedure is enabled using via the CPP-option
1421    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1422  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1423  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1424  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1425    The adjoint common blocks are extracted from the adjoint code
1426    via the header file {\it adcommon.h}.
1427    
1428  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1429  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1493  than generated automatically. Line 1431  than generated automatically.
1431  Appropriate flow directives ({\it dummy\_in\_stepping.flow})  Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1432  ensure that TAMC does not automatically  ensure that TAMC does not automatically
1433  generate {\it addummy\_in\_stepping} by trying to differentiate  generate {\it addummy\_in\_stepping} by trying to differentiate
1434  {\it dummy\_in\_stepping}, but rather takes the hand-written routine.  {\it dummy\_in\_stepping}, but instead refers to
1435    the hand-written routine.
1436    
1437  {\it dummy\_in\_stepping} is called in the forward code  {\it dummy\_in\_stepping} is called in the forward code
1438  at the beginning of each  at the beginning of each
# Line 1503  each timestep in the adjoint calculation Line 1442  each timestep in the adjoint calculation
1442  {\it addynamics}.  {\it addynamics}.
1443    
1444  {\it addummy\_in\_stepping} includes the header files  {\it addummy\_in\_stepping} includes the header files
1445  {\it adffields.h, addynamics.h, adtr1.h}.  {\it adcommon.h}.
1446  These header files are also hand-written. They contain  This header file is also hand-written. It contains
1447  the common blocks {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},  the common blocks
1448    {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1449    {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1450  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1451  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1452  access to the adjoint variables.  access to the adjoint variables.
1453    
1454    {\bf WARNING:} If the structure of the common blocks
1455    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1456    similar changes will occur in the adjoint common blocks.
1457    Therefore, consistency between the TAMC-generated common blocks
1458    and those in {\it adcommon.h} have to be checked.
1459  %  %
1460  \end{itemize}  \end{itemize}
1461    
# Line 1523  The gradient $ \nabla _{u}{\cal J} |_{u_ Line 1470  The gradient $ \nabla _{u}{\cal J} |_{u_
1470  with the value of the cost function itself $ {\cal J}(u_{[k]}) $  with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1471  at iteration step $ k $ serve  at iteration step $ k $ serve
1472  as input to a minimization routine (e.g. quasi-Newton method,  as input to a minimization routine (e.g. quasi-Newton method,
1473  conjugate gradient, ...) to compute an update in the  conjugate gradient, ... \cite{gil-lem:89})
1474    to compute an update in the
1475  control variable for iteration step $k+1$  control variable for iteration step $k+1$
1476  \[  \[
1477  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}  u_{[k+1]} \, = \,  u_{[0]} \, + \, \Delta u_{[k+1]}
# Line 1537  Tab. \ref{???} sketches the flow between Line 1485  Tab. \ref{???} sketches the flow between
1485  and the minimization routine.  and the minimization routine.
1486    
1487  \begin{eqnarray*}  \begin{eqnarray*}
1488  \footnotesize  \scriptsize
1489  \begin{array}{ccccc}  \begin{array}{ccccc}
1490  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\  u_{[0]} \,\, ,  \,\, \Delta u_{[k]}    & ~ & ~ & ~ & ~ \\
1491  {\Big\downarrow}  {\Big\downarrow}
# Line 1554  v_{[k]} = M \left( u_{[k]} \right) & Line 1502  v_{[k]} = M \left( u_{[k]} \right) &
1502  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\  {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1503  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1504  \hline  \hline
1505    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1506    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1507    \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~}  \\
1508  \hline  \hline
1509  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1510  \multicolumn{1}{|c}{  \multicolumn{1}{|c}{
1511  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =  \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1512  T\!\!^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &  T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1513  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &  \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1514  ad \, v_{[k]} (\delta {\cal J}) =  ad \, v_{[k]} (\delta {\cal J}) =
