/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.14 by cnh, Thu Feb 28 19:32:20 2002 UTC revision 1.16 by heimbach, Tue May 11 21:55:14 2004 UTC
# Line 557  Because of the local character of the de Line 557  Because of the local character of the de
557  (a derivative is defined w.r.t. a point along the trajectory),  (a derivative is defined w.r.t. a point along the trajectory),
558  the intermediate results of the model trajectory  the intermediate results of the model trajectory
559  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
561  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562    This is the case e.g. for nonlinear expressions
563    (momentum advection, nonlinear equation of state), state-dependent
564    conditional statements (parameterization schemes).
565  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
566  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
567  but in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
# Line 569  point of evaluation has to be recomputed Line 572  point of evaluation has to be recomputed
572    
573  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
574  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
575  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
576  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
577  [as an example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
578  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
# Line 580  In a first step, the model trajectory is Line 583  In a first step, the model trajectory is
583  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
584  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
585  The model is then integrated along the full trajectory,  The model is then integrated along the full trajectory,
586  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
587  [i.e. 3 times, at  [i.e. 3 times, at
588  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
589    In addition, the cost function is computed, if needed.
590  %  %
591  \item [$lev2$]  \item [$lev2$]
592  In a second step each subsection itself is divided into  In a second step each subsection itself is divided into
593  $ {n}^{lev2} $ sub-subsections  $ {n}^{lev2} $ subsections
594  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
595  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
596  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
597  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
598  intermediate loop.  intermediate loop.
599  The model state is now stored at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
600  timestep  timestep
601  [i.e. 4 times, at  [i.e. 4 times, at
602  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
# Line 600  $ i = 0,1,2,3 $ corresponding to $ k_{i} Line 604  $ i = 0,1,2,3 $ corresponding to $ k_{i}
604  \item [$lev1$]  \item [$lev1$]
605  Finally, the model picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
606  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
607  the last sub-subsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
608  intermediate loop.  intermediate loop.
609  Within this sub-subsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
610  at every timestep  to memory at every timestep
611  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
612  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
613  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
614  and the model state of all proceeding timesteps along the last  and the model state of all preceding timesteps along the last
615  sub-subsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
616  in time along the last sub-subsection.  in time along the last subsection.
617  Thus, the adjoint can be computed along this last  The adjoint can thus be computed along this last
618  sub-subsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
619  %  %
620  \end{itemize}  \end{itemize}
621  %  %
622  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
623  sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
624  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
625  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
626  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 627  $k_{1}^{lev3}$. Line 631  $k_{1}^{lev3}$.
631  For the full model trajectory of  For the full model trajectory of
632  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
633  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
634  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
635  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
636  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
637    to memory].
638  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
639  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
640  checkpointing level).  checkpointing level).
641  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
642  on the computing resources available.  on the computing resources available and may be adjusted by
643    adjusting the partitioning among the
644    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
645    
646  \begin{figure}[t!]  \begin{figure}[t!]
647  \begin{center}  \begin{center}
# Line 673  Schematic view of intermediate dump and Line 680  Schematic view of intermediate dump and
680    
681  In this section we describe in a general fashion  In this section we describe in a general fashion
682  the parts of the code that are relevant for automatic  the parts of the code that are relevant for automatic
683  differentiation using the software tool TAMC.  differentiation using the software tool TAF.
684    
685  \input{part5/doc_ad_the_model}  \input{part5/doc_ad_the_model}
686    
687  The basic flow is depicted in \ref{fig:adthemodel}.  The basic flow is depicted in \ref{fig:adthemodel}.
688  If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine  If CPP option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
689  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
690  invokes the adjoint of this routine, {\it adthe\_main\_loop},  invokes the adjoint of this routine, {\it adthe\_main\_loop},
691  which is the toplevel routine in terms of reverse mode computation.  which is the toplevel routine in terms of automatic differentiation.
692  The routine {\it adthe\_main\_loop} has been generated using TAMC.  The routine {\it adthe\_main\_loop} has been generated by TAF.
693  It contains both the forward integration of the full model,  It contains both the forward integration of the full model, the
694    cost function calculation,
695  any additional storing that is required for efficient checkpointing,  any additional storing that is required for efficient checkpointing,
696  and the reverse integration of the adjoint model.  and the reverse integration of the adjoint model.
697  The structure of {\it adthe\_main\_loop} has been strongly  
698  simplified for clarification; in particular, no checkpointing  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
699    
700    In Fig. \ref{fig:adthemodel}
701    the structure of {\it adthe\_main\_loop} has been strongly
702    simplified to focus on the essentials; in particular, no checkpointing
703  procedures are shown here.  procedures are shown here.
