/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Annotation of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Fri Oct 5 22:22:20 2001 UTC (23 years, 9 months ago) by heimbach
Branch: MAIN
Changes since 1.3: +292 -152 lines
File MIME type: application/x-tex
Revised part 5.

1 heimbach 1.4 % $Header: /u/gcmpack/mitgcmdoc/part5/doc_ad_2.tex,v 1.3 2001/09/27 02:00:24 cnh Exp $
2 heimbach 1.2 % $Name: $
3 adcroft 1.1
4     {\sf Automatic differentiation} (AD), also referred to as algorithmic
5     (or, more loosely, computational) differentiation, involves
6     automatically deriving code to calculate
7     partial derivatives from an existing fully non-linear prognostic code.
8     (see \cite{gri:00}).
9     A software tool is used that parses and transforms source files
10     according to a set of linguistic and mathematical rules.
11     AD tools are like source-to-source translators in that
12     they parse a program code as input and produce a new program code
13     as output.
14     However, unlike a pure source-to-source translation, the output program
15     represents a new algorithm, such as the evaluation of the
16     Jacobian, the Hessian, or higher derivative operators.
17     In principle, a variety of derived algorithms
18     can be generated automatically in this way.
19    
20     The MITGCM has been adapted for use with the
21 heimbach 1.4 Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
22 adcroft 1.1 (Transformation of Algorithms in Fortran), developed
23     by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
24     The first application of the adjoint of the MITGCM for senistivity
25     studies has been published by \cite{maro-eta:99}.
26     \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
27     for ocean state estimation studies.
28 heimbach 1.4 In the following we shall refer to TAMC and TAF synonymously,
29     except were explicitly stated otherwise.
30 adcroft 1.1
31     TAMC exploits the chain rule for computing the first
32     derivative of a function with
33     respect to a set of input variables.
34     Treating a given forward code as a composition of operations --
35 heimbach 1.4 each line representing a compositional element, the chain rule is
36 adcroft 1.1 rigorously applied to the code, line by line. The resulting
37     tangent linear or adjoint code,
38     then, may be thought of as the composition in
39     forward or reverse order, respectively, of the
40 heimbach 1.4 Jacobian matrices of the forward code's compositional elements.
41 adcroft 1.1
42     %**********************************************************************
43     \section{Some basic algebra}
44     \label{sec_ad_algebra}
45     %**********************************************************************
46    
47     Let $ \cal{M} $ be a general nonlinear, model, i.e. a
48     mapping from the $m$-dimensional space
49     $U \subset I\!\!R^m$ of input variables
50     $\vec{u}=(u_1,\ldots,u_m)$
51     (model parameters, initial conditions, boundary conditions
52     such as forcing functions) to the $n$-dimensional space
53     $V \subset I\!\!R^n$ of
54     model output variable $\vec{v}=(v_1,\ldots,v_n)$
55     (model state, model diagnostcs, objective function, ...)
56     under consideration,
57     %
58     \begin{equation}
59     \begin{split}
60     {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
61     ~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
62     {\cal M}(\vec{u})
63     \label{fulloperator}
64     \end{split}
65     \end{equation}
66     %
67     The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
68     some given basis vectors
69     $ {\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m} $ and
70     $ {\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n} $ as
71     \[
72     \vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i},
73     \qquad
74     \vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j}
75     \]
76    
77     Two routes may be followed to determine the sensitivity of the
78     output variable $\vec{v}$ to its input $\vec{u}$.
79    
80     \subsection{Forward or direct sensitivity}
81     %
82     Consider a perturbation to the input variables $\delta \vec{u}$
83     (typically a single component
84     $\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}$).
85     Their effect on the output may be obtained via the linear
86     approximation of the model $ {\cal M}$ in terms of its Jacobian matrix
87     $ M $, evaluated in the point $u^{(0)}$ according to
88     %
89     \begin{equation}
90     \delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u}
91     \label{tangent_linear}
92     \end{equation}
93     with resulting output perturbation $\delta \vec{v}$.
94     In components
95     $M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i} $,
96     it reads
97     %
98     \begin{equation}
99     \delta v_{j} \, = \, \sum_{i}
100     \left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \,
101     \delta u_{i}
102     \label{jacobi_matrix}
103     \end{equation}
104     %
105     Eq. (\ref{tangent_linear}) is the {\sf tangent linear model (TLM)}.
106     In contrast to the full nonlinear model $ {\cal M} $, the operator
107     $ M $ is just a matrix
108     which can readily be used to find the forward sensitivity of $\vec{v}$ to
109     perturbations in $u$,
110 heimbach 1.4 but if there are very many input variables $(\gg O(10^{6})$ for
111 adcroft 1.1 large-scale oceanographic application), it quickly becomes
112     prohibitive to proceed directly as in (\ref{tangent_linear}),
113     if the impact of each component $ {\bf e_{i}} $ is to be assessed.
114    
115     \subsection{Reverse or adjoint sensitivity}
116     %
117     Let us consider the special case of a
118     scalar objective function ${\cal J}(\vec{v})$ of the model output (e.g.
119     the total meridional heat transport,
120     the total uptake of $CO_{2}$ in the Southern
121     Ocean over a time interval,
122     or a measure of some model-to-data misfit)
123     %
124     \begin{eqnarray}
125     \begin{array}{cccccc}
126     {\cal J} \, : & U &
127     \longrightarrow & V &
128     \longrightarrow & I \!\! R \\
129     ~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) &
130     \longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u}))
131     \end{array}
132     \label{compo}
133     \end{eqnarray}
134     %
135 heimbach 1.4 The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
136 adcroft 1.1 \[
137 heimbach 1.4 {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
138 adcroft 1.1 \]
139     can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
140     w.r.t. their corresponding inner product
141     $\left\langle \,\, , \,\, \right\rangle $
142     %
143     \begin{equation}
144     \begin{split}
145     {\cal J} & = \,
146     {\cal J} |_{\vec{u}^{(0)}} \, + \,
147     \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
148     \, + \, O(\delta \vec{u}^2) \\
149     ~ & = \,
150     {\cal J} |_{\vec{v}^{(0)}} \, + \,
151     \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
152     \, + \, O(\delta \vec{v}^2)
153     \end{split}
154     \label{deljidentity}
155     \end{equation}
156     %
157 heimbach 1.2 (note, that the gradient $ \nabla f $ is a co-vector, therefore
158 adcroft 1.1 its transpose is required in the above inner product).
159     Then, using the representation of
160     $ \delta {\cal J} =
161     \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle $,
162     the definition
163     of an adjoint operator $ A^{\ast} $ of a given operator $ A $,
164     \[
165     \left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle =
166     \left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle
167     \]
168     which for finite-dimensional vector spaces is just the
169     transpose of $ A $,
170     \[
171     A^{\ast} \, = \, A^T
172     \]
173 heimbach 1.4 and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
174     we note that
175 adcroft 1.1 (omitting $|$'s):
176     %
177     \begin{equation}
178     \delta {\cal J}
179     \, = \,
180     \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle
181     \, = \,
182     \left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle
183     \, = \,
184     \left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \,
185     \delta \vec{u} \, \right\rangle
186     \label{inner}
187     \end{equation}
188     %
189     With the identity (\ref{deljidentity}), we then find that
190     the gradient $ \nabla _{u}{\cal J} $ can be readily inferred by
191     invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
192     %
193     \begin{equation}
194     \begin{split}
195     \nabla _{u}{\cal J}^T |_{\vec{u}} &
196     = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\
197     ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
198     ~ & = \, \delta \vec{u}^{\ast}
199     \end{split}
200     \label{adjoint}
201     \end{equation}
202     %
203     Eq. (\ref{adjoint}) is the {\sf adjoint model (ADM)},
204     in which $M^T$ is the adjoint (here, the transpose) of the
205     tangent linear operator $M$, $ \delta \vec{v}^{\ast} $
206     the adjoint variable of the model state $ \vec{v} $, and
207     $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
208    
209     The {\sf reverse} nature of the adjoint calculation can be readily
210 heimbach 1.4 seen as follows.
211     Consider a model integration which consists of $ \Lambda $
212     consecutive operations
213     $ {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
214     ...... ( {\cal M}_{\lambda} (
215     ......
216     ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
217     where the ${\cal M}$'s could be the elementary steps, i.e. single lines
218     in the code of the model, or successive time steps of the
219     model integration,
220     starting at step 0 and moving up to step $\Lambda$, with intermediate
221     ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
222     ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
223     Let ${\cal J}$ be a cost funciton which explicitly depends on the
224     final state $\vec{v}$ only
225     (this restriction is for clarity reasons only).
226     %
227     ${\cal J}(u)$ may be decomposed according to:
228 adcroft 1.1 %
229     \begin{equation}
230     {\cal J}({\cal M}(\vec{u})) \, = \,
231     {\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
232     ...... ( {\cal M}_{\lambda} (
233     ......
