1 |
jmc |
1.24 |
% $Header: /u/gcmpack/manual/s_autodiff/text/doc_ad_2.tex,v 1.23 2010/08/30 23:09:19 jmc Exp $ |
2 |
heimbach |
1.2 |
% $Name: $ |
3 |
adcroft |
1.1 |
|
4 |
heimbach |
1.18 |
Author: Patrick Heimbach |
5 |
|
|
|
6 |
adcroft |
1.1 |
{\sf Automatic differentiation} (AD), also referred to as algorithmic |
7 |
edhill |
1.20 |
(or, more loosely, computational) differentiation, involves |
8 |
|
|
automatically deriving code to calculate partial derivatives from an |
9 |
|
|
existing fully non-linear prognostic code. (see \cite{gri:00}). A |
10 |
|
|
software tool is used that parses and transforms source files |
11 |
|
|
according to a set of linguistic and mathematical rules. AD tools are |
12 |
|
|
like source-to-source translators in that they parse a program code as |
13 |
heimbach |
1.21 |
input and produce a new program code as output |
14 |
|
|
(we restrict our discussion to source-to-source tools, ignoring |
15 |
|
|
operator-overloading tools). However, unlike a |
16 |
edhill |
1.20 |
pure source-to-source translation, the output program represents a new |
17 |
|
|
algorithm, such as the evaluation of the Jacobian, the Hessian, or |
18 |
|
|
higher derivative operators. In principle, a variety of derived |
19 |
|
|
algorithms can be generated automatically in this way. |
20 |
|
|
|
21 |
|
|
MITgcm has been adapted for use with the Tangent linear and Adjoint |
22 |
|
|
Model Compiler (TAMC) and its successor TAF (Transformation of |
23 |
|
|
Algorithms in Fortran), developed by Ralf Giering (\cite{gie-kam:98}, |
24 |
|
|
\cite{gie:99,gie:00}). The first application of the adjoint of MITgcm |
25 |
|
|
for sensitivity studies has been published by \cite{maro-eta:99}. |
26 |
heimbach |
1.21 |
\cite{stam-etal:97,stam-etal:02} use MITgcm and its adjoint for ocean |
27 |
edhill |
1.20 |
state estimation studies. In the following we shall refer to TAMC and |
28 |
|
|
TAF synonymously, except were explicitly stated otherwise. |
29 |
|
|
|
30 |
heimbach |
1.21 |
As of mid-2007 we are also able to generate fairly efficient |
31 |
|
|
adjoint code of the MITgcm using a new, open-source AD tool, |
32 |
|
|
called OpenAD (see \cite{naum-etal:06,utke-etal:08}. |
33 |
|
|
This enables us for the first time to compare adjoint models |
34 |
|
|
generated from different AD tools, providing an additional |
35 |
|
|
accuracy check, complementary to finite-difference gradient checks. |
36 |
|
|
OpenAD and its application to MITgcm is described in detail |
37 |
|
|
in section \ref{sec_ad_openad}. |
38 |
|
|
|
39 |
|
|
The AD tool exploits the chain rule for computing the first derivative of a |
40 |
edhill |
1.20 |
function with respect to a set of input variables. Treating a given |
41 |
|
|
forward code as a composition of operations -- each line representing |
42 |
|
|
a compositional element, the chain rule is rigorously applied to the |
43 |
|
|
code, line by line. The resulting tangent linear or adjoint code, |
44 |
|
|
then, may be thought of as the composition in forward or reverse |
45 |
|
|
order, respectively, of the Jacobian matrices of the forward code's |
46 |
|
|
compositional elements. |
47 |
adcroft |
1.1 |
|
48 |
|
|
%********************************************************************** |
49 |
|
|
\section{Some basic algebra} |
50 |
|
|
\label{sec_ad_algebra} |
51 |
edhill |
1.17 |
\begin{rawhtml} |
52 |
|
|
<!-- CMIREDIR:sec_ad_algebra: --> |
53 |
|
|
\end{rawhtml} |
54 |
adcroft |
1.1 |
%********************************************************************** |
55 |
|
|
|
56 |
|
|
Let $ \cal{M} $ be a general nonlinear, model, i.e. a |
57 |
|
|
mapping from the $m$-dimensional space |
58 |
|
|
$U \subset I\!\!R^m$ of input variables |
59 |
|
|
$\vec{u}=(u_1,\ldots,u_m)$ |
60 |
|
|
(model parameters, initial conditions, boundary conditions |
61 |
|
|
such as forcing functions) to the $n$-dimensional space |
62 |
|
|
$V \subset I\!\!R^n$ of |
63 |
|
|
model output variable $\vec{v}=(v_1,\ldots,v_n)$ |
64 |
cnh |
1.7 |
(model state, model diagnostics, objective function, ...) |
65 |
adcroft |
1.1 |
under consideration, |
66 |
|
|
% |
67 |
|
|
\begin{equation} |
68 |
jmc |
1.23 |
\begin{aligned} |
69 |
adcroft |
1.1 |
{\cal M} \, : & \, U \,\, \longrightarrow \, V \\ |
70 |
|
|
~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \, |
71 |
|
|
{\cal M}(\vec{u}) |
72 |
|
|
\label{fulloperator} |
73 |
jmc |
1.23 |
\end{aligned} |
74 |
adcroft |
1.1 |
\end{equation} |
75 |
|
|
% |
76 |
|
|
The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t. |
77 |
|
|
some given basis vectors |
78 |
|
|
$ {\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m} $ and |
79 |
|
|
$ {\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n} $ as |
80 |
|
|
\[ |
81 |
|
|
\vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i}, |
82 |
|
|
\qquad |
83 |
|
|
\vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j} |
84 |
|
|
\] |
85 |
|
|
|
86 |
|
|
Two routes may be followed to determine the sensitivity of the |
87 |
|
|
output variable $\vec{v}$ to its input $\vec{u}$. |
88 |
|
|
|
89 |
|
|
\subsection{Forward or direct sensitivity} |
90 |
|
|
% |
91 |
|
|
Consider a perturbation to the input variables $\delta \vec{u}$ |
92 |
|
|
(typically a single component |
93 |
|
|
$\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}$). |
94 |
|
|
Their effect on the output may be obtained via the linear |
95 |
|
|
approximation of the model $ {\cal M}$ in terms of its Jacobian matrix |
96 |
|
|
$ M $, evaluated in the point $u^{(0)}$ according to |
97 |
|
|
% |
98 |
|
|
\begin{equation} |
99 |
|
|
\delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u} |
100 |
|
|
\label{tangent_linear} |
101 |
|
|
\end{equation} |
102 |
|
|
with resulting output perturbation $\delta \vec{v}$. |
103 |
|
|
In components |
104 |
|
|
$M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i} $, |
105 |
|
|
it reads |
106 |
|
|
% |
107 |
|
|
\begin{equation} |
108 |
|
|
\delta v_{j} \, = \, \sum_{i} |
109 |
|
|
\left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \, |
110 |
|
|
\delta u_{i} |
111 |
|
|
\label{jacobi_matrix} |
112 |
|
|
\end{equation} |
113 |
|
|
% |
114 |
|
|
Eq. (\ref{tangent_linear}) is the {\sf tangent linear model (TLM)}. |
115 |
|
|
In contrast to the full nonlinear model $ {\cal M} $, the operator |
116 |
|
|
$ M $ is just a matrix |
117 |
|
|
which can readily be used to find the forward sensitivity of $\vec{v}$ to |
