/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Diff of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.14 by cnh, Thu Feb 28 19:32:20 2002 UTC revision 1.19 by heimbach, Tue Aug 2 22:26:58 2005 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    Author: Patrick Heimbach
5    
6  {\sf Automatic differentiation} (AD), also referred to as algorithmic  {\sf Automatic differentiation} (AD), also referred to as algorithmic
7  (or, more loosely, computational) differentiation, involves  (or, more loosely, computational) differentiation, involves
8  automatically deriving code to calculate  automatically deriving code to calculate
# Line 42  Jacobian matrices of the forward code's Line 44  Jacobian matrices of the forward code's
44  %**********************************************************************  %**********************************************************************
45  \section{Some basic algebra}  \section{Some basic algebra}
46  \label{sec_ad_algebra}  \label{sec_ad_algebra}
47    \begin{rawhtml}
48    <!-- CMIREDIR:sec_ad_algebra: -->
49    \end{rawhtml}
50  %**********************************************************************  %**********************************************************************
51    
52  Let $ \cal{M} $ be a general nonlinear, model, i.e. a  Let $ \cal{M} $ be a general nonlinear, model, i.e. a
# Line 557  Because of the local character of the de Line 562  Because of the local character of the de
562  (a derivative is defined w.r.t. a point along the trajectory),  (a derivative is defined w.r.t. a point along the trajectory),
563  the intermediate results of the model trajectory  the intermediate results of the model trajectory
564  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$  $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
565  are needed to evaluate the intermediate Jacobian  may be required to evaluate the intermediate Jacobian
566  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.  $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
567    This is the case e.g. for nonlinear expressions
568    (momentum advection, nonlinear equation of state), state-dependent
569    conditional statements (parameterization schemes).
570  In the forward mode, the intermediate results are required  In the forward mode, the intermediate results are required
571  in the same order as computed by the full forward model ${\cal M}$,  in the same order as computed by the full forward model ${\cal M}$,
572  but in the reverse mode they are required in the reverse order.  but in the reverse mode they are required in the reverse order.
# Line 569  point of evaluation has to be recomputed Line 577  point of evaluation has to be recomputed
577    
578  A method to balance the amount of recomputations vs.  A method to balance the amount of recomputations vs.
579  storage requirements is called {\sf checkpointing}  storage requirements is called {\sf checkpointing}
580  (e.g. \cite{res-eta:98}).  (e.g. \cite{gri:92}, \cite{res-eta:98}).
581  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing  It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
582  [as an example, we give explicit numbers for a 3-day  [as an example, we give explicit numbers for a 3-day
583  integration with a 1-hourly timestep in square brackets].  integration with a 1-hourly timestep in square brackets].
# Line 580  In a first step, the model trajectory is Line 588  In a first step, the model trajectory is
588  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],  $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
589  with the label $lev3$ for this outermost loop.  with the label $lev3$ for this outermost loop.
590  The model is then integrated along the full trajectory,  The model is then integrated along the full trajectory,
591  and the model state stored only at every $ k_{i}^{lev3} $-th timestep  and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
592  [i.e. 3 times, at  [i.e. 3 times, at
593  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].  $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
594    In addition, the cost function is computed, if needed.
595  %  %
596  \item [$lev2$]  \item [$lev2$]
597  In a second step each subsection itself is divided into  In a second step each subsection itself is divided into
598  $ {n}^{lev2} $ sub-subsections  $ {n}^{lev2} $ subsections
599  [$ {n}^{lev2} $=4 6-hour intervals per subsection].  [$ {n}^{lev2} $=4 6-hour intervals per subsection].
600  The model picks up at the last outermost dumped state  The model picks up at the last outermost dumped state
601  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along  $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
602  the last subsection, with the label $lev2$ for this    the last subsection, with the label $lev2$ for this  
603  intermediate loop.  intermediate loop.
604  The model state is now stored at every $ k_{i}^{lev2} $-th  The model state is now stored to disk at every $ k_{i}^{lev2} $-th
605  timestep  timestep
606  [i.e. 4 times, at  [i.e. 4 times, at
607  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].  $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
# Line 600  $ i = 0,1,2,3 $ corresponding to $ k_{i} Line 609  $ i = 0,1,2,3 $ corresponding to $ k_{i}
609  \item [$lev1$]  \item [$lev1$]
610  Finally, the model picks up at the last intermediate dump state  Finally, the model picks up at the last intermediate dump state
611  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along  $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
612  the last sub-subsection, with the label $lev1$ for this    the last subsection, with the label $lev1$ for this  
613  intermediate loop.  intermediate loop.