234     ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))))
235     \label{compos}
236     \end{equation}
237     %
238 heimbach 1.4 Then, according to the chain rule, the forward calculation reads,
239     in terms of the Jacobi matrices
240 adcroft 1.1 (we've omitted the $ | $'s which, nevertheless are important
241     to the aspect of {\it tangent} linearity;
242 heimbach 1.4 note also that by definition
243 adcroft 1.1 $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
244     = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
245     %
246     \begin{equation}
247     \begin{split}
248     \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
249     \nabla_v {\cal J} \cdot M_{\Lambda}
250     \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
251     M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
252     ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
253     \end{split}
254     \label{forward}
255     \end{equation}
256     %
257     whereas in reverse mode we have
258     %
259     \begin{equation}
260     \boxed{
261     \begin{split}
262     M^T ( \nabla_v {\cal J}^T) & = \,
263     M_{0}^T \cdot M_{1}^T
264     \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
265     M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\
266     ~ & = \, M_{0}^T \cdot M_{1}^T
267     \cdot ...... \cdot
268     \nabla_{v^{(\lambda)}} {\cal J}^T \\
269     ~ & = \, \nabla_u {\cal J}^T
270     \end{split}
271     }
272     \label{reverse}
273     \end{equation}
274     %
275     clearly expressing the reverse nature of the calculation.
276     Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
277 heimbach 1.4 If the intermediate steps $\lambda$ in
278 adcroft 1.1 eqn. (\ref{compos}) -- (\ref{reverse})
279 heimbach 1.4 represent the model state (forward or adjoint) at each
280     intermediate time step as noted above, then correspondingly,
281     $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
282     \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
283     It thus becomes evident that the adjoint calculation also
284     yields the adjoint of each model state component
285     $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
286 adcroft 1.1 %
287     \begin{equation}
288     \boxed{
289     \begin{split}
290     \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
291     & = \,
292     M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
293     M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
294     ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
295     \end{split}
296     }
297     \end{equation}
298     %
299     in close analogy to eq. (\ref{adjoint})
300     We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
301 heimbach 1.4 are the Lagrange multipliers of the model equations which determine
302     $ \vec{v}^{(\lambda)}$.
303 adcroft 1.1
304     In coponents, eq. (\ref{adjoint}) reads as follows.
305     Let
306     \[
307     \begin{array}{rclcrcl}
308     \delta \vec{u} & = &
309     \left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad &
310     \delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = &
311     \left(
312     \frac{\partial {\cal J}}{\partial u_1},\ldots,
313     \frac{\partial {\cal J}}{\partial u_m}
314     \right)^T \\
315     \delta \vec{v} & = &
316     \left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad &
317     \delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = &
318     \left(
319     \frac{\partial {\cal J}}{\partial v_1},\ldots,
320     \frac{\partial {\cal J}}{\partial v_n}
321     \right)^T \\
322     \end{array}
323     \]
324     denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
325     and their adjoint varaiables;
326     further
327     \[
328     M \, = \, \left(
329     \begin{array}{ccc}
330     \frac{\partial {\cal M}_1}{\partial u_1} & \ldots &
331     \frac{\partial {\cal M}_1}{\partial u_m} \\
332     \vdots & ~ & \vdots \\
333     \frac{\partial {\cal M}_n}{\partial u_1} & \ldots &
334     \frac{\partial {\cal M}_n}{\partial u_m} \\
335     \end{array}
336     \right)
337     \]
338     is the Jacobi matrix of $ {\cal M} $
339     (an $ n \times m $ matrix)
340     such that $ \delta \vec{v} = M \cdot \delta \vec{u} $, or
341     \[
342     \delta v_{j}
343     \, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i}
344     \, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
345     \delta u_{i}
346     \]
347     %
348     Then eq. (\ref{adjoint}) takes the form
349     \[
350     \delta u_{i}^{\ast}
351     \, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast}
352     \, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
353     \delta v_{j}^{\ast}
354     \]
355     %
356     or
357     %
358     \[
359     \left(
360     \begin{array}{c}
361     \left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\
362     \vdots \\
363     \left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\
364     \end{array}
365     \right)
366     \, = \,
367     \left(
368     \begin{array}{ccc}
369     \left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}}
370     & \ldots &
371     \left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\
372     \vdots & ~ & \vdots \\
373     \left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}}
374     & \ldots &
375     \left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\
376     \end{array}
377     \right)
378     \cdot
379     \left(
380     \begin{array}{c}
381     \left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\
382     \vdots \\
383     \left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\
384     \end{array}
385     \right)
386     \]
387     %
388     Furthermore, the adjoint $ \delta v^{(\lambda) \, \ast} $
389     of any intermediate state $ v^{(\lambda)} $
390     may be obtained, using the intermediate Jacobian
391     (an $ n_{\lambda+1} \times n_{\lambda} $ matrix)
392     %
393     \[
394     M_{\lambda} \, = \,
395     \left(
396     \begin{array}{ccc}
397     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
398     & \ldots &
399     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
400     \vdots & ~ & \vdots \\
401     \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1}
402     & \ldots &
403     \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
404     \end{array}
405     \right)
406     \]
407     %
408     and the shorthand notation for the adjoint variables
409     $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
410     {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
411     for intermediate components, yielding
412 heimbach 1.4 \begin{equation}
413     \small
414     \begin{split}
415 adcroft 1.1 \left(
416     \begin{array}{c}
417     \delta v^{(\lambda) \, \ast}_1 \\
418     \vdots \\
419     \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
420     \end{array}
421     \right)
422 heimbach 1.4 \, = &
423 adcroft 1.1 \left(
424     \begin{array}{ccc}
425     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
426 heimbach 1.4 & \ldots \,\, \ldots &
427 adcroft 1.1 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
428     \vdots & ~ & \vdots \\
429     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
430 heimbach 1.4 & \ldots \,\, \ldots &
431 adcroft 1.1 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
432     \end{array}
433     \right)
434 heimbach 1.4 \cdot
435 adcroft 1.1 %
436 heimbach 1.4 \\ ~ & ~
437     \\ ~ &
438 adcroft 1.1 %
439     \left(
440     \begin{array}{ccc}
441     \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
442     & \ldots &
443     \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\
444     \vdots & ~ & \vdots \\
445     \vdots & ~ & \vdots \\
446     \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}}
447     & \ldots &
448     \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
449     \end{array}
450     \right)
451 heimbach 1.4 \cdot \, \ldots \, \cdot
452 adcroft 1.1 \left(
453     \begin{array}{c}
454     \delta v^{\ast}_1 \\
455     \vdots \\
456     \delta v^{\ast}_{n} \\
457     \end{array}
458     \right)
459 heimbach 1.4 \end{split}
460     \end{equation}
461 adcroft 1.1
462     Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
463     showing the advantage of the reverse over the forward mode
464     if the gradient $\nabla _{u}{\cal J}$, i.e. the sensitivity of the
465     cost function $ {\cal J} $ with respect to {\it all} input
466     variables $u$
467     (or the sensitivity of the cost function with respect to
468     {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
469     In order to be able to solve for each component of the gradient
470     $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
471     a forward calulation has to be performed for each component seperately,
472     i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
473     for the $i$-th forward calculation.
474     Then, (\ref{forward}) represents the
475     projection of $ \nabla_u {\cal J} $ onto the $i$-th component.
476     The full gradient is retrieved from the $ m $ forward calculations.
477     In contrast, eq. (\ref{reverse}) yields the full
478     gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
479     $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
480    
481 heimbach 1.4 Note, that if $ {\cal J} $ is a vector-valued function
482 adcroft 1.1 of dimension $ l > 1 $,
483     eq. (\ref{reverse}) has to be modified according to
484     \[
485     M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right)
486     \, = \,
487     \nabla_u {\cal J}^T \cdot \delta \vec{J}
488     \]
489 heimbach 1.4 where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
490     dimenison $ l $.
491 adcroft 1.1 In this case $ l $ reverse simulations have to be performed
492     for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
493     Then, the reverse mode is more efficient as long as
494     $ l < n $, otherwise the forward mode is preferable.
495     Stricly, the reverse mode is called adjoint mode only for
496     $ l = 1 $.
497    
498     A detailed analysis of the underlying numerical operations
499     shows that the computation of $\nabla _{u}{\cal J}$ in this way
500     requires about 2 to 5 times the computation of the cost function.
501     Alternatively, the gradient vector could be approximated
502     by finite differences, requiring $m$ computations
503     of the perturbed cost function.
504    
505     To conclude we give two examples of commonly used types
506     of cost functions:
507    
508     \paragraph{Example 1:
509     $ {\cal J} = v_{j} (T) $} ~ \\
510     The cost function consists of the $j$-th component of the model state
511     $ \vec{v} $ at time $T$.
512     Then $ \nabla_v {\cal J}^T = {\vec{f}_{j}} $ is just the $j$-th
513     unit vector. The $ \nabla_u {\cal J}^T $
514     is the projection of the adjoint
515     operator onto the $j$-th component ${\bf f_{j}}$,
516     \[
517     \nabla_u {\cal J}^T
518     \, = \, M^T \cdot \nabla_v {\cal J}^T
519     \, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}}
520     \]
521    
522     \paragraph{Example 2:
523     $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
524     \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
525 heimbach 1.4 The cost function represents the quadratic model vs. data misfit.