118 |
|
|
perturbations in $u$, |
119 |
heimbach |
1.4 |
but if there are very many input variables $(\gg O(10^{6})$ for |
120 |
adcroft |
1.1 |
large-scale oceanographic application), it quickly becomes |
121 |
|
|
prohibitive to proceed directly as in (\ref{tangent_linear}), |
122 |
|
|
if the impact of each component $ {\bf e_{i}} $ is to be assessed. |
123 |
|
|
|
124 |
|
|
\subsection{Reverse or adjoint sensitivity} |
125 |
|
|
% |
126 |
|
|
Let us consider the special case of a |
127 |
|
|
scalar objective function ${\cal J}(\vec{v})$ of the model output (e.g. |
128 |
|
|
the total meridional heat transport, |
129 |
|
|
the total uptake of $CO_{2}$ in the Southern |
130 |
|
|
Ocean over a time interval, |
131 |
|
|
or a measure of some model-to-data misfit) |
132 |
|
|
% |
133 |
|
|
\begin{eqnarray} |
134 |
|
|
\begin{array}{cccccc} |
135 |
|
|
{\cal J} \, : & U & |
136 |
|
|
\longrightarrow & V & |
137 |
|
|
\longrightarrow & I \!\! R \\ |
138 |
|
|
~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) & |
139 |
|
|
\longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u})) |
140 |
|
|
\end{array} |
141 |
|
|
\label{compo} |
142 |
|
|
\end{eqnarray} |
143 |
|
|
% |
144 |
heimbach |
1.4 |
The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $, |
145 |
adcroft |
1.1 |
\[ |
146 |
heimbach |
1.4 |
{\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J} |
147 |
adcroft |
1.1 |
\] |
148 |
|
|
can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $ |
149 |
|
|
w.r.t. their corresponding inner product |
150 |
|
|
$\left\langle \,\, , \,\, \right\rangle $ |
151 |
|
|
% |
152 |
|
|
\begin{equation} |
153 |
jmc |
1.23 |
\begin{aligned} |
154 |
adcroft |
1.1 |
{\cal J} & = \, |
155 |
|
|
{\cal J} |_{\vec{u}^{(0)}} \, + \, |
156 |
|
|
\left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle |
157 |
|
|
\, + \, O(\delta \vec{u}^2) \\ |
158 |
|
|
~ & = \, |
159 |
|
|
{\cal J} |_{\vec{v}^{(0)}} \, + \, |
160 |
|
|
\left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle |
161 |
|
|
\, + \, O(\delta \vec{v}^2) |
162 |
jmc |
1.23 |
\end{aligned} |
163 |
adcroft |
1.1 |
\label{deljidentity} |
164 |
|
|
\end{equation} |
165 |
|
|
% |
166 |
heimbach |
1.2 |
(note, that the gradient $ \nabla f $ is a co-vector, therefore |
167 |
adcroft |
1.1 |
its transpose is required in the above inner product). |
168 |
|
|
Then, using the representation of |
169 |
|
|
$ \delta {\cal J} = |
170 |
|
|
\left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle $, |
171 |
|
|
the definition |
172 |
|
|
of an adjoint operator $ A^{\ast} $ of a given operator $ A $, |
173 |
|
|
\[ |
174 |
|
|
\left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle = |
175 |
|
|
\left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle |
176 |
|
|
\] |
177 |
|
|
which for finite-dimensional vector spaces is just the |
178 |
|
|
transpose of $ A $, |
179 |
|
|
\[ |
180 |
|
|
A^{\ast} \, = \, A^T |
181 |
|
|
\] |
182 |
heimbach |
1.4 |
and from eq. (\ref{tangent_linear}), (\ref{deljidentity}), |
183 |
|
|
we note that |
184 |
adcroft |
1.1 |
(omitting $|$'s): |
185 |
|
|
% |
186 |
|
|
\begin{equation} |
187 |
|
|
\delta {\cal J} |
188 |
|
|
\, = \, |
189 |
|
|
\left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle |
190 |
|
|
\, = \, |
191 |
|
|
\left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle |
192 |
|
|
\, = \, |
193 |
|
|
\left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \, |
194 |
|
|
\delta \vec{u} \, \right\rangle |
195 |
|
|
\label{inner} |
196 |
|
|
\end{equation} |
197 |
|
|
% |
198 |
|
|
With the identity (\ref{deljidentity}), we then find that |
199 |
|
|
the gradient $ \nabla _{u}{\cal J} $ can be readily inferred by |
200 |
|
|
invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $ |
201 |
|
|
% |
202 |
|
|
\begin{equation} |
203 |
jmc |
1.23 |
\begin{aligned} |
204 |
adcroft |
1.1 |
\nabla _{u}{\cal J}^T |_{\vec{u}} & |
205 |
|
|
= \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\ |
206 |
|
|
~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\ |
207 |
|
|
~ & = \, \delta \vec{u}^{\ast} |
208 |
jmc |
1.23 |
\end{aligned} |
209 |
adcroft |
1.1 |
\label{adjoint} |
210 |
|
|
\end{equation} |
211 |
|
|
% |
212 |
|
|
Eq. (\ref{adjoint}) is the {\sf adjoint model (ADM)}, |
213 |
|
|
in which $M^T$ is the adjoint (here, the transpose) of the |
214 |
|
|
tangent linear operator $M$, $ \delta \vec{v}^{\ast} $ |
215 |
|
|
the adjoint variable of the model state $ \vec{v} $, and |
216 |
|
|
$ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $. |
217 |
|
|
|
218 |
|
|
The {\sf reverse} nature of the adjoint calculation can be readily |
219 |
heimbach |
1.4 |
seen as follows. |
220 |
|
|
Consider a model integration which consists of $ \Lambda $ |
221 |
|
|
consecutive operations |
222 |
|
|
$ {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} ( |
223 |
|
|
...... ( {\cal M}_{\lambda} ( |
224 |
|
|
...... |
225 |
|
|
( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $, |
226 |
|
|
where the ${\cal M}$'s could be the elementary steps, i.e. single lines |
227 |
|
|
in the code of the model, or successive time steps of the |
228 |
|
|
model integration, |
229 |
|
|
starting at step 0 and moving up to step $\Lambda$, with intermediate |
230 |
|
|
${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final |
231 |
|
|
${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$. |
232 |
cnh |
1.7 |
Let ${\cal J}$ be a cost function which explicitly depends on the |
233 |
heimbach |
1.4 |
final state $\vec{v}$ only |
234 |
|
|
(this restriction is for clarity reasons only). |
235 |
|
|
% |
236 |
|
|
${\cal J}(u)$ may be decomposed according to: |
237 |
adcroft |
1.1 |
% |
238 |
|
|
\begin{equation} |
239 |
|
|
{\cal J}({\cal M}(\vec{u})) \, = \, |
240 |
|
|
{\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} ( |
241 |
|
|
...... ( {\cal M}_{\lambda} ( |
242 |
|
|
...... |
243 |
|
|
( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) ))))) |
244 |
|
|
\label{compos} |
245 |
|
|
\end{equation} |
246 |
|
|
% |
247 |
heimbach |
1.4 |
Then, according to the chain rule, the forward calculation reads, |
248 |
|
|
in terms of the Jacobi matrices |
249 |
adcroft |
1.1 |
(we've omitted the $ | $'s which, nevertheless are important |
250 |
|
|
to the aspect of {\it tangent} linearity; |
251 |
heimbach |
1.4 |
note also that by definition |
252 |
adcroft |
1.1 |
$ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle |
253 |
|
|
= \nabla_v {\cal J} \cdot \delta \vec{v} $ ) |
254 |
|
|
% |
255 |
|
|
\begin{equation} |
256 |
jmc |
1.23 |
\begin{aligned} |
257 |
adcroft |
1.1 |
\nabla_v {\cal J} (M(\delta \vec{u})) & = \, |
258 |
|
|
\nabla_v {\cal J} \cdot M_{\Lambda} |
259 |
|
|
\cdot ...... \cdot M_{\lambda} \cdot ...... \cdot |
260 |
|
|
M_{1} \cdot M_{0} \cdot \delta \vec{u} \\ |
261 |
|
|
~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\ |
262 |
jmc |
1.23 |
\end{aligned} |
263 |
adcroft |
1.1 |
\label{forward} |
264 |
|
|
\end{equation} |
265 |
|
|
% |
266 |
|
|
whereas in reverse mode we have |
267 |
|
|
% |
268 |
|
|
\begin{equation} |
269 |
|
|
\boxed{ |
270 |
jmc |
1.23 |
\begin{aligned} |
271 |
adcroft |
1.1 |
M^T ( \nabla_v {\cal J}^T) & = \, |
272 |
|
|
M_{0}^T \cdot M_{1}^T |
273 |
|
|
\cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot |
274 |
|
|
M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\ |
275 |
|
|
~ & = \, M_{0}^T \cdot M_{1}^T |
276 |
|
|
\cdot ...... \cdot |
277 |
|
|
\nabla_{v^{(\lambda)}} {\cal J}^T \\ |
278 |
|
|
~ & = \, \nabla_u {\cal J}^T |
279 |
jmc |
1.23 |
\end{aligned} |
280 |
adcroft |
1.1 |
} |
281 |
|
|
\label{reverse} |
282 |
|
|
\end{equation} |
283 |
|
|
% |
284 |
|
|
clearly expressing the reverse nature of the calculation. |
285 |
|
|
Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers. |
286 |
heimbach |
1.4 |
If the intermediate steps $\lambda$ in |
287 |
adcroft |
1.1 |
eqn. (\ref{compos}) -- (\ref{reverse}) |
288 |
heimbach |
1.4 |
represent the model state (forward or adjoint) at each |
289 |
|
|
intermediate time step as noted above, then correspondingly, |
290 |
|
|
$ M^T (\delta \vec{v}^{(\lambda) \, \ast}) = |
291 |
|
|
\delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables. |
292 |
|
|
It thus becomes evident that the adjoint calculation also |
293 |
|
|
yields the adjoint of each model state component |
294 |
|
|
$ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely |
295 |
adcroft |
1.1 |
% |
296 |
|
|
\begin{equation} |
297 |
|
|
\boxed{ |
298 |
jmc |
1.23 |
\begin{aligned} |
299 |
adcroft |
1.1 |
\nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}} |
300 |
|
|
& = \, |
301 |
|
|
M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot |
302 |
|
|
M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\ |
303 |
|
|
~ & = \, \delta \vec{v}^{(\lambda) \, \ast} |
304 |
jmc |
1.23 |
\end{aligned} |
305 |
adcroft |
1.1 |
} |
306 |
|
|
\end{equation} |
307 |
|
|
% |
308 |
|
|
in close analogy to eq. (\ref{adjoint}) |
309 |
|
|
We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$ |
310 |
heimbach |
1.4 |
are the Lagrange multipliers of the model equations which determine |
311 |
|
|
$ \vec{v}^{(\lambda)}$. |
312 |
adcroft |
1.1 |
|
313 |
cnh |
1.7 |
In components, eq. (\ref{adjoint}) reads as follows. |
314 |
adcroft |
1.1 |
Let |
315 |
|
|
\[ |
316 |
|
|
\begin{array}{rclcrcl} |
317 |
|
|
\delta \vec{u} & = & |
318 |
|
|
\left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad & |
319 |
|
|
\delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = & |
320 |
|
|
\left( |
321 |
|
|
\frac{\partial {\cal J}}{\partial u_1},\ldots, |
322 |
|
|
\frac{\partial {\cal J}}{\partial u_m} |
323 |
|
|
\right)^T \\ |
324 |
|
|
\delta \vec{v} & = & |
325 |
|
|
\left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad & |
326 |
|
|
\delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = & |
327 |
|
|
\left( |
328 |
|
|
\frac{\partial {\cal J}}{\partial v_1},\ldots, |
329 |
|
|
\frac{\partial {\cal J}}{\partial v_n} |
330 |
|
|
\right)^T \\ |
331 |
|
|
\end{array} |
332 |
|
|
\] |
333 |
|
|
denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively, |
334 |
cnh |
1.7 |
and their adjoint variables; |
335 |
adcroft |
1.1 |
further |
336 |
|
|
\[ |
337 |
|
|
M \, = \, \left( |
338 |
|
|
\begin{array}{ccc} |
339 |
|
|
\frac{\partial {\cal M}_1}{\partial u_1} & \ldots & |
340 |
|
|
\frac{\partial {\cal M}_1}{\partial u_m} \\ |
341 |
|
|
\vdots & ~ & \vdots \\ |
342 |
|
|
\frac{\partial {\cal M}_n}{\partial u_1} & \ldots & |
343 |
|
|
\frac{\partial {\cal M}_n}{\partial u_m} \\ |
344 |
|
|
\end{array} |
345 |
|
|
\right) |
346 |
|
|
\] |
347 |
|
|
is the Jacobi matrix of $ {\cal M} $ |
348 |
|
|
(an $ n \times m $ matrix) |
349 |
|
|
such that $ \delta \vec{v} = M \cdot \delta \vec{u} $, or |
350 |
|
|
\[ |
351 |
|
|
\delta v_{j} |
352 |
|
|
\, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i} |
353 |
|
|
\, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}} |
354 |
|
|
\delta u_{i} |
355 |
|
|
\] |
356 |
|
|
% |
357 |
|
|
Then eq. (\ref{adjoint}) takes the form |
358 |
|
|
\[ |
359 |
|
|
\delta u_{i}^{\ast} |
360 |
|
|
\, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast} |
361 |
|
|
\, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}} |
362 |
|
|
\delta v_{j}^{\ast} |
363 |
|
|
\] |
364 |
|
|
% |
365 |
|
|
or |
366 |
|
|
% |
367 |
|
|
\[ |
368 |
|
|
\left( |
369 |
|
|
\begin{array}{c} |
370 |
|
|
\left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\ |
371 |
|
|
\vdots \\ |
372 |
|
|
\left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\ |
373 |
|
|
\end{array} |
374 |
|
|
\right) |
375 |
|
|
\, = \, |
376 |
|
|
\left( |
377 |
|
|
\begin{array}{ccc} |
378 |
|
|
\left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}} |
379 |
|
|
& \ldots & |
380 |
|
|
\left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\ |
381 |
|
|
\vdots & ~ & \vdots \\ |
382 |
|
|
\left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}} |
383 |
|
|
& \ldots & |
384 |
|
|
\left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\ |
385 |
|
|
\end{array} |
386 |
|
|
\right) |
387 |
|
|
\cdot |
388 |
|
|
\left( |
389 |
|
|
\begin{array}{c} |
390 |
|
|
\left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\ |
391 |
|
|
\vdots \\ |
392 |
|
|
\left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\ |
393 |
|
|
\end{array} |
394 |
|
|
\right) |
395 |
|
|
\] |
396 |
|
|
% |
397 |
|
|
Furthermore, the adjoint $ \delta v^{(\lambda) \, \ast} $ |
398 |
|
|
of any intermediate state $ v^{(\lambda)} $ |
399 |
|
|
may be obtained, using the intermediate Jacobian |
400 |
|
|
(an $ n_{\lambda+1} \times n_{\lambda} $ matrix) |
401 |
|
|
% |
402 |
|
|
\[ |
403 |
|
|
M_{\lambda} \, = \, |
404 |
|
|
\left( |
405 |
|
|
\begin{array}{ccc} |
406 |
|
|
\frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1} |
407 |
|
|
& \ldots & |
408 |
|
|
\frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\ |
409 |
|
|
\vdots & ~ & \vdots \\ |
410 |
|
|
\frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} |
411 |
|
|
& \ldots & |
412 |
|
|
\frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\ |
413 |
|
|
\end{array} |
414 |
|
|
\right) |
415 |
|
|
\] |
416 |
|
|
% |
417 |
|
|
and the shorthand notation for the adjoint variables |
418 |
|
|
$ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}} |
419 |
|
|
{\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $, |
420 |
|
|
for intermediate components, yielding |
421 |
jmc |
1.23 |
{\small |
422 |
heimbach |
1.4 |
\begin{equation} |
423 |
jmc |
1.23 |
\begin{aligned} |
424 |
adcroft |
1.1 |
\left( |
425 |
|
|
\begin{array}{c} |
426 |
|
|
\delta v^{(\lambda) \, \ast}_1 \\ |
427 |
|
|
\vdots \\ |
428 |
|
|
\delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\ |
429 |
|
|
\end{array} |
430 |
|
|
\right) |
431 |
heimbach |
1.4 |
\, = & |
432 |
adcroft |
1.1 |
\left( |
433 |
|
|
\begin{array}{ccc} |
434 |
|
|
\frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1} |
435 |
heimbach |
1.4 |
& \ldots \,\, \ldots & |
436 |
adcroft |
1.1 |
\frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\ |
437 |
|
|
\vdots & ~ & \vdots \\ |
438 |
|
|
\frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} |
439 |
heimbach |
1.4 |
& \ldots \,\, \ldots & |
440 |
adcroft |
1.1 |
\frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\ |
441 |
|
|
\end{array} |
442 |
|
|
\right) |
443 |
heimbach |
1.4 |
\cdot |
444 |
adcroft |
1.1 |
% |
445 |
heimbach |
1.4 |
\\ ~ & ~ |
446 |
|
|
\\ ~ & |
447 |
adcroft |
1.1 |
% |
448 |
|
|
\left( |
449 |
|
|
\begin{array}{ccc} |
450 |
|
|
\frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1} |
451 |
|
|
& \ldots & |
452 |
|
|
\frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\ |
453 |
|
|
\vdots & ~ & \vdots \\ |
454 |
|
|
\vdots & ~ & \vdots \\ |
455 |
|
|
\frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} |
456 |
|
|
& \ldots & |
457 |
|
|
\frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\ |
458 |
|
|
\end{array} |
459 |
|
|
\right) |
460 |
heimbach |
1.4 |
\cdot \, \ldots \, \cdot |
461 |
adcroft |
1.1 |
\left( |
462 |
|
|
\begin{array}{c} |
463 |
|
|
\delta v^{\ast}_1 \\ |
464 |
|
|
\vdots \\ |
465 |
|
|
\delta v^{\ast}_{n} \\ |
466 |
|
|
\end{array} |
467 |
|
|
\right) |
468 |
jmc |
1.23 |
\end{aligned} |
469 |
heimbach |
1.4 |
\end{equation} |
470 |
jmc |
1.23 |
} |
471 |
adcroft |
1.1 |
|
472 |
|
|
Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in |
473 |
|
|
showing the advantage of the reverse over the forward mode |
474 |
|
|
if the gradient $\nabla _{u}{\cal J}$, i.e. the sensitivity of the |
475 |
|
|
cost function $ {\cal J} $ with respect to {\it all} input |
476 |
|
|
variables $u$ |
477 |
|
|
(or the sensitivity of the cost function with respect to |
478 |
|
|
{\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought. |
479 |
|
|
In order to be able to solve for each component of the gradient |
480 |
|
|
$ \partial {\cal J} / \partial u_{i} $ in (\ref{forward}) |
481 |
cnh |
1.7 |
a forward calculation has to be performed for each component separately, |
482 |
adcroft |
1.1 |
i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $ |
483 |
|
|
for the $i$-th forward calculation. |
484 |
|
|
Then, (\ref{forward}) represents the |
485 |
|
|
projection of $ \nabla_u {\cal J} $ onto the $i$-th component. |
486 |
|
|
The full gradient is retrieved from the $ m $ forward calculations. |
487 |
|
|
In contrast, eq. (\ref{reverse}) yields the full |
488 |
|
|
gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients |
489 |
|
|
$\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation. |
490 |
|
|
|
491 |
heimbach |
1.4 |
Note, that if $ {\cal J} $ is a vector-valued function |
492 |
adcroft |
1.1 |
of dimension $ l > 1 $, |
493 |
|
|
eq. (\ref{reverse}) has to be modified according to |
494 |
|
|
\[ |
495 |
|
|
M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right) |
496 |
|
|
\, = \, |
497 |
|
|
\nabla_u {\cal J}^T \cdot \delta \vec{J} |
498 |
|
|
\] |
499 |
heimbach |
1.4 |
where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of |
500 |
cnh |
1.7 |
dimension $ l $. |
501 |
adcroft |
1.1 |
In this case $ l $ reverse simulations have to be performed |
502 |
|
|
for each $ \delta J_{k}, \,\, k = 1, \ldots, l $. |
503 |
|
|
Then, the reverse mode is more efficient as long as |
504 |
|
|
$ l < n $, otherwise the forward mode is preferable. |
505 |
cnh |
1.7 |
Strictly, the reverse mode is called adjoint mode only for |
506 |
adcroft |
1.1 |
$ l = 1 $. |
507 |
|
|
|
508 |
|
|
A detailed analysis of the underlying numerical operations |
509 |
|
|
shows that the computation of $\nabla _{u}{\cal J}$ in this way |
510 |
|
|
requires about 2 to 5 times the computation of the cost function. |
511 |
|
|
Alternatively, the gradient vector could be approximated |
512 |
|
|
by finite differences, requiring $m$ computations |
513 |
|
|
of the perturbed cost function. |
514 |
|
|
|
515 |
|
|
To conclude we give two examples of commonly used types |
516 |
|
|
of cost functions: |
517 |
|
|
|
518 |
|
|
\paragraph{Example 1: |
519 |
|
|
$ {\cal J} = v_{j} (T) $} ~ \\ |
520 |
|
|
The cost function consists of the $j$-th component of the model state |
521 |
|
|
$ \vec{v} $ at time $T$. |
522 |
|
|
Then $ \nabla_v {\cal J}^T = {\vec{f}_{j}} $ is just the $j$-th |
523 |
|
|
unit vector. The $ \nabla_u {\cal J}^T $ |
524 |
|
|
is the projection of the adjoint |
525 |
|
|
operator onto the $j$-th component ${\bf f_{j}}$, |
526 |
|
|
\[ |
527 |
|
|
\nabla_u {\cal J}^T |
528 |
|
|
\, = \, M^T \cdot \nabla_v {\cal J}^T |
529 |
|
|
\, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}} |
530 |
|
|
\] |
531 |
|
|
|
532 |
|
|
\paragraph{Example 2: |
533 |
|
|
$ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, , |
534 |
|
|
\, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\ |
535 |
heimbach |
1.4 |
The cost function represents the quadratic model vs. data misfit. |
536 |
adcroft |
1.1 |
Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the |
537 |
|
|
operator which maps the model state space onto the data space. |
538 |
|
|
Then, $ \nabla_v {\cal J} $ takes the form |
539 |
|
|
% |
540 |
|
|
\begin{equation*} |
541 |
jmc |
1.23 |
\begin{aligned} |
542 |