614  Within this sub-subsection only, the model state is stored  Within this sub-subsection only, parts of the model state is stored
615  at every timestep  to memory at every timestep
616  [i.e. every hour $ i=0,...,5$ corresponding to  [i.e. every hour $ i=0,...,5$ corresponding to
617  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].  $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
618  Thus, the  final state $ v_n = v_{k_{n}^{lev1}} $ is reached  The  final state $ v_n = v_{k_{n}^{lev1}} $ is reached
619  and the model state of all proceeding timesteps along the last  and the model state of all preceding timesteps along the last
620  sub-subsections are available, enabling integration backwards  innermost subsection are available, enabling integration backwards
621  in time along the last sub-subsection.  in time along the last subsection.
622  Thus, the adjoint can be computed along this last  The adjoint can thus be computed along this last
623  sub-subsection $k_{n}^{lev2}$.  subsection $k_{n}^{lev2}$.
624  %  %
625  \end{itemize}  \end{itemize}
626  %  %
627  This procedure is repeated consecutively for each previous  This procedure is repeated consecutively for each previous
628  sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $  subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
629  carrying the adjoint computation to the initial time  carrying the adjoint computation to the initial time
630  of the subsection $k_{n}^{lev3}$.  of the subsection $k_{n}^{lev3}$.
631  Then, the procedure is repeated for the previous subsection  Then, the procedure is repeated for the previous subsection
# Line 627  $k_{1}^{lev3}$. Line 636  $k_{1}^{lev3}$.
636  For the full model trajectory of  For the full model trajectory of
637  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps  $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
638  the required storing of the model state was significantly reduced to  the required storing of the model state was significantly reduced to
639  $ n^{lev1} + n^{lev2} + n^{lev3} $  $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
640  [i.e. for the 3-day integration with a total oof 72 timesteps  [i.e. for the 3-day integration with a total oof 72 timesteps
641  the model state was stored 13 times].  the model state was stored 7 times to disk and roughly 6 times
642    to memory].
643  This saving in memory comes at a cost of a required  This saving in memory comes at a cost of a required
644  3 full forward integrations of the model (one for each  3 full forward integrations of the model (one for each
645  checkpointing level).  checkpointing level).
646  The balance of storage vs. recomputation certainly depends  The optimal balance of storage vs. recomputation certainly depends
647  on the computing resources available.  on the computing resources available and may be adjusted by
648    adjusting the partitioning among the
649    $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
650    
651  \begin{figure}[t!]  \begin{figure}[t!]
652  \begin{center}  \begin{center}
# Line 669  Schematic view of intermediate dump and Line 681  Schematic view of intermediate dump and
681  %**********************************************************************  %**********************************************************************
682  \section{TLM and ADM generation in general}  \section{TLM and ADM generation in general}
683  \label{sec_ad_setup_gen}  \label{sec_ad_setup_gen}
684    \begin{rawhtml}
685    <!-- CMIREDIR:sec_ad_setup_gen: -->
686    \end{rawhtml}
687  %**********************************************************************  %**********************************************************************
688    
689  In this section we describe in a general fashion  In this section we describe in a general fashion
690  the parts of the code that are relevant for automatic  the parts of the code that are relevant for automatic
691  differentiation using the software tool TAMC.  differentiation using the software tool TAF.
692    
693  \input{part5/doc_ad_the_model}  \input{part5/doc_ad_the_model}
694    
695  The basic flow is depicted in \ref{fig:adthemodel}.  The basic flow is depicted in \ref{fig:adthemodel}.
696  If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine  If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined,
697    the driver routine
698  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},  {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
699  invokes the adjoint of this routine, {\it adthe\_main\_loop},  invokes the adjoint of this routine, {\it adthe\_main\_loop}
700  which is the toplevel routine in terms of reverse mode computation.  (case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or
701  The routine {\it adthe\_main\_loop} has been generated using TAMC.  the tangent linear of this routine {\it g\_the\_main\_loop}
702  It contains both the forward integration of the full model,  (case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}),
703    which are the toplevel routines in terms of automatic differentiation.
704    The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop}
705    are generated by TAF.
706    It contains both the forward integration of the full model, the
707    cost function calculation,
708  any additional storing that is required for efficient checkpointing,  any additional storing that is required for efficient checkpointing,
709  and the reverse integration of the adjoint model.  and the reverse integration of the adjoint model.