526 adcroft 1.1 Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
527     operator which maps the model state space onto the data space.
528     Then, $ \nabla_v {\cal J} $ takes the form
529     %
530     \begin{equation*}
531     \begin{split}
532     \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
533     \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
534     ~ & = \, 2 \sum_{j} \left\{ \sum_k
535     \frac{\partial {\cal H}_k}{\partial v_{j}}
536     \left( {\cal H}_k (\vec{v}) - d_k \right)
537     \right\} \, {\vec{f}_{j}} \\
538     \end{split}
539     \end{equation*}
540     %
541     where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
542     Jacobi matrix of the data projection operator.
543     Thus, the gradient $ \nabla_u {\cal J} $ is given by the
544     adjoint operator,
545     driven by the model vs. data misfit:
546     \[
547     \nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot
548     H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right)
549     \]
550    
551     \subsection{Storing vs. recomputation in reverse mode}
552     \label{checkpointing}
553    
554     We note an important aspect of the forward vs. reverse
555     mode calculation.
556 heimbach 1.4 Because of the local character of the derivative
557     (a derivative is defined w.r.t. a point along the trajectory),
558 adcroft 1.1 the intermediate results of the model trajectory
559     $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560     are needed to evaluate the intermediate Jacobian
561     $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562     In the forward mode, the intermediate results are required
563     in the same order as computed by the full forward model ${\cal M}$,
564 heimbach 1.4 but in the reverse mode they are required in the reverse order.
565 adcroft 1.1 Thus, in the reverse mode the trajectory of the forward model
566     integration ${\cal M}$ has to be stored to be available in the reverse
567 heimbach 1.4 calculation. Alternatively, the complete model state up to the
568     point of evaluation has to be recomputed whenever its value is required.
569 adcroft 1.1
570     A method to balance the amount of recomputations vs.
571     storage requirements is called {\sf checkpointing}
572     (e.g. \cite{res-eta:98}).
573 heimbach 1.4 It is depicted in \reffig{3levelcheck} for a 3-level checkpointing
574     [as an example, we give explicit numbers for a 3-day
575 adcroft 1.1 integration with a 1-hourly timestep in square brackets].
576     \begin{itemize}
577     %
578     \item [$lev3$]
579     In a first step, the model trajectory is subdivided into
580     $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
581     with the label $lev3$ for this outermost loop.
582 heimbach 1.4 The model is then integrated along the full trajectory,
583 adcroft 1.1 and the model state stored only at every $ k_{i}^{lev3} $-th timestep
584     [i.e. 3 times, at
585     $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
586     %
587     \item [$lev2$]
588 heimbach 1.4 In a second step each subsection itself is divided into
589     $ {n}^{lev2} $ sub-subsections
590 adcroft 1.1 [$ {n}^{lev2} $=4 6-hour intervals per subsection].
591     The model picks up at the last outermost dumped state
592 heimbach 1.4 $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
593 adcroft 1.1 the last subsection, with the label $lev2$ for this
594     intermediate loop.
595 heimbach 1.4 The model state is now stored at every $ k_{i}^{lev2} $-th
596 adcroft 1.1 timestep
597     [i.e. 4 times, at
598     $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
599     %
600     \item [$lev1$]
601 heimbach 1.4 Finally, the model picks up at the last intermediate dump state
602     $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
603     the last sub-subsection, with the label $lev1$ for this
604 adcroft 1.1 intermediate loop.
605 heimbach 1.4 Within this sub-subsection only, the model state is stored
606 adcroft 1.1 at every timestep
607     [i.e. every hour $ i=0,...,5$ corresponding to
608     $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
609     Thus, the final state $ v_n = v_{k_{n}^{lev1}} $ is reached
610 heimbach 1.4 and the model state of all peceeding timesteps along the last
611     sub-subsections are available, enabling integration backwards
612     in time along the last sub-subsection.
613     Thus, the adjoint can be computed along this last
614     sub-subsection $k_{n}^{lev2}$.
615 adcroft 1.1 %
616     \end{itemize}
617     %
618     This procedure is repeated consecutively for each previous
619 heimbach 1.4 sub-subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
620 adcroft 1.1 carrying the adjoint computation to the initial time
621     of the subsection $k_{n}^{lev3}$.
622     Then, the procedure is repeated for the previous subsection
623     $k_{n-1}^{lev3}$
624     carrying the adjoint computation to the initial time
625     $k_{1}^{lev3}$.
626    
627     For the full model trajectory of
628     $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
629     the required storing of the model state was significantly reduced to
630     $ n^{lev1} + n^{lev2} + n^{lev3} $
631     [i.e. for the 3-day integration with a total oof 72 timesteps
632     the model state was stored 13 times].
633     This saving in memory comes at a cost of a required
634     3 full forward integrations of the model (one for each
635     checkpointing level).
636     The balance of storage vs. recomputation certainly depends
637     on the computing resources available.
638    
639     \begin{figure}[t!]
640     \centering
641     %\psdraft
642     \psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
643     \psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
644     \psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
645     \psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
646     \psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
647     \psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
648     \psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
649     \psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
650     \mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
651     %\psfull
652     \caption
653     {Schematic view of intermediate dump and restart for
654     3-level checkpointing.}
655 heimbach 1.4 \label{fig:3levelcheck}
656 adcroft 1.1 \end{figure}
657    
658 heimbach 1.4 % \subsection{Optimal perturbations}
659     % \label{sec_optpert}
660 adcroft 1.1
661    
662 heimbach 1.4 % \subsection{Error covariance estimate and Hessian matrix}
663     % \label{sec_hessian}
664 adcroft 1.1
665     \newpage
666    
667     %**********************************************************************
668     \section{AD-specific setup by example: sensitivity of carbon sequestration}
669     \label{sec_ad_setup_ex}
670     %**********************************************************************
671    
672 heimbach 1.4 The MITGCM has been adapted to enable AD using TAMC or TAF.
673 adcroft 1.1 The present description, therefore, is specific to the
674 heimbach 1.4 use of TAMC or TAF as AD tool.
675 adcroft 1.1 The following sections describe the steps which are necessary to
676     generate a tangent linear or adjoint model of the MITGCM.
677     We take as an example the sensitivity of carbon sequestration
678     in the ocean.
679     The AD-relevant hooks in the code are sketched in
680     \reffig{adthemodel}, \reffig{adthemain}.
681    
682     \subsection{Overview of the experiment}
683    
684     We describe an adjoint sensitivity analysis of outgassing from
685 heimbach 1.4 the ocean into the atmosphere of a carbon-like tracer injected
686 adcroft 1.1 into the ocean interior (see \cite{hil-eta:01}).
687    
688     \subsubsection{Passive tracer equation}
689    
690     For this work the MITGCM was augmented with a thermodynamically
691     inactive tracer, $C$. Tracer residing in the ocean
692     model surface layer is outgassed according to a relaxation time scale,
693     $\mu$. Within the ocean interior, the tracer is passively advected
694     by the ocean model currents. The full equation for the time evolution
695     %
696     \begin{equation}
697     \label{carbon_ddt}
698     \frac{\partial C}{\partial t} \, = \,
699     -U\cdot \nabla C \, - \, \mu C \, + \, \Gamma(C) \,+ \, S
700     \end{equation}
701     %
702     also includes a source term $S$. This term
703     represents interior sources of $C$ such as would arise due to
704     direct injection.
705     The velocity term, $U$, is the sum of the
706     model Eulerian circulation and an eddy-induced velocity, the latter
707 heimbach 1.4 parameterized according to Gent/McWilliams
708     (\cite{gen-mcw:90, gen-eta:95}).
709 adcroft 1.1 The convection function, $\Gamma$, mixes $C$ vertically wherever the
710     fluid is locally statically unstable.
711    
712     The outgassing time scale, $\mu$, in eqn. (\ref{carbon_ddt})
713     is set so that \( 1/\mu \sim 1 \ \mathrm{year} \) for the surface
714     ocean and $\mu=0$ elsewhere. With this value, eqn. (\ref{carbon_ddt})
715     is valid as a prognostic equation for small perturbations in oceanic
716     carbon concentrations. This configuration provides a
717     powerful tool for examining the impact of large-scale ocean circulation
718     on $ CO_2 $ outgassing due to interior injections.
719     As source we choose a constant in time injection of
720     $ S = 1 \,\, {\rm mol / s}$.
721    
722     \subsubsection{Model configuration}
723    
724     The model configuration employed has a constant
725     $4^\circ \times 4^\circ$ resolution horizontal grid and realistic
726     geography and bathymetry. Twenty vertical layers are used with
727     vertical spacing ranging
728     from 50 m near the surface to 815 m at depth.
729     Driven to steady-state by climatalogical wind-stress, heat and
730     fresh-water forcing the model reproduces well known large-scale
731     features of the ocean general circulation.