adcroft |
1.1 |
\nabla_v {\cal J}^T & = \, 2 \, \, H \cdot |
543 |
|
|
\left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\ |
544 |
|
|
~ & = \, 2 \sum_{j} \left\{ \sum_k |
545 |
|
|
\frac{\partial {\cal H}_k}{\partial v_{j}} |
546 |
|
|
\left( {\cal H}_k (\vec{v}) - d_k \right) |
547 |
|
|
\right\} \, {\vec{f}_{j}} \\ |
548 |
jmc |
1.23 |
\end{aligned} |
549 |
adcroft |
1.1 |
\end{equation*} |
550 |
|
|
% |
551 |
|
|
where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the |
552 |
|
|
Jacobi matrix of the data projection operator. |
553 |
|
|
Thus, the gradient $ \nabla_u {\cal J} $ is given by the |
554 |
|
|
adjoint operator, |
555 |
|
|
driven by the model vs. data misfit: |
556 |
|
|
\[ |
557 |
|
|
\nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot |
558 |
|
|
H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right) |
559 |
|
|
\] |
560 |
|
|
|
561 |
|
|
\subsection{Storing vs. recomputation in reverse mode} |
562 |
|
|
\label{checkpointing} |
563 |
|
|
|
564 |
|
|
We note an important aspect of the forward vs. reverse |
565 |
|
|
mode calculation. |
566 |
heimbach |
1.4 |
Because of the local character of the derivative |
567 |
|
|
(a derivative is defined w.r.t. a point along the trajectory), |
568 |
adcroft |
1.1 |
the intermediate results of the model trajectory |
569 |
|
|
$\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$ |
570 |
heimbach |
1.15 |
may be required to evaluate the intermediate Jacobian |
571 |
adcroft |
1.1 |
$M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $. |
572 |
heimbach |
1.15 |
This is the case e.g. for nonlinear expressions |
573 |
|
|
(momentum advection, nonlinear equation of state), state-dependent |
574 |
|
|
conditional statements (parameterization schemes). |
575 |
adcroft |
1.1 |
In the forward mode, the intermediate results are required |
576 |
|
|
in the same order as computed by the full forward model ${\cal M}$, |
577 |
heimbach |
1.4 |
but in the reverse mode they are required in the reverse order. |
578 |
adcroft |
1.1 |
Thus, in the reverse mode the trajectory of the forward model |
579 |
|
|
integration ${\cal M}$ has to be stored to be available in the reverse |
580 |
heimbach |
1.4 |
calculation. Alternatively, the complete model state up to the |
581 |
|
|
point of evaluation has to be recomputed whenever its value is required. |
582 |
adcroft |
1.1 |
|
583 |
|
|
A method to balance the amount of recomputations vs. |
584 |
|
|
storage requirements is called {\sf checkpointing} |
585 |
heimbach |
1.15 |
(e.g. \cite{gri:92}, \cite{res-eta:98}). |
586 |
adcroft |
1.6 |
It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing |
587 |
heimbach |
1.4 |
[as an example, we give explicit numbers for a 3-day |
588 |
adcroft |
1.1 |
integration with a 1-hourly timestep in square brackets]. |
589 |
|
|
\begin{itemize} |
590 |
|
|
% |
591 |
|
|
\item [$lev3$] |
592 |
|
|
In a first step, the model trajectory is subdivided into |
593 |
|
|
$ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals], |
594 |
|
|
with the label $lev3$ for this outermost loop. |
595 |
heimbach |
1.4 |
The model is then integrated along the full trajectory, |
596 |
heimbach |
1.15 |
and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep |
597 |
adcroft |
1.1 |
[i.e. 3 times, at |
598 |
|
|
$ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $]. |
599 |
heimbach |
1.15 |
In addition, the cost function is computed, if needed. |
600 |
adcroft |
1.1 |
% |
601 |
|
|
\item [$lev2$] |
602 |
heimbach |
1.4 |
In a second step each subsection itself is divided into |
603 |
heimbach |
1.15 |
$ {n}^{lev2} $ subsections |
604 |
adcroft |
1.1 |
[$ {n}^{lev2} $=4 6-hour intervals per subsection]. |
605 |
|
|
The model picks up at the last outermost dumped state |
606 |
heimbach |
1.4 |
$ v_{k_{n}^{lev3}} $ and is integrated forward in time along |
607 |
adcroft |
1.1 |
the last subsection, with the label $lev2$ for this |
608 |
|
|
intermediate loop. |
609 |
heimbach |
1.15 |
The model state is now stored to disk at every $ k_{i}^{lev2} $-th |
610 |
adcroft |
1.1 |
timestep |
611 |
|
|
[i.e. 4 times, at |
612 |
|
|
$ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $]. |
613 |
|
|
% |
614 |
|
|
\item [$lev1$] |
615 |
heimbach |
1.4 |
Finally, the model picks up at the last intermediate dump state |
616 |
|
|
$ v_{k_{n}^{lev2}} $ and is integrated forward in time along |
617 |
heimbach |
1.15 |
the last subsection, with the label $lev1$ for this |
618 |
adcroft |
1.1 |
intermediate loop. |
619 |
heimbach |
1.15 |
Within this sub-subsection only, parts of the model state is stored |
620 |
|
|
to memory at every timestep |
621 |
adcroft |
1.1 |
[i.e. every hour $ i=0,...,5$ corresponding to |
622 |
|
|
$ k_{i}^{lev1} = 66, 67, \ldots, 71 $]. |
623 |
heimbach |
1.15 |
The final state $ v_n = v_{k_{n}^{lev1}} $ is reached |
624 |
|
|
and the model state of all preceding timesteps along the last |
625 |
|
|
innermost subsection are available, enabling integration backwards |
626 |
|
|
in time along the last subsection. |
627 |
|
|
The adjoint can thus be computed along this last |
628 |
|
|
subsection $k_{n}^{lev2}$. |
629 |
adcroft |
1.1 |
% |
630 |
|
|
\end{itemize} |
631 |
|
|
% |
632 |
|
|
This procedure is repeated consecutively for each previous |
633 |
heimbach |
1.15 |
subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $ |
634 |
adcroft |
1.1 |
carrying the adjoint computation to the initial time |
635 |
|
|
of the subsection $k_{n}^{lev3}$. |
636 |
|
|
Then, the procedure is repeated for the previous subsection |
637 |
|
|
$k_{n-1}^{lev3}$ |
638 |
|
|
carrying the adjoint computation to the initial time |
639 |
|
|
$k_{1}^{lev3}$. |
640 |
|
|
|
641 |
|
|
For the full model trajectory of |
642 |
|
|
$ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps |
643 |
|
|
the required storing of the model state was significantly reduced to |
644 |
heimbach |
1.15 |
$ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory |
645 |
adcroft |
1.1 |
[i.e. for the 3-day integration with a total oof 72 timesteps |
646 |
heimbach |
1.15 |
the model state was stored 7 times to disk and roughly 6 times |
647 |
|
|
to memory]. |
648 |
adcroft |
1.1 |
This saving in memory comes at a cost of a required |
649 |
|
|
3 full forward integrations of the model (one for each |
650 |
|
|
checkpointing level). |
651 |
heimbach |
1.15 |
The optimal balance of storage vs. recomputation certainly depends |