710  The structure of {\it adthe\_main\_loop} has been strongly  
711  simplified for clarification; in particular, no checkpointing  [DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]
712    
713    In Fig. \ref{fig:adthemodel}
714    the structure of {\it adthe\_main\_loop} has been strongly
715    simplified to focus on the essentials; in particular, no checkpointing
716  procedures are shown here.  procedures are shown here.
717  Prior to the call of {\it adthe\_main\_loop}, the routine  Prior to the call of {\it adthe\_main\_loop}, the routine
718  {\it ctrl\_unpack} is invoked to unpack the control vector,  {\it ctrl\_unpack} is invoked to unpack the control vector
719  and following that call, the routine {\it ctrl\_pack}  or initialise the control variables.
720    Following the call of {\it adthe\_main\_loop},
721    the routine {\it ctrl\_pack}
722  is invoked to pack the control vector  is invoked to pack the control vector
723  (cf. Section \ref{section_ctrl}).  (cf. Section \ref{section_ctrl}).
724  If gradient checks are to be performed, the option  If gradient checks are to be performed, the option
# Line 700  the driver routine {\it grdchk\_main} is Line 727  the driver routine {\it grdchk\_main} is
727  the gradient has been computed via the adjoint  the gradient has been computed via the adjoint
728  (cf. Section \ref{section_grdchk}).  (cf. Section \ref{section_grdchk}).
729    
730    %------------------------------------------------------------------
731    
732    \subsection{General setup
733    \label{section_ad_setup}}
734    
735    In order to configure AD-related setups the following packages need
736    to be enabled:
737    {\it
738    \begin{table}[h!]
739    \begin{tabular}{l}
740    autodiff \\
741    ctrl \\
742    cost \\
743    grdchk \\
744    \end{tabular}
745    \end{table}
746    }
747    The packages are enabled by adding them to your experiment-specific
748    configuration file
749    {\it packages.conf} (see Section ???).
750    
751    The following AD-specific CPP option files need to be customized:
752    %
753    \begin{itemize}
754    %
755    \item {\it ECCO\_CPPOPTIONS.h} \\
756    This header file collects CPP options for the packages
757    {\it autodiff, cost, ctrl} as well as AD-unrelated options for
758    the external forcing package {\it exf}.
759    \footnote{NOTE: These options are not set in their package-specific
760    headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected
761    in the single header file {\it ECCO\_CPPOPTIONS.h}.
762    The package-specific header files serve as simple
763    placeholders at this point.}
764    %
765    \item {\it tamc.h} \\
766    This header configures the splitting of the time stepping loop
767    w.r.t. the 3-level checkpointing (see section ???).
768    
769    %
770    \end{itemize}
771    
772    %------------------------------------------------------------------
773    
774    \subsection{Building the AD code
775    \label{section_ad_build}}
776    
777    The build process of an AD code is very similar to building
778    the forward model. However, depending on which AD code one wishes
779    to generate, and on which AD tool is available (TAF or TAMC),
780    the following {\tt make} targets are available:
781    
782    \begin{table}[h!]
783    {\footnotesize
784    \begin{tabular}{ccll}
785    ~ & {\it AD-target} & {\it output} & {\it description} \\
786    \hline
787    \hline
788    (1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f}  &
789    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
790    ~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\
791    ~ & ~ & ~ & useful for compiling on remote platforms \\
792    \hline
793    (2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f}  &
794    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
795    ~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\
796    ~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\
797    \hline
798    (3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>}  &
799    generates code for $<$MODE$>$ using $<$TOOL$>$ \\
800    ~ & ~ & ~ & and compiles all code \\
801    ~ & ~ & ~ & (use of TAF is set as default) \\
802    \hline
803    \hline
804    \end{tabular}
805    }
806    \end{table}
807    %
808    Here, the following placeholders are used
809    %
810    \begin{itemize}
811    %
812    \item [$<$TOOL$>$]
813    %
814    \begin{itemize}
815    %
816    \item {\tt TAF}
817    \item {\tt TAMC}
818    %
819    \end{itemize}
820    %
821    \item [$<$MODE$>$]
822    %
823    \begin{itemize}
824    %
825    \item {\tt ad} generates the adjoint model (ADM)
826    \item {\tt ftl} generates the tangent linear model (TLM)
827    \item {\tt svd} generates both ADM and TLM for \\
828    singular value decomposition (SVD) type calculations
829    %
830    \end{itemize}
831    %
832    \end{itemize}
833    
834    For example, to generate the adjoint model using TAF after routines ({\tt .F})
835    or headers ({\tt .h}) have been modified, but without compilation,
836    type {\tt make adtaf};
837    or, to generate the tangent linear model using TAMC without
838    re-generating the input code, type {\tt make ftltamconly}.