732    
733     \subsubsection{Outgassing cost function}
734    
735     To quantify and understand outgassing due to injections of $C$
736     in eqn. (\ref{carbon_ddt}),
737     we define a cost function $ {\cal J} $ that measures the total amount of
738     tracer outgassed at each timestep:
739     %
740     \begin{equation}
741     \label{cost_tracer}
742     {\cal J}(t=T)=\int_{t=0}^{t=T}\int_{A} \mu C \, dA \, dt
743     \end{equation}
744     %
745     Equation(\ref{cost_tracer}) integrates the outgassing term, $\mu C$,
746     from (\ref{carbon_ddt})
747     over the entire ocean surface area, $A$, and accumulates it
748     up to time $T$.
749     Physically, ${\cal J}$ can be thought of as representing the amount of
750     $CO_2$ that our model predicts would be outgassed following an
751     injection at rate $S$.
752     The sensitivity of ${\cal J}$ to the spatial location of $S$,
753     $\frac{\partial {\cal J}}{\partial S}$,
754     can be used to identify regions from which circulation
755     would cause $CO_2$ to rapidly outgas following injection
756     and regions in which $CO_2$ injections would remain effectively
757     sequesterd within the ocean.
758    
759     \subsection{Code configuration}
760    
761     The model configuration for this experiment resides under the
762     directory {\it verification/carbon/}.
763     The code customisation routines are in {\it verification/carbon/code/}:
764     %
765     \begin{itemize}
766     %
767     \item {\it .genmakerc}
768     %
769     \item {\it COST\_CPPOPTIONS.h}
770     %
771     \item {\it CPP\_EEOPTIONS.h}
772     %
773     \item {\it CPP\_OPTIONS.h}
774     %
775     \item {\it CTRL\_OPTIONS.h}
776     %
777     \item {\it ECCO\_OPTIONS.h}
778     %
779     \item {\it SIZE.h}
780     %
781     \item {\it adcommon.h}
782     %
783     \item {\it tamc.h}
784     %
785     \end{itemize}
786     %
787     The runtime flag and parameters settings are contained in
788     {\it verification/carbon/input/},
789     together with the forcing fields and and restart files:
790     %
791     \begin{itemize}
792     %
793     \item {\it data}
794     %
795     \item {\it data.cost}
796     %
797     \item {\it data.ctrl}
798     %
799 heimbach 1.4 \item {\it data.gmredi}
800     %
801     \item {\it data.grdchk}
802     %
803     \item {\it data.optim}
804     %
805 adcroft 1.1 \item {\it data.pkg}
806     %
807     \item {\it eedata}
808     %
809     \item {\it topog.bin}
810     %
811     \item {\it windx.bin, windy.bin}
812     %
813     \item {\it salt.bin, theta.bin}
814     %
815     \item {\it SSS.bin, SST.bin}
816     %
817     \item {\it pickup*}
818     %
819     \end{itemize}
820     %
821     Finally, the file to generate the adjoint code resides in
822     $ adjoint/ $:
823     %
824     \begin{itemize}
825     %
826     \item {\it makefile}
827     %
828     \end{itemize}
829     %
830    
831     Below we describe the customisations of this files which are
832     specific to this experiment.
833    
834     \subsubsection{File {\it .genmakerc}}
835 heimbach 1.4 This file overwrites default settings of {\it genmake}.
836 adcroft 1.1 In the present example it is used to switch on the following
837     packages which are related to automatic differentiation
838     and are disabled by default: \\
839 heimbach 1.4 \hspace*{4ex} {\tt set ENABLE=( autodiff cost ctrl ecco gmredi grdchk kpp )} \\
840 adcroft 1.1 Other packages which are not needed are switched off: \\
841     \hspace*{4ex} {\tt set DISABLE=( aim obcs zonal\_filt shap\_filt cal exf )}
842    
843     \subsubsection{File {\it COST\_CPPOPTIONS.h, CTRL\_OPTIONS.h}}
844    
845     These files used to contain package-specific CPP-options
846     (see Section \ref{???}).
847     For technical reasons those options have been grouped together
848     in the file {\it ECCO\_OPTIONS.h}.
849     To retain the modularity, the files have been kept and contain
850     the standard include of the {\it CPP\_OPTIONS.h} file.
851    
852     \subsubsection{File {\it CPP\_EEOPTIONS.h}}
853    
854     This file contains 'wrapper'-specific CPP options.
855     It only needs to be changed if the code is to be run
856 heimbach 1.4 in a parallel environment (see Section \ref{???}).
857 adcroft 1.1
858     \subsubsection{File {\it CPP\_OPTIONS.h}}
859    
860     This file contains model-specific CPP options
861     (see Section \ref{???}).
862     Most options are related to the forward model setup.
863     They are identical to the global steady circulation setup of
864     {\it verification/exp2/}.
865 heimbach 1.4 The three options specific to this experiment are \\
866     \hspace*{4ex} {\tt \#define ALLOW\_PASSIVE\_TRACER} \\
867     This flag enables the code to carry through the
868     advection/diffusion of a passive tracer along the
869     model integration. \\
870 adcroft 1.1 \hspace*{4ex} {\tt \#define ALLOW\_MIT\_ADJOINT\_RUN} \\
871     This flag enables the inclusion of some AD-related fields
872     concerning initialisation, link between control variables
873     and forward model variables, and the call to the top-level
874     forward/adjoint subroutine {\it adthe\_main\_loop}
875 heimbach 1.4 instead of {\it the\_main\_loop}. \\
876     \hspace*{4ex} {\tt \#define ALLOW\_GRADIENT\_CHECK} \\
877     This flag enables the gradient check package.
878     After computing the unperturbed cost function and its gradient,
879     a series of computations are performed for which \\
880     $\bullet$ an element of the control vector is perturbed \\
881     $\bullet$ the cost function w.r.t. the perturbed element is
882     computed \\
883     $\bullet$ the difference between the perturbed and unperturbed
884     cost function is computed to compute the finite difference gradient \\
885     $\bullet$ the finite difference gradient is compared with the
886     adjoint-generated gradient.
887     The gradient check package is further described in Section ???.
888 adcroft 1.1
889     \subsubsection{File {\it ECCO\_OPTIONS.h}}
890    
891     The CPP options of several AD-related packages are grouped
892     in this file:
893     %
894     \begin{itemize}
895     %
896     \item
897     Adjoint support package: {\it pkg/autodiff/} \\
898     This package contains hand-written adjoint code such as
899     active file handling, flow directives for files which must not
900     be differentiated, and TAMC-specific header files. \\
901     \hspace*{4ex} {\tt \#define ALLOW\_AUTODIFF\_TAMC} \\
902     defines TAMC-related features in the code. \\
903     \hspace*{4ex} {\tt \#define ALLOW\_TAMC\_CHECKPOINTING} \\
904     enables the checkpointing feature of TAMC
905     (see Section \ref{???}).
906     In the present example a 3-level checkpointing is implemented.
907     The code contains the relevant store directives, common block
908     and tape initialisations, storing key computation,
909     and loop index handling.
910     The checkpointing length at each level is defined in
911     file {\it tamc.h}, cf. below.
912     %
913     \item Cost function package: {\it pkg/cost/} \\
914     This package contains all relevant routines for
915     initialising, accumulating and finalizing the cost function
916     (see Section \ref{???}). \\
917     \hspace*{4ex} {\tt \#define ALLOW\_COST} \\
918     enables all general aspects of the cost function handling,
919     in particular the hooks in the foorward code for
920     initialising, accumulating and finalizing the cost function. \\
921     \hspace*{4ex} {\tt \#define ALLOW\_COST\_TRACER} \\
922 heimbach 1.4 includes the call to the cost function for this
923 adcroft 1.1 particular experiment, eqn. (\ref{cost_tracer}).
924     %
925     \item Control variable package: {\it pkg/ctrl/} \\
926     This package contains all relevant routines for
927     the handling of the control vector.
928     Each control variable can be enabled/disabled with its own flag: \\
929     \begin{tabular}{ll}
930     \hspace*{2ex} {\tt \#define ALLOW\_THETA0\_CONTROL} &
931     initial temperature \\
932     \hspace*{2ex} {\tt \#define ALLOW\_SALT0\_CONTROL} &
933     initial salinity \\
934     \hspace*{2ex} {\tt \#define ALLOW\_TR0\_CONTROL} &
935     initial passive tracer concentration \\
936     \hspace*{2ex} {\tt \#define ALLOW\_TAUU0\_CONTROL} &
937     zonal wind stress \\
938     \hspace*{2ex} {\tt \#define ALLOW\_TAUV0\_CONTROL} &
939     meridional wind stress \\
940     \hspace*{2ex} {\tt \#define ALLOW\_SFLUX0\_CONTROL} &
941     freshwater flux \\
942     \hspace*{2ex} {\tt \#define ALLOW\_HFLUX0\_CONTROL} &
943     heat flux \\
944 heimbach 1.4 \hspace*{2ex} {\tt \#define ALLOW\_DIFFKR\_CONTROL} &
945 adcroft 1.1 diapycnal diffusivity \\
946     \hspace*{2ex} {\tt \#undef ALLOW\_KAPPAGM\_CONTROL} &
947     isopycnal diffusivity \\
948     \end{tabular}
949     %
950     \end{itemize}
951    
952     \subsubsection{File {\it SIZE.h}}
953    
954     The file contains the grid point dimensions of the forward
955     model. It is identical to the {\it verification/exp2/}: \\
956     \hspace*{4ex} {\tt sNx = 90} \\
957     \hspace*{4ex} {\tt sNy = 40} \\
958     \hspace*{4ex} {\tt Nr = 20} \\
959     It correpsponds to a single-tile/single-processor setup:
960     {\tt nSx = nSy = 1, nPx = nPy = 1},
961     with standard overlap dimensioning
962     {\tt OLx = OLy = 3}.