652 |
|
|
on the computing resources available and may be adjusted by |
653 |
|
|
adjusting the partitioning among the |
654 |
|
|
$ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $. |
655 |
adcroft |
1.1 |
|
656 |
|
|
\begin{figure}[t!] |
657 |
adcroft |
1.6 |
\begin{center} |
658 |
adcroft |
1.1 |
%\psdraft |
659 |
adcroft |
1.6 |
%\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}} |
660 |
|
|
%\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}} |
661 |
|
|
%\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}} |
662 |
|
|
%\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}} |
663 |
|
|
%\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}} |
664 |
|
|
%\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}} |
665 |
|
|
%\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}} |
666 |
|
|
%\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}} |
667 |
jmc |
1.22 |
%\mbox{\epsfig{file=s_autodiff/figs/checkpointing.eps, width=0.8\textwidth}} |
668 |
|
|
\resizebox{5.5in}{!}{\includegraphics{s_autodiff/figs/checkpointing.eps}} |
669 |
adcroft |
1.1 |
%\psfull |
670 |
adcroft |
1.6 |
\end{center} |
671 |
|
|
\caption{ |
672 |
|
|
Schematic view of intermediate dump and restart for |
673 |
adcroft |
1.1 |
3-level checkpointing.} |
674 |
heimbach |
1.4 |
\label{fig:3levelcheck} |
675 |
adcroft |
1.1 |
\end{figure} |
676 |
|
|
|
677 |
heimbach |
1.4 |
% \subsection{Optimal perturbations} |
678 |
|
|
% \label{sec_optpert} |
679 |
adcroft |
1.1 |
|
680 |
|
|
|
681 |
heimbach |
1.4 |
% \subsection{Error covariance estimate and Hessian matrix} |
682 |
|
|
% \label{sec_hessian} |
683 |
adcroft |
1.1 |
|
684 |
|
|
\newpage |
685 |
|
|
|
686 |
|
|
%********************************************************************** |
687 |
heimbach |
1.4 |
\section{TLM and ADM generation in general} |
688 |
adcroft |
1.1 |
\label{sec_ad_setup_gen} |
689 |
edhill |
1.17 |
\begin{rawhtml} |
690 |
|
|
<!-- CMIREDIR:sec_ad_setup_gen: --> |
691 |
|
|
\end{rawhtml} |
692 |
adcroft |
1.1 |
%********************************************************************** |
693 |
|
|
|
694 |
|
|
In this section we describe in a general fashion |
695 |
|
|
the parts of the code that are relevant for automatic |
696 |
heimbach |
1.21 |
differentiation using the software tool TAF. |
697 |
|
|
Modifications to use OpenAD are described in \ref{sec_ad_openad}. |
698 |
adcroft |
1.1 |
|
699 |
jmc |
1.22 |
\input{s_autodiff/text/doc_ad_the_model} |
700 |
heimbach |
1.4 |
|
701 |
adcroft |
1.6 |
The basic flow is depicted in \ref{fig:adthemodel}. |
702 |
heimbach |
1.19 |
If CPP option \texttt{ALLOW\_AUTODIFF\_TAMC} is defined, |
703 |
|
|
the driver routine |
704 |
heimbach |
1.4 |
{\it the\_model\_main}, instead of calling {\it the\_main\_loop}, |
705 |
heimbach |
1.19 |
invokes the adjoint of this routine, {\it adthe\_main\_loop} |
706 |
|
|
(case \texttt{\#define ALLOW\_ADJOINT\_RUN}), or |
707 |
|
|
the tangent linear of this routine {\it g\_the\_main\_loop} |
708 |
|
|
(case \texttt{\#define ALLOW\_TANGENTLINEAR\_RUN}), |
709 |
|
|
which are the toplevel routines in terms of automatic differentiation. |
710 |
|
|
The routines {\it adthe\_main\_loop} or {\it g\_the\_main\_loop} |
711 |
|
|
are generated by TAF. |
712 |
heimbach |
1.16 |
It contains both the forward integration of the full model, the |
713 |
|
|
cost function calculation, |
714 |
heimbach |
1.4 |
any additional storing that is required for efficient checkpointing, |
715 |
|
|
and the reverse integration of the adjoint model. |
716 |
heimbach |
1.16 |
|
717 |
|
|
[DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM] |
718 |
|
|
|
719 |
|
|
In Fig. \ref{fig:adthemodel} |
720 |
|
|
the structure of {\it adthe\_main\_loop} has been strongly |
721 |
|
|
simplified to focus on the essentials; in particular, no checkpointing |
722 |
heimbach |
1.4 |
procedures are shown here. |
723 |
|
|
Prior to the call of {\it adthe\_main\_loop}, the routine |
724 |
heimbach |
1.15 |
{\it ctrl\_unpack} is invoked to unpack the control vector |
725 |
|
|
or initialise the control variables. |
726 |
|
|
Following the call of {\it adthe\_main\_loop}, |
727 |
|
|
the routine {\it ctrl\_pack} |
728 |
heimbach |
1.4 |
is invoked to pack the control vector |
729 |
|
|
(cf. Section \ref{section_ctrl}). |
730 |
|
|
If gradient checks are to be performed, the option |
731 |
|
|
{\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case |
732 |
|
|
the driver routine {\it grdchk\_main} is called after |
733 |
|
|
the gradient has been computed via the adjoint |
734 |
jmc |
1.23 |
(cf. Section \ref{sec:ad_gradient_check}). |
735 |
heimbach |
1.4 |
|
736 |
heimbach |
1.16 |
%------------------------------------------------------------------ |
737 |
|
|
|
738 |
|
|
\subsection{General setup |
739 |
|
|
\label{section_ad_setup}} |
740 |
|
|
|
741 |
|
|
In order to configure AD-related setups the following packages need |
742 |
|
|
to be enabled: |
743 |
|
|
{\it |
744 |
jmc |
1.23 |
\begin{table}[!ht] |
745 |
heimbach |
1.16 |
\begin{tabular}{l} |
746 |
|
|
autodiff \\ |
747 |
|
|
ctrl \\ |
748 |
|
|
cost \\ |
749 |
|
|
grdchk \\ |
750 |
|
|
\end{tabular} |
751 |
|
|
\end{table} |
752 |
|
|
} |
753 |
|
|
The packages are enabled by adding them to your experiment-specific |
754 |
|
|
configuration file |
755 |
|
|
{\it packages.conf} (see Section ???). |
756 |
|
|
|
757 |
|
|
The following AD-specific CPP option files need to be customized: |
758 |
|
|
% |
759 |
|
|
\begin{itemize} |
760 |
|
|
% |
761 |
|
|
\item {\it ECCO\_CPPOPTIONS.h} \\ |
762 |
|
|
This header file collects CPP options for the packages |
763 |
|
|
{\it autodiff, cost, ctrl} as well as AD-unrelated options for |
764 |
|
|
the external forcing package {\it exf}. |
765 |
|
|
\footnote{NOTE: These options are not set in their package-specific |
766 |
|
|
headers such as {\it COST\_CPPOPTIONS.h}, but are instead collected |
767 |
|
|
in the single header file {\it ECCO\_CPPOPTIONS.h}. |
768 |
|
|
The package-specific header files serve as simple |
769 |
|
|
placeholders at this point.} |
770 |
|
|
% |
771 |
|
|
\item {\it tamc.h} \\ |
772 |
|
|
This header configures the splitting of the time stepping loop |
773 |
|
|
w.r.t. the 3-level checkpointing (see section ???). |
774 |
|
|
|
775 |
|
|
% |
776 |
|
|
\end{itemize} |
777 |
|
|
|
778 |
|
|
%------------------------------------------------------------------ |