839    
840    
841    A typical full build process to generate the ADM via TAF would
842    look like follows:
843    \begin{verbatim}
844    % mkdir build
845    % cd build
846    % ../../../tools/genmake2 -mods=../code_ad
847    % make depend
848    % make adall
849    \end{verbatim}
850    
851    %------------------------------------------------------------------
852    
853    \subsection{The AD build process in detail
854    \label{section_ad_build_detail}}
855    
856    The {\tt make <MODE>all} target consists of the following procedures:
857    
858    \begin{enumerate}
859    %
860    \item
861    A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option
862    on which code ought to be generated. Depending on the {\tt make} target,
863    the contents is
864    \begin{itemize}
865    \item
866    {\tt \#define ALLOW\_ADJOINT\_RUN}
867    \item
868    {\tt \#define ALLOW\_TANGENTLINEAR\_RUN}
869    \item
870    {\tt \#define ALLOW\_ECCO\_OPTIMIZATION}
871    \end{itemize}
872    %
873    \item
874    A single file {\tt <MODE>\_input\_code.f} is concatenated
875    consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES}
876    and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}.
877    %
878    \item
879    The AD tool is invoked with the {\bf <MODE>\_<TOOL>\_FLAGS}.
880    The default AD tool flags in {\tt genmake2} can be overrwritten by
881    an {\tt adjoint\_options} file (similar to the platform-specific
882    {\tt build\_options}, see Section ???.
883    The AD tool writes the resulting AD code into the file
884    {\tt <MODE>\_input\_code\_ad.f}
885    %
886    \item
887    A short sed script {\tt adjoint\_sed} is applied to
888    {\tt <MODE>\_input\_code\_ad.f}
889    to reinstate {\bf myThid} into the CALL argument list of active file I/O.
890    The result is written to file {\tt <MODE>\_<TOOL>\_output.f}.
891    %
892    \item
893    All routines are compiled and an executable is generated
894    (see Table ???).
895    %
896    \end{enumerate}
897    
898    \subsubsection{The list AD\_FILES and {\tt .list} files}
899    
900    Not all routines are presented to the AD tool.
901    Routines typically hidden are diagnostics routines which
902    do not influence the cost function, but may create
903    artificial flow dependencies such as I/O of active variables.
904    
905    {\tt genmake2} generates a list (or variable) {\bf AD\_FILES}
906    which contains all routines that are shown to the AD tool.
907    This list is put together from all files with suffix {\tt .list}
908    that {\tt genmake2} finds in its search directories.
909    The list file for the core MITgcm routines is in {\tt model/src/}
910    is called {\tt model\_ad\_diff.list}.
911    Note that no wrapper routine is shown to TAF. These are either
912    not visible at all to the AD code, or hand-written AD code
913    is available (see next section).
914    
915    Each package directory contains its package-specific
916    list file {\tt <PKG>\_ad\_diff.list}. For example,
917    {\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}.
918    Thus, enabling a package will automatically extend the
919    {\bf AD\_FILES} list of {\tt genmake2} to incorporate the
920    package-specific routines.
921    Note that you will need to regenerate the {\tt Makefile} if
922    you enable a package (e.g. by adding it to {\tt packages.conf})
923    and a {\tt Makefile} already exists.
924    
925    \subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files}
926    
927    TAMC and TAF can evaluate user-specified directives
928    that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}).
929    The main categories of directives are STORE directives and
930    FLOW directives. Here, we are concerned with flow directives,
931    store directives are treated elsewhere.
932    
933    Flow directives enable the AD tool to evaluate how it should treat
934    routines that are 'hidden' by the user, i.e. routines which are
935    not contained in the {\bf AD\_FILES} list (see previous section),
936    but which are called in part of the code that the AD tool does see.
937    The flow directive tell the AD tool
938    %
939    \begin{itemize}
940    %
941    \item which subroutine arguments are input/output
942    \item which subroutine arguments are active
943    \item which subroutine arguments are required to compute the cost
944    \item which subroutine arguments are dependent
945    %
946    \end{itemize}
947    %
948    The syntax for the flow directives can be found in the
949    AD tool manuals.
950    
951    {\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES}
952    which contains all files with suffix{\tt .flow} that it finds
953    in its search directories.
