152 |
\label{deljidentity} |
\label{deljidentity} |
153 |
\end{equation} |
\end{equation} |
154 |
% |
% |
155 |
(note, that the gradient $ \nabla f $ is a pseudo-vector, therefore |
(note, that the gradient $ \nabla f $ is a co-vector, therefore |
156 |
its transpose is required in the above inner product). |
its transpose is required in the above inner product). |
157 |
Then, using the representation of |
Then, using the representation of |
158 |
$ \delta {\cal J} = |
$ \delta {\cal J} = |
1212 |
\caption{~} |
\caption{~} |
1213 |
\end{figure} |
\end{figure} |
1214 |
|
|
1215 |
|
%%%% \end{document} |
1216 |
|
|
1217 |
\begin{figure} |
\begin{figure} |
1218 |
\input{part5/doc_ad_the_main} |
\input{part5/doc_ad_the_main} |
1219 |
\label{fig:adthemain} |
\label{fig:adthemain} |