779 |
|
|
|
780 |
heimbach |
1.21 |
\subsection{Building the AD code using TAF |
781 |
heimbach |
1.16 |
\label{section_ad_build}} |
782 |
|
|
|
783 |
|
|
The build process of an AD code is very similar to building |
784 |
|
|
the forward model. However, depending on which AD code one wishes |
785 |
|
|
to generate, and on which AD tool is available (TAF or TAMC), |
786 |
|
|
the following {\tt make} targets are available: |
787 |
|
|
|
788 |
jmc |
1.23 |
\begin{table}[!ht] |
789 |
heimbach |
1.16 |
{\footnotesize |
790 |
heimbach |
1.21 |
\begin{tabular}{|ccll|} |
791 |
|
|
\hline |
792 |
heimbach |
1.16 |
~ & {\it AD-target} & {\it output} & {\it description} \\ |
793 |
|
|
\hline |
794 |
|
|
\hline |
795 |
|
|
(1) & {\tt <MODE><TOOL>only} & {\tt <MODE>\_<TOOL>\_output.f} & |
796 |
|
|
generates code for $<$MODE$>$ using $<$TOOL$>$ \\ |
797 |
|
|
~ & ~ & ~ & no {\tt make} dependencies on {\tt .F .h} \\ |
798 |
|
|
~ & ~ & ~ & useful for compiling on remote platforms \\ |
799 |
|
|
\hline |
800 |
|
|
(2) & {\tt <MODE><TOOL>} & {\tt <MODE>\_<TOOL>\_output.f} & |
801 |
|
|
generates code for $<$MODE$>$ using $<$TOOL$>$ \\ |
802 |
|
|
~ & ~ & ~ & includes {\tt make} dependencies on {\tt .F .h} \\ |
803 |
|
|
~ & ~ & ~ & i.e. input for $<$TOOL$>$ may be re-generated \\ |
804 |
|
|
\hline |
805 |
|
|
(3) & {\tt <MODE>all} & {\tt mitgcmuv\_<MODE>} & |
806 |
|
|
generates code for $<$MODE$>$ using $<$TOOL$>$ \\ |
807 |
|
|
~ & ~ & ~ & and compiles all code \\ |
808 |
|
|
~ & ~ & ~ & (use of TAF is set as default) \\ |
809 |
|
|
\hline |
810 |
|
|
\end{tabular} |
811 |
|
|
} |
812 |
|
|
\end{table} |
813 |
|
|
% |
814 |
|
|
Here, the following placeholders are used |
815 |
|
|
% |
816 |
|
|
\begin{itemize} |
817 |
|
|
% |
818 |
heimbach |
1.21 |
\item $<$TOOL$>$ |
819 |
heimbach |
1.16 |
% |
820 |
|
|
\begin{itemize} |
821 |
|
|
% |
822 |
|
|
\item {\tt TAF} |
823 |
|
|
\item {\tt TAMC} |
824 |
|
|
% |
825 |
|
|
\end{itemize} |
826 |
|
|
% |
827 |
heimbach |
1.21 |
\item $<$MODE$>$ |
828 |
heimbach |
1.16 |
% |
829 |
|
|
\begin{itemize} |
830 |
|
|
% |
831 |
|
|
\item {\tt ad} generates the adjoint model (ADM) |
832 |
|
|
\item {\tt ftl} generates the tangent linear model (TLM) |
833 |
|
|
\item {\tt svd} generates both ADM and TLM for \\ |
834 |
|
|
singular value decomposition (SVD) type calculations |
835 |
|
|
% |
836 |
|
|
\end{itemize} |
837 |
|
|
% |
838 |
|
|
\end{itemize} |
839 |
|
|
|
840 |
|
|
For example, to generate the adjoint model using TAF after routines ({\tt .F}) |
841 |
|
|
or headers ({\tt .h}) have been modified, but without compilation, |
842 |
|
|
type {\tt make adtaf}; |
843 |
|
|
or, to generate the tangent linear model using TAMC without |
844 |
|
|
re-generating the input code, type {\tt make ftltamconly}. |
845 |
|
|
|
846 |
|
|
|
847 |
|
|
A typical full build process to generate the ADM via TAF would |
848 |
|
|
look like follows: |
849 |
|
|
\begin{verbatim} |
850 |
|
|
% mkdir build |
851 |
|
|
% cd build |
852 |
|
|
% ../../../tools/genmake2 -mods=../code_ad |
853 |
|
|
% make depend |
854 |
|
|
% make adall |
855 |
|
|
\end{verbatim} |
856 |
|
|
|
857 |
|
|
%------------------------------------------------------------------ |
858 |
|
|
|
859 |
|
|
\subsection{The AD build process in detail |
860 |
|
|
\label{section_ad_build_detail}} |
861 |
|
|
|
862 |
|
|
The {\tt make <MODE>all} target consists of the following procedures: |
863 |
|
|
|
864 |
|
|
\begin{enumerate} |
865 |
|
|
% |
866 |
|
|
\item |
867 |
|
|
A header file {\tt AD\_CONFIG.h} is generated which contains a CPP option |
868 |
|
|
on which code ought to be generated. Depending on the {\tt make} target, |
869 |
heimbach |
1.21 |
the contents is one of the following: |
870 |
heimbach |
1.16 |
\begin{itemize} |
871 |
|
|
\item |
872 |
|
|
{\tt \#define ALLOW\_ADJOINT\_RUN} |
873 |
|
|
\item |
874 |
|
|
{\tt \#define ALLOW\_TANGENTLINEAR\_RUN} |
875 |
|
|
\item |
876 |
|
|
{\tt \#define ALLOW\_ECCO\_OPTIMIZATION} |
877 |
|
|
\end{itemize} |
878 |
|
|
% |
879 |
|
|
\item |
880 |
|
|
A single file {\tt <MODE>\_input\_code.f} is concatenated |
881 |
|
|
consisting of all {\tt .f} files that are part of the list {\bf AD\_FILES} |
882 |
|
|
and all {\tt .flow} files that are part of the list {\bf AD\_FLOW\_FILES}. |
883 |
|
|
% |
884 |
|
|
\item |
885 |
heimbach |
1.21 |
The AD tool is invoked with the {\tt <MODE>\_<TOOL>\_FLAGS}. |
886 |
heimbach |
1.16 |
The default AD tool flags in {\tt genmake2} can be overrwritten by |
887 |
|
|
an {\tt adjoint\_options} file (similar to the platform-specific |
888 |
|
|
{\tt build\_options}, see Section ???. |
889 |
|
|
The AD tool writes the resulting AD code into the file |
890 |
|
|
{\tt <MODE>\_input\_code\_ad.f} |
891 |
|
|
% |
892 |
|
|
\item |
893 |
|
|
A short sed script {\tt adjoint\_sed} is applied to |
894 |
|
|
{\tt <MODE>\_input\_code\_ad.f} |
895 |
|
|
to reinstate {\bf myThid} into the CALL argument list of active file I/O. |
896 |
|
|
The result is written to file {\tt <MODE>\_<TOOL>\_output.f}. |
897 |
|
|
% |
898 |
|
|
\item |
899 |
|
|
All routines are compiled and an executable is generated |
900 |
|
|
(see Table ???). |
901 |
|
|
% |
902 |
|
|
\end{enumerate} |
903 |
|
|
|
904 |
|
|
\subsubsection{The list AD\_FILES and {\tt .list} files} |
905 |
|
|
|
906 |
|
|
Not all routines are presented to the AD tool. |
907 |
|
|
Routines typically hidden are diagnostics routines which |
908 |
|
|
do not influence the cost function, but may create |
909 |
|
|
artificial flow dependencies such as I/O of active variables. |
910 |
|
|
|
911 |
|
|
{\tt genmake2} generates a list (or variable) {\bf AD\_FILES} |
912 |
|
|
which contains all routines that are shown to the AD tool. |
913 |
|
|
This list is put together from all files with suffix {\tt .list} |
914 |
|
|
that {\tt genmake2} finds in its search directories. |
915 |
|
|
The list file for the core MITgcm routines is in {\tt model/src/} |
916 |
|
|
is called {\tt model\_ad\_diff.list}. |
917 |
|
|
Note that no wrapper routine is shown to TAF. These are either |
918 |
|
|
not visible at all to the AD code, or hand-written AD code |
919 |
|
|
is available (see next section). |
920 |
|
|
|
921 |
|
|
Each package directory contains its package-specific |
922 |
|
|
list file {\tt <PKG>\_ad\_diff.list}. For example, |
923 |
|
|
{\tt pkg/ptracers/} contains the file {\tt ptracers\_ad\_diff.list}. |