963    
964     \subsubsection{File {\it adcommon.h}}
965    
966     This file contains common blocks of some adjoint variables
967     that are generated by TAMC.
968     The common blocks are used by the adjoint support routine
969     {\it addummy\_in\_stepping} which needs to access those variables:
970    
971     \begin{tabular}{ll}
972     \hspace*{4ex} {\tt common /addynvars\_r/} &
973     \hspace*{4ex} is related to {\it DYNVARS.h} \\
974     \hspace*{4ex} {\tt common /addynvars\_cd/} &
975     \hspace*{4ex} is related to {\it DYNVARS.h} \\
976 heimbach 1.4 \hspace*{4ex} {\tt common /addynvars\_diffkr/} &
977     \hspace*{4ex} is related to {\it DYNVARS.h} \\
978     \hspace*{4ex} {\tt common /addynvars\_kapgm/} &
979     \hspace*{4ex} is related to {\it DYNVARS.h} \\
980 adcroft 1.1 \hspace*{4ex} {\tt common /adtr1\_r/} &
981     \hspace*{4ex} is related to {\it TR1.h} \\
982     \hspace*{4ex} {\tt common /adffields/} &
983     \hspace*{4ex} is related to {\it FFIELDS.h}\\
984     \end{tabular}
985    
986     Note that if the structure of the common block changes in the
987     above header files of the forward code, the structure
988     of the adjoint common blocks will change accordingly.
989     Thus, it has to be made sure that the structure of the
990     adjoint common block in the hand-written file {\it adcommon.h}
991     complies with the automatically generated adjoint common blocks
992     in {\it adjoint\_model.F}.
993    
994     \subsubsection{File {\it tamc.h}}
995    
996     This routine contains the dimensions for TAMC checkpointing.
997     %
998     \begin{itemize}
999     %
1000     \item {\tt \#ifdef ALLOW\_TAMC\_CHECKPOINTING} \\
1001     3-level checkpointing is enabled, i.e. the timestepping
1002     is divided into three different levels (see Section \ref{???}).
1003     The model state of the outermost ({\tt nchklev\_3}) and the
1004 heimbach 1.4 intermediate ({\tt nchklev\_2}) timestepping loop are stored to file
1005 adcroft 1.1 (handled in {\it the\_main\_loop}).
1006     The innermost loop ({\tt nchklev\_1})
1007     avoids I/O by storing all required variables
1008     to common blocks. This storing may also be necessary if
1009     no checkpointing is chosen
1010     (nonlinear functions, if-statements, iterative loops, ...).
1011     In the present example the dimensions are chosen as follows: \\
1012     \hspace*{4ex} {\tt nchklev\_1 = 36 } \\
1013     \hspace*{4ex} {\tt nchklev\_2 = 30 } \\
1014     \hspace*{4ex} {\tt nchklev\_3 = 60 } \\
1015     To guarantee that the checkpointing intervals span the entire
1016 heimbach 1.4 integration period the following relation must be satisfied: \\
1017 adcroft 1.1 \hspace*{4ex} {\tt nchklev\_1*nchklev\_2*nchklev\_3 $ \ge $ nTimeSteps} \\
1018     where {\tt nTimeSteps} is either specified in {\it data}
1019     or computed via \\
1020     \hspace*{4ex} {\tt nTimeSteps = (endTime-startTime)/deltaTClock }.
1021     %
1022     \item {\tt \#undef ALLOW\_TAMC\_CHECKPOINTING} \\
1023     No checkpointing is enabled.
1024     In this case the relevant counter is {\tt nchklev\_0}.
1025     Similar to above, the following relation has to be satisfied \\
1026     \hspace*{4ex} {\tt nchklev\_0 $ \ge $ nTimeSteps}.
1027     %
1028     \end{itemize}
1029    
1030 heimbach 1.4 The following parameters may be worth describing: \\
1031     %
1032     \hspace*{4ex} {\tt isbyte} \\
1033     \hspace*{4ex} {\tt maxpass} \\
1034     ~
1035    
1036 adcroft 1.1 \subsubsection{File {\it makefile}}
1037    
1038     This file contains all relevant paramter flags and
1039 heimbach 1.4 lists to run TAMC or TAF.
1040 adcroft 1.1 It is assumed that TAMC is available to you, either locally,
1041     being installed on your network, or remotely through the 'TAMC Utility'.
1042     TAMC is called with the command {\tt tamc} followed by a
1043     number of options. They are described in detail in the
1044     TAMC manual \cite{gie:99}.
1045     Here we briefly discuss the main flags used in the {\it makefile}
1046     %
1047     \begin{itemize}
1048     \item [{\tt tamc}] {\tt
1049     -input <variable names>
1050 heimbach 1.4 -output <variable name> -r4 ... \\
1051 adcroft 1.1 -toplevel <S/R name> -reverse <file names>
1052     }
1053     \end{itemize}
1054     %
1055     \begin{itemize}
1056     %
1057     \item {\tt -toplevel <S/R name>} \\
1058     Name of the toplevel routine, with respect to which the
1059     control flow analysis is performed.
1060     %
1061     \item {\tt -input <variable names>} \\
1062     List of independent variables $ u $ with respect to which the
1063     dependent variable $ J $ is differentiated.
1064     %
1065     \item {\tt -output <variable name>} \\
1066     Dependent variable $ J $ which is to be differentiated.
1067     %
1068     \item {\tt -reverse <file names>} \\
1069     Adjoint code is generated to compute the sensitivity of an
1070     independent variable w.r.t. many dependent variables.
1071 heimbach 1.4 In the discussion of Section ???
1072     the generated adjoint top-level routine computes the product
1073 adcroft 1.1 of the transposed Jacobian matrix $ M^T $ times
1074     the gradient vector $ \nabla_v J $.
1075     \\
1076     {\tt <file names>} refers to the list of files {\it .f} which are to be
1077     analyzed by TAMC. This list is generally smaller than the full list
1078     of code to be compiled. The files not contained are either
1079     above the top-level routine (some initialisations), or are
1080     deliberately hidden from TAMC, either because hand-written
1081     adjoint routines exist, or the routines must not (or don't have to)
1082     be differentiated. For each routine which is part of the flow tree
1083 heimbach 1.4 of the top-level routine, but deliberately hidden from TAMC
1084     (or for each package which contains such routines),
1085 adcroft 1.1 a corresponding file {\it .flow} exists containing flow directives
1086     for TAMC.
1087     %
1088 heimbach 1.4 \item {\tt -r4} \\
1089     ~
1090     %
1091 adcroft 1.1 \end{itemize}
1092    
1093    
1094     \subsubsection{File {\it data}}
1095    
1096     \subsubsection{File {\it data.cost}}
1097    
1098     \subsubsection{File {\it data.ctrl}}
1099    
1100 heimbach 1.4 \subsubsection{File {\it data.gmredi}}
1101    
1102     \subsubsection{File {\it data.grdchk}}
1103    
1104     \subsubsection{File {\it data.optim}}
1105    
1106 adcroft 1.1 \subsubsection{File {\it data.pkg}}
1107    
1108     \subsubsection{File {\it eedata}}
1109    
1110     \subsubsection{File {\it topog.bin}}
1111    
1112     \subsubsection{File {\it windx.bin, windy.bin}}
1113    
1114     \subsubsection{File {\it salt.bin, theta.bin}}
1115    
1116     \subsubsection{File {\it SSS.bin, SST.bin}}
1117    
1118     \subsubsection{File {\it pickup*}}
1119    
1120     \subsection{Compiling the model and its adjoint}
1121    
1122     \newpage
1123    
1124     %**********************************************************************
1125 heimbach 1.4 \section{TLM and ADM generation in general}
1126 adcroft 1.1 \label{sec_ad_setup_gen}
1127     %**********************************************************************
1128    
1129     In this section we describe in a general fashion
1130     the parts of the code that are relevant for automatic
1131     differentiation using the software tool TAMC.
1132    
1133 heimbach 1.4 \begin{figure}[b!]
1134     \input{part5/doc_ad_the_model}
1135     \caption{~}
1136     \label{fig:adthemodel}
1137     \end{figure}
1138    
1139     The basic flow is depicted in \reffig{adthemodel}.
1140     If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
1141     {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
1142     invokes the adjoint of this routine, {\it adthe\_main\_loop},
1143     which is the toplevel routine in terms of reverse mode computation.