704  Prior to the call of {\it adthe\_main\_loop}, the routine  Prior to the call of {\it adthe\_main\_loop}, the routine
705  {\it ctrl\_unpack} is invoked to unpack the control vector,  {\it ctrl\_unpack} is invoked to unpack the control vector
706  and following that call, the routine {\it ctrl\_pack}  or initialise the control variables.
707    Following the call of {\it adthe\_main\_loop},
708    the routine {\it ctrl\_pack}
709  is invoked to pack the control vector  is invoked to pack the control vector
710  (cf. Section \ref{section_ctrl}).  (cf. Section \ref{section_ctrl}).
711  If gradient checks are to be performed, the option  If gradient checks are to be performed, the option
# Line 700  the driver routine {\it grdchk\_main} is Line 714  the driver routine {\it grdchk\_main} is
714  the gradient has been computed via the adjoint  the gradient has been computed via the adjoint
715  (cf. Section \ref{section_grdchk}).  (cf. Section \ref{section_grdchk}).
716    
717    %------------------------------------------------------------------
718    
719    \subsection{General setup
720    \label{section_ad_setup}}
721    
722    In order to configure AD-related setups the following packages need
723    to be enabled:
724    {\it
725    \begin{table}[h!]
726    \begin{tabular}{l}
727    autodiff \\
728    ctrl \\
729    cost \\
730    grdchk \\
731    \end{tabular}
732    \end{table}
733    }
734    The packages are enabled by adding them to your experiment-specific
735    configuration file
736    {\it packages.conf} (see Section ???).
737    
738    The following AD-specific CPP option files need to be customized:
739    %
740    \begin{itemize}
741    %
742    \item {\it ECCO\_CPPOPTIONS.h} \\
743    This header file collects CPP options for the packages
744    {\it autodiff, cost, ctrl} as well as AD-unrelated options for
745    the external forcing package {\it exf}.
746    \footnote{NOTE: These options are not set in their package-specific
747    headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
748    in the single header file {\it ECCO\_CPPOPTIONS.h}.
749    The package-specific header files serve as simple
750    placeholders at this point.}
751    %
752    \item {\it tamc.h} \\
753    This header configures the splitting of the time stepping loop
754    w.r.t. the 3-level checkpointing (see section ???).
755    
756    %
757    \end{itemize}
758    
759    %------------------------------------------------------------------
760    
761    \subsection{Building the AD code
762    \label{section_ad_build}}
763    
764    The build process of an AD code is very similar to building
765    the forward model. However, depending on which AD code one wishes
766    to generate, and on which AD tool is available (TAF or TAMC),
767    the following {\tt make} targets are available:
768    
769    \begin{table}[h!]
770    {\footnotesize
771    \begin{tabular}{ccll}
772    ~ & {\it AD-target} & {\it output} & {\it description} \\
773    \hline
774    \hline
775    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
776    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
777    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
778    ~ & ~ & ~ & useful for compiling on remote platforms \\
779    \hline
780    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
781    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
782    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
783    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
784    \hline
785    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
786    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
787    ~ & ~ & ~ & and compiles all code \\
788    ~ & ~ & ~ & (use of TAF is set as default) \\
789    \hline
790    \hline
791    \end{tabular}
792    }
793    \end{table}
794    %
795    Here, the following placeholders are used
796    %
797    \begin{itemize}
798    %
799    \item [$<$TOOL$>$]
800    %
801    \begin{itemize}
802    %
803    \item {\tt TAF}
804    \item {\tt TAMC}
805    %
806    \end{itemize}
807    %
808    \item [$<$MODE$>$]
809    %
810    \begin{itemize}
811    %
812    \item {\tt ad} generates the adjoint model (ADM)
813    \item {\tt ftl} generates the tangent linear model (TLM)
814    \item {\tt svd} generates both ADM and TLM for \\
815    singular value decomposition (SVD) type calculations
816    %
817    \end{itemize}
818    %
819    \end{itemize}
820    
821    For example, to generate the adjoint model using TAF after routines ({\tt .F})
822    or headers ({\tt .h}) have been modified, but without compilation,
823    type {\tt make adtaf};
824    or, to generate the tangent linear model using TAMC without
825    re-generating the input code, type {\tt make ftltamconly}.