954    The flow directives for the core MITgcm routines of
955    {\tt eesupp/src/} and {\tt model/src/}
956    reside in {\tt pkg/autodiff/}.
957    This directory also contains hand-written adjoint code
958    for the MITgcm WRAPPER (see Section ???).
959    
960    Flow directives for package-specific routines are contained in
961    the corresponding package directories in the file
962    {\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in
963    {\tt ptracers\_ad.flow}.
964    
965    \subsubsection{Store directives for 3-level checkpointing}
966    
967    The storing that is required at each period of the
968    3-level checkpointing is controled by three
969    top-level headers.
970    
971    \begin{verbatim}
972    do ilev_3 = 1, nchklev_3
973    #  include ``checkpoint_lev3.h''
974       do ilev_2 = 1, nchklev_2
975    #     include ``checkpoint_lev2.h''
976          do ilev_1 = 1, nchklev_1
977    #        include ``checkpoint_lev1.h''
978    
979    ...
980    
981          end do
982       end do
983    end do
984    \end{verbatim}
985    
986    All files {\tt checkpoint\_lev?.h} are contained in directory
987    {\tt pkg/autodiff/}.
988    
989    
990    \subsubsection{Changing the default AD tool flags: ad\_options files}
991    
992    
993    \subsubsection{Hand-written adjoint code}
994    
995    %------------------------------------------------------------------
996    
997  \subsection{The cost function (dependent variable)  \subsection{The cost function (dependent variable)
998  \label{section_cost}}  \label{section_cost}}
999    
1000  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.  The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1001  It is a function of the input variables $ \vec{u} $ via the composition  It is a function of the input variables $ \vec{u} $ via the composition
1002  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.  $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1003  The input is referred to as the  The input are referred to as the
1004  {\sf independent variables} or {\sf control variables}.  {\sf independent variables} or {\sf control variables}.
1005  All aspects relevant to the treatment of the cost function $ {\cal J} $  All aspects relevant to the treatment of the cost function $ {\cal J} $
1006  (parameter setting, initialization, accumulation,  (parameter setting, initialization, accumulation,
1007  final evaluation), are controlled by the package {\it pkg/cost}.  final evaluation), are controlled by the package {\it pkg/cost}.
1008    The aspects relevant to the treatment of the independent variables
1009    are controlled by the package {\it pkg/ctrl} and will be treated
1010    in the next section.
1011    
1012  \input{part5/doc_cost_flow}  \input{part5/doc_cost_flow}
1013    
1014  \subsubsection{genmake and CPP options}  \subsubsection{Enabling the package}
1015  %  
 \begin{itemize}  
 %  
 \item  
1016  \fbox{  \fbox{
1017  \begin{minipage}{12cm}  \begin{minipage}{12cm}
1018  {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}  {\it packages.conf}, {\it ECCO\_CPPOPTIONS.h}
1019  \end{minipage}  \end{minipage}
1020  }  }
1021  \end{itemize}  \begin{itemize}
1022  %  %
1023  The directory {\it pkg/cost} can be included to the  \item
1024  compile list in 3 different ways (cf. Section \ref{???}):  The package is enabled by adding {\it cost} to your file {\it packages.conf}
1025    (see Section ???)
1026  %  %
1027  \begin{enumerate}  \item
1028  %  
1029  \item {\it genmake}: \\  
1030  Change the default settings in the file {\it genmake} by adding  \end{itemize}
 {\bf cost} to the {\bf enable} list (not recommended).  
 %  
 \item {\it .genmakerc}: \\  
 Customize the settings of {\bf enable}, {\bf disable} which are  
 appropriate for your experiment in the file {\it .genmakerc}  
 and add the file to your compile directory.  
 %  
 \item genmake-options: \\  
 Call {\it genmake} with the option  
 {\tt genmake -enable=cost}.  
1031  %  %
1032  \end{enumerate}  
1033    N.B.: In general the following packages ought to be enabled
1034    simultaneously: {\it autodiff, cost, ctrl}.
1035  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.  The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1036  Each specific cost function contribution has its own option.  Each specific cost function contribution has its own option.