1144     The routine {\it adthe\_main\_loop} has been generated using TAMC.
1145     It contains both the forward integration of the full model,
1146     any additional storing that is required for efficient checkpointing,
1147     and the reverse integration of the adjoint model.
1148     The structure of {\it adthe\_main\_loop} has been strongly
1149     simplified for clarification; in particular, no checkpointing
1150     procedures are shown here.
1151     Prior to the call of {\it adthe\_main\_loop}, the routine
1152     {\it ctrl\_unpack} is invoked to unpack the control vector,
1153     and following that call, the routine {\it ctrl\_pack}
1154     is invoked to pack the control vector
1155     (cf. Section \ref{section_ctrl}).
1156     If gradient checks are to be performed, the option
1157     {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
1158     the driver routine {\it grdchk\_main} is called after
1159     the gradient has been computed via the adjoint
1160     (cf. Section \ref{section_grdchk}).
1161    
1162     \subsection{The cost function (dependent variable)
1163     \label{section_cost}}
1164 adcroft 1.1
1165     The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
1166     It is a function of the input variables $ \vec{u} $ via the composition
1167     $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
1168     The input is referred to as the
1169     {\sf independent variables} or {\sf control variables}.
1170     All aspects relevant to the treatment of the cost function $ {\cal J} $
1171 heimbach 1.4 (parameter setting, initialisation, accumulation,
1172     final evaluation), are controlled by the package {\it pkg/cost}.
1173    
1174     \begin{figure}[h!]
1175     \input{part5/doc_cost_flow}
1176     \caption{~}
1177     \label{fig:costflow}
1178     \end{figure}
1179 adcroft 1.1
1180     \subsubsection{genmake and CPP options}
1181     %
1182     \begin{itemize}
1183     %
1184     \item
1185     \fbox{
1186     \begin{minipage}{12cm}
1187     {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1188     \end{minipage}
1189     }
1190     \end{itemize}
1191     %
1192     The directory {\it pkg/cost} can be included to the
1193     compile list in 3 different ways (cf. Section \ref{???}):
1194     %
1195     \begin{enumerate}
1196     %
1197     \item {\it genmake}: \\
1198 heimbach 1.4 Change the default settings in the file {\it genmake} by adding
1199 adcroft 1.1 {\bf cost} to the {\bf enable} list (not recommended).
1200     %
1201     \item {\it .genmakerc}: \\
1202     Customize the settings of {\bf enable}, {\bf disable} which are
1203     appropriate for your experiment in the file {\it .genmakerc}
1204     and add the file to your compile directory.
1205     %
1206     \item genmake-options: \\
1207     Call {\it genmake} with the option
1208     {\tt genmake -enable=cost}.
1209     %
1210     \end{enumerate}
1211 heimbach 1.4 The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
1212     Each specific cost function contribution has its own option.
1213     For the present example the option is {\bf ALLOW\_COST\_TRACER}.
1214     All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
1215 adcroft 1.1 Since the cost function is usually used in conjunction with
1216     automatic differentiation, the CPP option
1217     {\bf ALLOW\_ADJOINT\_RUN} should be defined
1218     (file {\it CPP\_OPTIONS.h}).
1219    
1220     \subsubsection{Initialisation}
1221     %
1222     The initialisation of the {\it cost} package is readily enabled
1223     as soon as the CPP option {\bf ALLOW\_ADJOINT\_RUN} is defined.
1224     %
1225     \begin{itemize}
1226     %
1227     \item
1228     \fbox{
1229     \begin{minipage}{12cm}
1230     Parameters: {\it cost\_readparms}
1231     \end{minipage}
1232     }
1233     \\
1234     This S/R
1235     reads runtime flags and parameters from file {\it data.cost}.
1236     For the present example the only relevant parameter read
1237     is {\bf mult\_tracer}. This multiplier enables different
1238     cost function contributions to be switched on
1239     ( = 1.) or off ( = 0.) at runtime.
1240     For more complex cost functions which involve model vs. data
1241     misfits, the corresponding data filenames and data
1242     specifications (start date and time, period, ...) are read
1243     in this S/R.
1244     %
1245     \item
1246     \fbox{
1247     \begin{minipage}{12cm}
1248     Variables: {\it cost\_init}
1249     \end{minipage}
1250     }
1251     \\
1252     This S/R
1253     initialises the different cost function contributions.
1254     The contribtion for the present example is {\bf objf\_tracer}
1255     which is defined on each tile (bi,bj).
1256     %
1257     \end{itemize}
1258     %
1259 heimbach 1.4 \subsubsection{Accumulation}
1260 adcroft 1.1 %
1261     \begin{itemize}
1262     %
1263     \item
1264     \fbox{
1265     \begin{minipage}{12cm}
1266     {\it cost\_tile}, {\it cost\_tracer}
1267     \end{minipage}
1268     }
1269     \end{itemize}
1270     %
1271     The 'driver' routine
1272     {\it cost\_tile} is called at the end of each time step.
1273     Within this 'driver' routine, S/R are called for each of
1274     the chosen cost function contributions.
1275     In the present example ({\bf ALLOW\_COST\_TRACER}),
1276     S/R {\it cost\_tracer} is called.
1277     It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).
1278     %
1279     \subsubsection{Finalize all contributions}
1280     %
1281     \begin{itemize}
1282     %
1283     \item
1284     \fbox{
1285     \begin{minipage}{12cm}
1286     {\it cost\_final}
1287     \end{minipage}
1288     }
1289     \end{itemize}
1290     %
1291     At the end of the forward integration S/R {\it cost\_final}
1292     is called. It accumulates the total cost function {\bf fc}
1293     from each contribution and sums over all tiles:
1294     \begin{equation}
1295     {\cal J} \, = \,
1296     {\rm fc} \, = \,
1297     {\rm mult\_tracer} \sum_{bi,\,bj}^{nSx,\,nSy}
1298     {\rm objf\_tracer}(bi,bj) \, + \, ...
1299     \end{equation}
1300     %
1301     The total cost function {\bf fc} will be the
1302     'dependent' variable in the argument list for TAMC, i.e.
1303     \begin{verbatim}
1304     tamc -output 'fc' ...
1305     \end{verbatim}
1306    
1307 cnh 1.3 %%%% \end{document}
1308 adcroft 1.1
1309     \begin{figure}
1310     \input{part5/doc_ad_the_main}
1311 heimbach 1.4 \caption{~}
1312 adcroft 1.1 \label{fig:adthemain}
1313     \end{figure}
1314    
1315 heimbach 1.4 \subsection{The control variables (independent variables)
1316     \label{section_ctrl}}
1317 adcroft 1.1
1318     The control variables are a subset of the model input
1319     (initial conditions, boundary conditions, model parameters).
1320     Here we identify them with the variable $ \vec{u} $.
1321     All intermediate variables whose derivative w.r.t. control
1322 heimbach 1.4 variables do not vanish are called {\sf active variables}.
1323 adcroft 1.1 All subroutines whose derivative w.r.t. the control variables
1324     don't vanish are called {\sf active routines}.
1325     Read and write operations from and to file can be viewed
1326     as variable assignments. Therefore, files to which
1327     active variables are written and from which active variables
1328     are read are called {\sf active files}.
1329     All aspects relevant to the treatment of the control variables
1330     (parameter setting, initialisation, perturbation)
1331     are controled by the package {\it pkg/ctrl}.
1332    
1333 heimbach 1.4 \begin{figure}[h!]
1334     \input{part5/doc_ctrl_flow}
1335     \caption{~}
1336     \label{fig:ctrlflow}
1337     \end{figure}
1338    
1339 adcroft 1.1 \subsubsection{genmake and CPP options}
1340     %
1341     \begin{itemize}
1342     %
1343     \item
1344     \fbox{
1345     \begin{minipage}{12cm}
1346     {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
1347     \end{minipage}
1348     }
1349     \end{itemize}
1350     %
1351     To enable the directory to be included to the compile list,
1352     {\bf ctrl} has to be added to the {\bf enable} list in
1353     {\it .genmakerc} (or {\it genmake} itself).
1354     Each control variable is enabled via its own CPP option
1355     in {\it ECCO\_CPPOPTIONS.h}.
1356    
1357     \subsubsection{Initialisation}
1358     %
1359     \begin{itemize}
1360     %
1361     \item
1362     \fbox{
1363     \begin{minipage}{12cm}
1364     Parameters: {\it ctrl\_readparms}
1365     \end{minipage}
1366     }
1367     \\
1368     %
1369     This S/R
1370     reads runtime flags and parameters from file {\it data.ctrl}.
1371     For the present example the file contains the file names
1372     of each control variable that is used.
1373     In addition, the number of wet points for each control
1374     variable and the net dimension of the space of control
1375     variables (counting wet points only) {\bf nvarlength}
1376     is determined.