826    
827    
828    A typical full build process to generate the ADM via TAF would
829    look like follows:
830    \begin{verbatim}
831    % mkdir build
832    % cd build
833    % ../../../tools/genmake2 -mods=../code_ad
834    % make depend
835    % make adall
836    \end{verbatim}
837    
838    %------------------------------------------------------------------
839    
840    \subsection{The AD build process in detail
841    \label{section_ad_build_detail}}
842    
843    The {\tt make <MODE>all} target consists of the following procedures:
844    
845    \begin{enumerate}
846    %
847    \item
848    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
849    on which code ought to be generated. Depending on the {\tt make} target,
850    the contents is
851    \begin{itemize}
852    \item
853    {\tt \#define ALLOW\_ADJOINT\_RUN}
854    \item
855    {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
856    \item
857    {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
858    \end{itemize}
859    %
860    \item
861    A single file {\tt <MODE>\_input\_code.f} is concatenated
862    consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
863    and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
864    %
865    \item
866    The AD tool is invoked with the {\bf <MODE>\_<TOOL>\_FLAGS}.
867    The default AD tool flags in {\tt genmake2} can be overrwritten by
868    an {\tt adjoint\_options} file (similar to the platform-specific
869    {\tt build\_options}, see Section ???.
870    The AD tool writes the resulting AD code into the file
871    {\tt <MODE>\_input\_code\_ad.f}
872    %
873    \item
874    A short sed script {\tt adjoint\_sed} is applied to
875    {\tt <MODE>\_input\_code\_ad.f}
876    to reinstate {\bf myThid} into the CALL argument list of active file I/O.
877    The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
878    %
879    \item
880    All routines are compiled and an executable is generated
881    (see Table ???).
882    %
883    \end{enumerate}
884    
885    \subsubsection{The list AD\_FILES and {\tt .list} files}
886    
887    Not all routines are presented to the AD tool.
888    Routines typically hidden are diagnostics routines which
889    do not influence the cost function, but may create
890    artificial flow dependencies such as I/O of active variables.
891    
892    {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
893    which contains all routines that are shown to the AD tool.
894    This list is put together from all files with suffix {\tt .list}
895    that {\tt genmake2} finds in its search directories.
896    The list file for the core MITgcm routines is in {\tt model/src/}
897    is called {\tt model\_ad\_diff.list}.
898    Note that no wrapper routine is shown to TAF. These are either
899    not visible at all to the AD code, or hand-written AD code
900    is available (see next section).
901    
902    Each package directory contains its package-specific
903    list file {\tt <PKG>\_ad\_diff.list}. For example,
904    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
905    Thus, enabling a package will automatically extend the
906    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
907    package-specific routines.
908    Note that you will need to regenerate the {\tt Makefile} if
909    you enable a package (e.g. by adding it to {\tt packages.conf})
910    and a {\tt Makefile} already exists.
911    
912    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
913    
914    TAMC and TAF can evaluate user-specified directives
915    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
916    The main categories of directives are STORE directives and
917    FLOW directives. Here, we are concerned with flow directives,
918    store directives are treated elsewhere.
919    
920    Flow directives enable the AD tool to evaluate how it should treat
921    routines that are 'hidden' by the user, i.e. routines which are
922    not contained in the {\bf AD\_FILES} list (see previous section),
923    but which are called in part of the code that the AD tool does see.
924    The flow directive tell the AD tool
925    %
926    \begin{itemize}
927    %
928    \item which subroutine arguments are input/output
929    \item which subroutine arguments are active
930    \item which subroutine arguments are required to compute the cost
931    \item which subroutine arguments are dependent
932    %
933    \end{itemize}
934    %
935    The syntax for the flow directives can be found in the
936    AD tool manuals.
937    
938    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
939    which contains all files with suffix{\tt .flow} that it finds
940    in its search directories.
941    The flow directives for the core MITgcm routines of
942    {\tt eesupp/src/} and {\tt model/src/}
943    reside in {\tt pkg/autodiff/}.
944    This directory also contains hand-written adjoint code
945    for the MITgcm WRAPPER (see Section ???).
946    
947    Flow directives for package-specific routines are contained in
948    the corresponding package directories in the file
949    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
950    {\tt ptracers\_ad.flow}.
951    
952    \subsubsection{Store directives for 3-level checkpointing}
953    
954    The storing that is required at each period of the
955    3-level checkpointing is controled by three
956    top-level headers.
957    
958    \begin{verbatim}
959    do ilev_3 = 1, nchklev_3
960    #  include ``checkpoint_lev3.h''
961       do ilev_2 = 1, nchklev_2
962    #     include ``checkpoint_lev2.h''
963          do ilev_1 = 1, nchklev_1
964    #        include ``checkpoint_lev1.h''
965    
966    ...