1037  For the present example the option is {\bf ALLOW\_COST\_TRACER}.  For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1038  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}  All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1039  Since the cost function is usually used in conjunction with  Since the cost function is usually used in conjunction with
1040  automatic differentiation, the CPP option  automatic differentiation, the CPP option
1041  {\bf ALLOW\_ADJOINT\_RUN} should be defined  {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
1042  (file {\it CPP\_OPTIONS.h}).  {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
1043    should be defined.
1044    
1045  \subsubsection{Initialization}  \subsubsection{Initialization}
1046  %  %
1047  The initialization of the {\it cost} package is readily enabled  The initialization of the {\it cost} package is readily enabled
1048  as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.  as soon as the CPP option {\bf ALLOW\_COST} is defined.
1049  %  %
1050  \begin{itemize}  \begin{itemize}
1051  %  %
# Line 831  from each contribution and sums over all Line 1119  from each contribution and sums over all
1119  \begin{equation}  \begin{equation}
1120  {\cal J} \, = \,  {\cal J} \, = \,
1121  {\rm fc} \, = \,  {\rm fc} \, = \,
1122  {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}  {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
1123  {\rm objf\_tracer}(bi,bj) \, + \, ...  {\rm objf\_tracer}(bi,bj) \, + \, ...
1124  \end{equation}  \end{equation}
1125  %  %
# Line 879  are controlled by the package {\it pkg/c Line 1167  are controlled by the package {\it pkg/c
1167  %  %
1168  To enable the directory to be included to the compile list,  To enable the directory to be included to the compile list,
1169  {\bf ctrl} has to be added to the {\bf enable} list in  {\bf ctrl} has to be added to the {\bf enable} list in
1170  {\it .genmakerc} (or {\it genmake} itself).  {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
1171    package, cf. previous section).
1172  Each control variable is enabled via its own CPP option  Each control variable is enabled via its own CPP option
1173  in {\it ECCO\_CPPOPTIONS.h}.  in {\it ECCO\_CPPOPTIONS.h}.
1174    
# Line 1023  in the code takes on the form Line 1312  in the code takes on the form
1312  %  %
1313  Note, that reading an active variable corresponds  Note, that reading an active variable corresponds
1314  to a variable assignment. Its derivative corresponds  to a variable assignment. Its derivative corresponds
1315  to a write statement of the adjoint variable.  to a write statement of the adjoint variable, followed by
1316    a reset.
1317  The 'active file' routines have been designed  The 'active file' routines have been designed
1318  to support active read and corresponding adjoint active write  to support active read and corresponding adjoint active write
1319  operations (and vice versa).  operations (and vice versa).
# Line 1140  at intermediate times can be written usi Line 1430  at intermediate times can be written usi
1430  {\it addummy\_in\_stepping}.  {\it addummy\_in\_stepping}.
1431  This routine is part of the adjoint support package  This routine is part of the adjoint support package
1432  {\it pkg/autodiff} (cf.f. below).  {\it pkg/autodiff} (cf.f. below).
1433    The procedure is enabled using via the CPP-option
1434    {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1435  To be part of the adjoint code, the corresponding S/R  To be part of the adjoint code, the corresponding S/R
1436  {\it dummy\_in\_stepping} has to be called in the forward  {\it dummy\_in\_stepping} has to be called in the forward
1437  model (S/R {\it the\_main\_loop}) at the appropriate place.  model (S/R {\it the\_main\_loop}) at the appropriate place.
1438    The adjoint common blocks are extracted from the adjoint code
1439    via the header file {\it adcommon.h}.
1440    
1441  {\it dummy\_in\_stepping} is essentially empty,  {\it dummy\_in\_stepping} is essentially empty,
1442  the corresponding adjoint routine is hand-written rather  the corresponding adjoint routine is hand-written rather
# Line 1169  the common blocks Line 1463  the common blocks
1463  {\bf /adtr1\_r/}, {\bf /adffields/},  {\bf /adtr1\_r/}, {\bf /adffields/},
1464  which have been extracted from the adjoint code to enable  which have been extracted from the adjoint code to enable
1465  access to the adjoint variables.  access to the adjoint variables.
1466    
1467    {\bf WARNING:} If the structure of the common blocks
1468    {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1469    similar changes will occur in the adjoint common blocks.
1470    Therefore, consistency between the TAMC-generated common blocks
1471    and those in {\it adcommon.h} have to be checked.
1472  %  %
1473  \end{itemize}  \end{itemize}
1474    

Legend:
Removed from v.1.14  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22