1377     Masks for wet points for each tile {\bf (bi,\,bj)}
1378     and vertical layer {\bf k} are generated for the three
1379     relevant categories on the C-grid:
1380     {\bf nWetCtile} for tracer fields,
1381     {\bf nWetWtile} for zonal velocity fields,
1382     {\bf nWetStile} for meridional velocity fields.
1383     %
1384     \item
1385     \fbox{
1386     \begin{minipage}{12cm}
1387     Control variables, control vector,
1388     and their gradients: {\it ctrl\_unpack}
1389     \end{minipage}
1390     }
1391     \\
1392     %
1393     Two important issues related to the handling of the control
1394     variables in the MITGCM need to be addressed.
1395     First, in order to save memory, the control variable arrays
1396     are not kept in memory, but rather read from file and added
1397 heimbach 1.4 to the initial fields during the model initialisation phase.
1398 adcroft 1.1 Similarly, the corresponding adjoint fields which represent
1399     the gradient of the cost function w.r.t. the control variables
1400 heimbach 1.4 are written to file at the end of the adjoint integration.
1401 adcroft 1.1 Second, in addition to the files holding the 2-dim. and 3-dim.
1402 heimbach 1.4 control variables and the corresponding cost gradients,
1403     a 1-dim. {\sf control vector}
1404 adcroft 1.1 and {\sf gradient vector} are written to file. They contain
1405     only the wet points of the control variables and the corresponding
1406     gradient.
1407     This leads to a significant data compression.
1408 heimbach 1.4 Furthermore, an option is available
1409     ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
1410     non-dimensionalise the control and gradient vector,
1411     which otherwise would contain different pieces of different
1412     magnitudes and units.
1413     Finally, the control and gradient vector can be passed to a
1414 adcroft 1.1 minimization routine if an update of the control variables
1415     is sought as part of a minimization exercise.
1416    
1417     The files holding fields and vectors of the control variables
1418     and gradient are generated and initialised in S/R {\it ctrl\_unpack}.
1419     %
1420     \end{itemize}
1421    
1422     \subsubsection{Perturbation of the independent variables}
1423     %
1424 heimbach 1.4 The dependency flow for differentiation w.r.t. the controls
1425     starts with adding a perturbation onto the input variable,
1426 adcroft 1.1 thus defining the independent or control variables for TAMC.
1427 heimbach 1.4 Three types of controls may be considered:
1428 adcroft 1.1 %
1429     \begin{itemize}
1430     %
1431     \item
1432     \fbox{
1433     \begin{minipage}{12cm}
1434     {\it ctrl\_map\_ini} (initial value sensitivity):
1435     \end{minipage}
1436     }
1437     \\
1438     %
1439     Consider as an example the initial tracer distribution
1440     {\bf tr1} as control variable.
1441     After {\bf tr1} has been initialised in
1442 heimbach 1.4 {\it ini\_tr1} (dynamical variables such as
1443 adcroft 1.1 temperature and salinity are initialised in {\it ini\_fields}),
1444     a perturbation anomaly is added to the field in S/R
1445     {\it ctrl\_map\_ini}
1446     %
1447     \begin{equation}
1448     \begin{split}
1449     u & = \, u_{[0]} \, + \, \Delta u \\
1450     {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
1451     \label{perturb}
1452     \end{split}
1453     \end{equation}
1454     %
1455 heimbach 1.4 {\bf xx\_tr1} is a 3-dim. global array
1456 adcroft 1.1 holding the perturbation. In the case of a simple
1457     sensitivity study this array is identical to zero.
1458 heimbach 1.4 However, it's specification is essential in the context
1459     of automatic differentiation since TAMC
1460 adcroft 1.1 treats the corresponding line in the code symbolically
1461     when determining the differentiation chain and its origin.
1462     Thus, the variable names are part of the argument list
1463     when calling TAMC:
1464     %
1465     \begin{verbatim}
1466     tamc -input 'xx_tr1 ...' ...
1467     \end{verbatim}
1468     %
1469     Now, as mentioned above, the MITGCM avoids maintaining
1470     an array for each control variable by reading the
1471     perturbation to a temporary array from file.
1472     To ensure the symbolic link to be recognized by TAMC, a scalar
1473     dummy variable {\bf xx\_tr1\_dummy} is introduced
1474     and an 'active read' routine of the adjoint support
1475     package {\it pkg/autodiff} is invoked.
1476     The read-procedure is tagged with the variable
1477     {\bf xx\_tr1\_dummy} enabbling TAMC to recognize the
1478     initialisation of the perturbation.
1479     The modified call of TAMC thus reads
1480     %
1481     \begin{verbatim}
1482     tamc -input 'xx_tr1_dummy ...' ...
1483     \end{verbatim}
1484     %
1485     and the modified operation to (\ref{perturb})
1486     in the code takes on the form
1487     %
1488     \begin{verbatim}
1489     call active_read_xyz(
1490     & ..., tmpfld3d, ..., xx_tr1_dummy, ... )
1491    
1492     tr1(...) = tr1(...) + tmpfld3d(...)
1493     \end{verbatim}
1494     %
1495     Note, that reading an active variable corresponds
1496     to a variable assignment. Its derivative corresponds
1497     to a write statement of the adjoint variable.
1498     The 'active file' routines have been designed
1499 heimbach 1.4 to support active read and corresponding adjoint active write
1500     operations (and vice versa).
1501 adcroft 1.1 %
1502     \item
1503     \fbox{
1504     \begin{minipage}{12cm}
1505     {\it ctrl\_map\_forcing} (boundary value sensitivity):
1506     \end{minipage}
1507     }
1508     \\
1509     %
1510     The handling of boundary values as control variables
1511     proceeds exactly analogous to the initial values
1512     with the symbolic perturbation taking place in S/R
1513     {\it ctrl\_map\_forcing}.
1514     Note however an important difference:
1515     Since the boundary values are time dependent with a new
1516     forcing field applied at each time steps,
1517 heimbach 1.4 the general problem may be thought of as
1518     a new control variable at each time step
1519     (or, if the perturbation is averaged over a certain period,
1520     at each $ N $ timesteps), i.e.
1521 adcroft 1.1 \[
1522     u_{\rm forcing} \, = \,
1523     \{ \, u_{\rm forcing} ( t_n ) \, \}_{
1524     n \, = \, 1, \ldots , {\rm nTimeSteps} }
1525     \]
1526     %
1527     In the current example an equilibrium state is considered,
1528     and only an initial perturbation to
1529     surface forcing is applied with respect to the
1530     equilibrium state.
1531     A time dependent treatment of the surface forcing is
1532     implemented in the ECCO environment, involving the
1533     calendar ({\it cal}~) and external forcing ({\it exf}~) packages.
1534     %
1535     \item
1536     \fbox{
1537     \begin{minipage}{12cm}
1538     {\it ctrl\_map\_params} (parameter sensitivity):
1539     \end{minipage}
1540     }
1541     \\
1542     %
1543     This routine is not yet implemented, but would proceed
1544     proceed along the same lines as the initial value sensitivity.
1545 heimbach 1.4 The mixing parameters {\bf diffkr} and {\bf kapgm}
1546     are currently added as controls in {\it ctrl\_map\_ini.F}.
1547 adcroft 1.1 %
1548     \end{itemize}
1549     %
1550    
1551     \subsubsection{Output of adjoint variables and gradient}
1552     %
1553 heimbach 1.4 Several ways exist to generate output of adjoint fields.
1554 adcroft 1.1 %
1555     \begin{itemize}
1556     %
1557     \item
1558     \fbox{
1559     \begin{minipage}{12cm}
1560 heimbach 1.4 {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1561 adcroft 1.1 \end{minipage}
1562     }
1563     \\
1564     \begin{itemize}
1565     %
1566 heimbach 1.4 \item {\bf xx\_...}: the control variable fields \\
1567     Before the forward integration, the control
1568     variables are read from file {\bf xx\_ ...} and added to
1569     the model field.
1570 adcroft 1.1 %
1571     \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1572 heimbach 1.4 $ \nabla _{u}{\cal J} $ for each control variable \\
1573     After the adjoint integration the corresponding adjoint
1574     variables are written to {\bf adxx\_ ...}.
1575 adcroft 1.1 %
1576 heimbach 1.4 \end{itemize}
1577 adcroft 1.1 %
1578 heimbach 1.4 \item
1579     \fbox{
1580     \begin{minipage}{12cm}
1581     {\it ctrl\_unpack, ctrl\_pack}:
1582     \end{minipage}
1583     }
1584     \\
1585     %
1586     \begin{itemize}
1587     %
1588     \item {\bf vector\_ctrl}: the control vector \\
1589     At the very beginning of the model initialisation,
1590     the updated compressed control vector is read (or initialised)
1591     and distributed to 2-dim. and 3-dim. control variable fields.
1592     %
1593     \item {\bf vector\_grad}: the gradient vector \\
1594     At the very end of the adjoint integration,
1595     the 2-dim. and 3-dim. adjoint variables are read,
1596     compressed to a single vector and written to file.