1515  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &  \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
# Line 1567  ad \, v_{[k]} (\delta {\cal J}) = Line 1518  ad \, v_{[k]} (\delta {\cal J}) =
1518  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1519  \hline  \hline
1520   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1521  ~ & ~ &  \hspace*{15ex}{\Bigg\downarrow}  
1522  {\cal J}_{[k]} \qquad {\Bigg\downarrow}  \qquad \nabla_u {\cal J}_{[k]}  \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1523   & ~ & ~ \\   & ~ & ~ & ~ & ~ \\
1524   ~ & ~ & ~ & ~ & ~ \\   ~ & ~ & ~ & ~ & ~ \\
1525  \hline  \hline
1526  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\  \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
# Line 1597  The corresponding I/O flow looks as foll Line 1548  The corresponding I/O flow looks as foll
1548    
1549  \vspace*{0.5cm}  \vspace*{0.5cm}
1550    
1551    {\scriptsize
1552  \begin{tabular}{ccccc}  \begin{tabular}{ccccc}
1553  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\  {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1554  {\big\downarrow}  & ~ & ~ & ~ & ~ \\  {\big\downarrow}  & ~ & ~ & ~ & ~ \\
# Line 1607  The corresponding I/O flow looks as foll Line 1559  The corresponding I/O flow looks as foll
1559  \cline{3-3}  \cline{3-3}
1560  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &  \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1561  \multicolumn{1}{|c|}{~} & ~ & ~ \\  \multicolumn{1}{|c|}{~} & ~ & ~ \\
1562  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} & $\longrightarrow$ &  \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1563    $\stackrel{\mbox{read}}{\longrightarrow}$ &
1564  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\  \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1565  \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}    \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}  
1566  & ~ & ~ \\  & ~ & ~ \\
1567  \cline{3-3}  \cline{3-3}
1568  ~ & ~ & ~ & ~ & ~ \\  ~ & ~ & $\downarrow$ & ~ & ~ \\
1569  \cline{3-3}  \cline{3-3}
1570  ~ & ~ &  ~ & ~ &
1571  \multicolumn{1}{|c|}{~} & ~ &  \multicolumn{1}{|c|}{~} & ~ &
1572  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\  \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$}  \\
1573  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &  ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1574  $\longrightarrow$ &  $\stackrel{\mbox{write}}{\longrightarrow}$ &
1575  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\  \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1576  ~ & ~ & \multicolumn{1}{|c|}{~}    ~ & ~ & \multicolumn{1}{|c|}{~}  
1577  & ~ & \multicolumn{1}{l}{\bf \vdots} \\  & ~ & \multicolumn{1}{l}{\bf \vdots} \\
# Line 1630  $\longrightarrow$ & Line 1583  $\longrightarrow$ &
1583  ~ & ~ & ~ & ~ &  {\big\downarrow} \\  ~ & ~ & ~ & ~ &  {\big\downarrow} \\
1584  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\  ~ & ~ & ~ & ~ &  {\bf vector\_grad\_$<$k$>$ } \\
1585  \end{tabular}  \end{tabular}
1586    }
1587    
1588  \vspace*{0.5cm}  \vspace*{0.5cm}
1589    
1590    
1591  {\it ctrl\_unpack} reads in the updated control vector  {\it ctrl\_unpack} reads the updated control vector
1592  {\bf vector\_ctrl\_$<$k$>$}.  {\bf vector\_ctrl\_$<$k$>$}.
1593  It distributes the different control variables to  It distributes the different control variables to
1594  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.  2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1595  During the forward integration the control variables  At the start of the forward integration the control variables
1596  are read from {\it xx\_...$<$k$>$}.  are read from {\it xx\_...$<$k$>$} and added to the
1597  Correspondingly, the adjoint fields are written  field.
1598    Correspondingly, at the end of the adjoint integration
1599    the adjoint fields are written
1600  to {\it adxx\_...$<$k$>$}, again via the active file routines.  to {\it adxx\_...$<$k$>$}, again via the active file routines.
1601  Finally, {\it ctrl\_pack} collects all adjoint field files  Finally, {\it ctrl\_pack} collects all adjoint files
1602  and writes them to the compressed vector file  and writes them to the compressed vector file
1603  {\bf vector\_grad\_$<$k$>$}.  {\bf vector\_grad\_$<$k$>$}.
   
 \subsection{TLM and ADM generation via TAMC}  
   
   
   
 \subsection{Flow directives and adjoint support routines}  
   
 \subsection{Store directives and checkpointing}  
   
 \subsection{Gradient checks}  
   
 \subsection{Second derivative generation via TAMC}  
   
 \section{Example of adjoint code}  

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22