967    
968          end do
969       end do
970    end do
971    \end{verbatim}
972    
973    All files {\tt checkpoint\_lev?.h} are contained in directory
974    {\tt pkg/autodiff/}.
975    
976    
977    \subsubsection{Changing the default AD tool flags: ad\_options files}
978    
979    
980    \subsubsection{Hand-written adjoint code}
981    
982    %------------------------------------------------------------------
983    
984  \subsection{The cost function (dependent variable)  \subsection{The cost function (dependent variable)
985  \label{section_cost}}  \label{section_cost}}
986    
987  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
988  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
989  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
990  The input is referred to as the  The input are referred to as the
991  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
992  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
993  (parameter setting, initialization, accumulation,  (parameter setting, initialization, accumulation,
994  final evaluation), are controlled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
995    The aspects relevant to the treatment of the independent variables
996    are controlled by the package {\it pkg/ctrl} and will be treated
997    in the next section.
998    
999  \input{part5/doc_cost_flow}  \input{part5/doc_cost_flow}
1000    
1001  \subsubsection{genmake and CPP options}  \subsubsection{Enabling the package}
1002  %  
 \begin{itemize}  
 %  
 \item  
1003  \fbox{  \fbox{
1004  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1005  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1006  \end{minipage}  \end{minipage}
1007  }  }
1008  \end{itemize}  \begin{itemize}
 %  
 The directory {\it pkg/cost} can be included to the  
 compile list in 3 different ways (cf. Section \ref{???}):  
1009  %  %
1010  \begin{enumerate}  \item
1011    The package is enabled by adding {\it cost} to your file {\it packages.conf}
1012    (see Section ???)
1013  %  %
1014  \item {\it genmake}: \\  \item
1015  Change the default settings in the file {\it genmake} by adding  
1016  {\bf cost} to the {\bf enable} list (not recommended).  
1017  %  \end{itemize}
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1018  %  %
1019  \end{enumerate}  
1020    N.B.: In general the following packages ought to be enabled
1021    simultaneously: {\it autodiff, cost, ctrl}.
1022  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1023  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1024  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1025  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1026  Since the cost function is usually used in conjunction with  Since the cost function is usually used in conjunction with
1027  automatic differentiation, the CPP option  automatic differentiation, the CPP option
1028  {\bf ALLOW\_ADJOINT\_RUN} should be defined  {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1029  (file {\it CPP\_OPTIONS.h}).  {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1030    should be defined.
1031    
1032  \subsubsection{Initialization}  \subsubsection{Initialization}
1033  %  %
1034  The initialization of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1035  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1036  %  %
1037  \begin{itemize}  \begin{itemize}
1038  %  %
# Line 831  from each contribution and sums over all Line 1106  from each contribution and sums over all
1106  \begin{equation}  \begin{equation}
1107  {\cal J} \, = \,  {\cal J} \, = \,
1108  {\rm fc} \, = \,  {\rm fc} \, = \,
1109  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1110  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1111  \end{equation}  \end{equation}
1112  %  %
# Line 879  are controlled by the package {\it pkg/c Line 1154  are controlled by the package {\it pkg/c
1154  %  %
1155  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1156  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1157  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1158    package, cf. previous section).
1159  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1160  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1161    
# Line 1023  in the code takes on the form Line 1299  in the code takes on the form
1299  %  %
1300  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1301  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1302  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1303    a reset.
1304  The 'active file' routines have been designed  The 'active file' routines have been designed
1305  to support active read and corresponding adjoint active write  to support active read and corresponding adjoint active write
1306  operations (and vice versa).  operations (and vice versa).
# Line 1140  at intermediate times can be written usi Line 1417  at intermediate times can be written usi
1417  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1418  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1419  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1420    The procedure is enabled using via the CPP-option
1421    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1422  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1423  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1424  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1425    The adjoint common blocks are extracted from the adjoint code
1426    via the header file {\it adcommon.h}.
1427    
1428  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1429  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1169  the common blocks Line 1450  the common blocks
1450  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1451  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1452  access to the adjoint variables.  access to the adjoint variables.
1453    
1454    {\bf WARNING:} If the structure of the common blocks
1455    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1456    similar changes will occur in the adjoint common blocks.
1457    Therefore, consistency between the TAMC-generated common blocks
1458    and those in {\it adcommon.h} have to be checked.
1459  %  %
1460  \end{itemize}  \end{itemize}
1461    

Legend:
Removed from v.1.14  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22