1597 adcroft 1.1 %
1598     \end{itemize}
1599     %
1600     \item
1601     \fbox{
1602     \begin{minipage}{12cm}
1603     {\it addummy\_in\_stepping}:
1604     \end{minipage}
1605     }
1606     \\
1607     In addition to writing the gradient at the end of the
1608 heimbach 1.4 forward/adjoint integration, many more adjoint variables
1609     of the model state
1610     at intermediate times can be written using S/R
1611 adcroft 1.1 {\it addummy\_in\_stepping}.
1612     This routine is part of the adjoint support package
1613     {\it pkg/autodiff} (cf.f. below).
1614     To be part of the adjoint code, the corresponding S/R
1615     {\it dummy\_in\_stepping} has to be called in the forward
1616     model (S/R {\it the\_main\_loop}) at the appropriate place.
1617    
1618     {\it dummy\_in\_stepping} is essentially empty,
1619     the corresponding adjoint routine is hand-written rather
1620     than generated automatically.
1621     Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1622     ensure that TAMC does not automatically
1623     generate {\it addummy\_in\_stepping} by trying to differentiate
1624 heimbach 1.4 {\it dummy\_in\_stepping}, but instead refers to
1625     the hand-written routine.
1626 adcroft 1.1
1627     {\it dummy\_in\_stepping} is called in the forward code
1628     at the beginning of each
1629     timestep, before the call to {\it dynamics}, thus ensuring
1630     that {\it addummy\_in\_stepping} is called at the end of
1631     each timestep in the adjoint calculation, after the call to
1632     {\it addynamics}.
1633    
1634     {\it addummy\_in\_stepping} includes the header files
1635 heimbach 1.4 {\it adcommon.h}.
1636     This header file is also hand-written. It contains
1637     the common blocks
1638     {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1639     {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1640 adcroft 1.1 {\bf /adtr1\_r/}, {\bf /adffields/},
1641     which have been extracted from the adjoint code to enable
1642     access to the adjoint variables.
1643     %
1644     \end{itemize}
1645    
1646    
1647     \subsubsection{Control variable handling for
1648     optimization applications}
1649    
1650     In optimization mode the cost function $ {\cal J}(u) $ is sought
1651     to be minimized with respect to a set of control variables
1652     $ \delta {\cal J} \, = \, 0 $, in an iterative manner.
1653     The gradient $ \nabla _{u}{\cal J} |_{u_{[k]}} $ together
1654     with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1655     at iteration step $ k $ serve
1656     as input to a minimization routine (e.g. quasi-Newton method,
1657 heimbach 1.4 conjugate gradient, ... \cite{gil_lem:89})
1658     to compute an update in the
1659 adcroft 1.1 control variable for iteration step $k+1$
1660     \[
1661     u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]}
1662     \quad \mbox{satisfying} \quad
1663     {\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right)
1664     \]
1665     $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1666     to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1667     $ k+1 $.
1668     Tab. \ref{???} sketches the flow between forward/adjoint model
1669     and the minimization routine.
1670    
1671     \begin{eqnarray*}
1672 heimbach 1.4 \scriptsize
1673 adcroft 1.1 \begin{array}{ccccc}
1674     u_{[0]} \,\, , \,\, \Delta u_{[k]} & ~ & ~ & ~ & ~ \\
1675     {\Big\downarrow}
1676     & ~ & ~ & ~ & ~ \\
1677     ~ & ~ & ~ & ~ & ~ \\
1678     \hline
1679     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1680     \multicolumn{1}{|c}{
1681     u_{[k]} = u_{[0]} + \Delta u_{[k]}} &
1682     \stackrel{\bf forward}{\bf \longrightarrow} &
1683     v_{[k]} = M \left( u_{[k]} \right) &
1684     \stackrel{\bf forward}{\bf \longrightarrow} &
1685     \multicolumn{1}{c|}{
1686     {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1687     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1688     \hline
1689 heimbach 1.4 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1690     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1691     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1692 adcroft 1.1 \hline
1693     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1694     \multicolumn{1}{|c}{
1695     \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1696 heimbach 1.4 T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1697 adcroft 1.1 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1698     ad \, v_{[k]} (\delta {\cal J}) =
1699     \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
1700     \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1701     \multicolumn{1}{c|}{ ad \, {\cal J} = \delta {\cal J}} \\
1702     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1703     \hline
1704     ~ & ~ & ~ & ~ & ~ \\
1705 heimbach 1.4 \hspace*{15ex}{\Bigg\downarrow}
1706     \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1707     & ~ & ~ & ~ & ~ \\
1708 adcroft 1.1 ~ & ~ & ~ & ~ & ~ \\
1709     \hline
1710     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1711     \multicolumn{1}{|c}{
1712     {\cal J}_{[k]} \,\, , \,\, \nabla_u {\cal J}_{[k]}} &
1713     {\mathbf \longrightarrow} & \text{\bf minimisation} &
1714     {\mathbf \longrightarrow} &
1715     \multicolumn{1}{c|}{ \Delta u_{[k+1]}} \\
1716     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1717     \hline
1718     ~ & ~ & ~ & ~ & ~ \\
1719     ~ & ~ & ~ & ~ & \Big\downarrow \\
1720     ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1721     \end{array}
1722     \end{eqnarray*}
1723    
1724     The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1725     the link between the model and the minimization routine.
1726     As described in Section \ref{???}
1727     the {\it unpack} and {\it pack} routines read and write
1728     control and gradient {\it vectors} which are compressed
1729     to contain only wet points, in addition to the full
1730     2-dim. and 3-dim. fields.
1731     The corresponding I/O flow looks as follows:
1732    
1733     \vspace*{0.5cm}
1734    
1735 heimbach 1.4 {\scriptsize
1736 adcroft 1.1 \begin{tabular}{ccccc}
1737     {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1738     {\big\downarrow} & ~ & ~ & ~ & ~ \\
1739     \cline{1-1}
1740     \multicolumn{1}{|c|}{\it ctrl\_unpack} & ~ & ~ & ~ & ~ \\
1741     \cline{1-1}
1742     {\big\downarrow} & ~ & ~ & ~ & ~ \\
1743     \cline{3-3}
1744     \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1745     \multicolumn{1}{|c|}{~} & ~ & ~ \\
1746 heimbach 1.4 \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1747     $\stackrel{\mbox{read}}{\longrightarrow}$ &
1748 adcroft 1.1 \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1749     \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}
1750     & ~ & ~ \\
1751     \cline{3-3}
1752 heimbach 1.4 ~ & ~ & $\downarrow$ & ~ & ~ \\
1753 adcroft 1.1 \cline{3-3}
1754     ~ & ~ &
1755     \multicolumn{1}{|c|}{~} & ~ &
1756     \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$} \\
1757     ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1758 heimbach 1.4 $\stackrel{\mbox{write}}{\longrightarrow}$ &
1759 adcroft 1.1 \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1760     ~ & ~ & \multicolumn{1}{|c|}{~}
1761     & ~ & \multicolumn{1}{l}{\bf \vdots} \\
1762     \cline{3-3}
1763     ~ & ~ & ~ & ~ & {\big\downarrow} \\
1764     \cline{5-5}
1765     ~ & ~ & ~ & ~ & \multicolumn{1}{|c|}{\it ctrl\_pack} \\
1766     \cline{5-5}
1767     ~ & ~ & ~ & ~ & {\big\downarrow} \\
1768     ~ & ~ & ~ & ~ & {\bf vector\_grad\_$<$k$>$ } \\
1769     \end{tabular}
1770 heimbach 1.4 }
1771 adcroft 1.1
1772     \vspace*{0.5cm}
1773    
1774    
1775 heimbach 1.4 {\it ctrl\_unpack} reads the updated control vector
1776 adcroft 1.1 {\bf vector\_ctrl\_$<$k$>$}.
1777     It distributes the different control variables to
1778     2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1779 heimbach 1.4 At the start of the forward integration the control variables
1780     are read from {\it xx\_...$<$k$>$} and added to the
1781     field.
1782     Correspondingly, at the end of the adjoint integration
1783     the adjoint fields are written
1784 adcroft 1.1 to {\it adxx\_...$<$k$>$}, again via the active file routines.
1785 heimbach 1.4 Finally, {\it ctrl\_pack} collects all adjoint files
1786 adcroft 1.1 and writes them to the compressed vector file
1787     {\bf vector\_grad\_$<$k$>$}.
1788    
1789     \subsection{TLM and ADM generation via TAMC}
1790    
1791    
1792    
1793 heimbach 1.4 \subsection{Flow directives and adjoint support routines \label{section_flowdir}}
1794 adcroft 1.1
1795 heimbach 1.4 \subsection{Store directives and checkpointing \label{section_checkpointing}}
1796 adcroft 1.1
1797 heimbach 1.4 \subsection{Gradient checks \label{section_grdchk}}
1798 adcroft 1.1
1799     \subsection{Second derivative generation via TAMC}
1800    
1801     \section{Example of adjoint code}

  ViewVC Help
Powered by ViewVC 1.1.22