924 |
|
|
Thus, enabling a package will automatically extend the |
925 |
|
|
{\bf AD\_FILES} list of {\tt genmake2} to incorporate the |
926 |
|
|
package-specific routines. |
927 |
|
|
Note that you will need to regenerate the {\tt Makefile} if |
928 |
|
|
you enable a package (e.g. by adding it to {\tt packages.conf}) |
929 |
|
|
and a {\tt Makefile} already exists. |
930 |
|
|
|
931 |
|
|
\subsubsection{The list AD\_FLOW\_FILES and {\tt .flow} files} |
932 |
|
|
|
933 |
|
|
TAMC and TAF can evaluate user-specified directives |
934 |
|
|
that start with a specific syntax ({\tt CADJ}, {\tt C\$TAF}, {\tt !\$TAF}). |
935 |
|
|
The main categories of directives are STORE directives and |
936 |
|
|
FLOW directives. Here, we are concerned with flow directives, |
937 |
|
|
store directives are treated elsewhere. |
938 |
|
|
|
939 |
|
|
Flow directives enable the AD tool to evaluate how it should treat |
940 |
|
|
routines that are 'hidden' by the user, i.e. routines which are |
941 |
|
|
not contained in the {\bf AD\_FILES} list (see previous section), |
942 |
|
|
but which are called in part of the code that the AD tool does see. |
943 |
|
|
The flow directive tell the AD tool |
944 |
|
|
% |
945 |
|
|
\begin{itemize} |
946 |
|
|
% |
947 |
|
|
\item which subroutine arguments are input/output |
948 |
|
|
\item which subroutine arguments are active |
949 |
|
|
\item which subroutine arguments are required to compute the cost |
950 |
|
|
\item which subroutine arguments are dependent |
951 |
|
|
% |
952 |
|
|
\end{itemize} |
953 |
|
|
% |
954 |
|
|
The syntax for the flow directives can be found in the |
955 |
|
|
AD tool manuals. |
956 |
|
|
|
957 |
|
|
{\tt genmake2} generates a list (or variable) {\bf AD\_FLOW\_FILES} |
958 |
|
|
which contains all files with suffix{\tt .flow} that it finds |
959 |
|
|
in its search directories. |
960 |
|
|
The flow directives for the core MITgcm routines of |
961 |
|
|
{\tt eesupp/src/} and {\tt model/src/} |
962 |
|
|
reside in {\tt pkg/autodiff/}. |
963 |
|
|
This directory also contains hand-written adjoint code |
964 |
edhill |
1.20 |
for the MITgcm WRAPPER (section \ref{chap:sarch}). |
965 |
heimbach |
1.16 |
|
966 |
|
|
Flow directives for package-specific routines are contained in |
967 |
|
|
the corresponding package directories in the file |
968 |
|
|
{\tt <PKG>\_ad.flow}, e.g. ptracers-specific directives are in |
969 |
|
|
{\tt ptracers\_ad.flow}. |
970 |
|
|
|
971 |
|
|
\subsubsection{Store directives for 3-level checkpointing} |
972 |
|
|
|
973 |
|
|
The storing that is required at each period of the |
974 |
|
|
3-level checkpointing is controled by three |
975 |
|
|
top-level headers. |
976 |
|
|
|
977 |
|
|
\begin{verbatim} |
978 |
|
|
do ilev_3 = 1, nchklev_3 |
979 |
|
|
# include ``checkpoint_lev3.h'' |
980 |
|
|
do ilev_2 = 1, nchklev_2 |
981 |
|
|
# include ``checkpoint_lev2.h'' |
982 |
|
|
do ilev_1 = 1, nchklev_1 |
983 |
|
|
# include ``checkpoint_lev1.h'' |
984 |
|
|
|
985 |
|
|
... |
986 |
|
|
|
987 |
|
|
end do |
988 |
|
|
end do |
989 |
|
|
end do |
990 |
|
|
\end{verbatim} |
991 |
|
|
|
992 |
|
|
All files {\tt checkpoint\_lev?.h} are contained in directory |
993 |
|
|
{\tt pkg/autodiff/}. |
994 |
|
|
|
995 |
|
|
|
996 |
|
|
\subsubsection{Changing the default AD tool flags: ad\_options files} |
997 |
|
|
|
998 |
|
|
|
999 |
|
|
\subsubsection{Hand-written adjoint code} |
1000 |
|
|
|
1001 |
|
|
%------------------------------------------------------------------ |
1002 |
|
|
|
1003 |
heimbach |
1.4 |
\subsection{The cost function (dependent variable) |
1004 |
|
|
\label{section_cost}} |
1005 |
adcroft |
1.1 |
|
1006 |
|
|
The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}. |
1007 |
|
|
It is a function of the input variables $ \vec{u} $ via the composition |
1008 |
|
|
$ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $. |
1009 |
heimbach |
1.15 |
The input are referred to as the |
1010 |
adcroft |
1.1 |
{\sf independent variables} or {\sf control variables}. |
1011 |
|
|
All aspects relevant to the treatment of the cost function $ {\cal J} $ |
1012 |
cnh |
1.7 |
(parameter setting, initialization, accumulation, |
1013 |
heimbach |
1.4 |
final evaluation), are controlled by the package {\it pkg/cost}. |
1014 |
heimbach |
1.15 |
The aspects relevant to the treatment of the independent variables |
1015 |
|
|
are controlled by the package {\it pkg/ctrl} and will be treated |
1016 |
|
|
in the next section. |
1017 |
heimbach |
1.4 |
|
1018 |
jmc |
1.22 |
\input{s_autodiff/text/doc_cost_flow} |
1019 |
adcroft |
1.1 |
|
1020 |
heimbach |
1.16 |
\subsubsection{Enabling the package} |
1021 |
|
|
|
1022 |
adcroft |
1.1 |
\fbox{ |
1023 |
|
|
\begin{minipage}{12cm} |
1024 |
heimbach |
1.16 |
{\it packages.conf}, {\it ECCO\_CPPOPTIONS.h} |
1025 |
adcroft |
1.1 |
\end{minipage} |
1026 |
|
|
} |
1027 |
heimbach |
1.16 |
\begin{itemize} |
1028 |
adcroft |
1.1 |
% |
1029 |
heimbach |
1.16 |
\item |
1030 |
|
|
The package is enabled by adding {\it cost} to your file {\it packages.conf} |
1031 |
|
|
(see Section ???) |
1032 |
adcroft |
1.1 |
% |
1033 |
heimbach |
1.16 |
\item |
1034 |
|
|
|
1035 |
|
|
|
1036 |
|
|
\end{itemize} |
1037 |
adcroft |
1.1 |
% |
1038 |
heimbach |
1.16 |
|
1039 |
heimbach |
1.15 |
N.B.: In general the following packages ought to be enabled |
1040 |
|
|
simultaneously: {\it autodiff, cost, ctrl}. |
1041 |
heimbach |
1.4 |
The basic CPP option to enable the cost function is {\bf ALLOW\_COST}. |
1042 |
|
|
Each specific cost function contribution has its own option. |
1043 |
|
|
For the present example the option is {\bf ALLOW\_COST\_TRACER}. |
1044 |
|
|
All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h} |
1045 |
adcroft |
1.1 |
Since the cost function is usually used in conjunction with |
1046 |
|
|
automatic differentiation, the CPP option |
1047 |
heimbach |
1.15 |
{\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and |
1048 |
|
|
{\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h}) |
1049 |
|
|
should be defined. |
1050 |
adcroft |
1.1 |
|
1051 |
cnh |
1.7 |
\subsubsection{Initialization} |
1052 |
adcroft |
1.1 |
% |
1053 |
cnh |
1.7 |
The initialization of the {\it cost} package is readily enabled |
1054 |
heimbach |
1.15 |
as soon as the CPP option {\bf ALLOW\_COST} is defined. |
1055 |
adcroft |
1.1 |
% |
1056 |
|
|
\begin{itemize} |
1057 |
|
|
% |
1058 |
|
|
\item |
1059 |
|
|
\fbox{ |
1060 |
|
|
\begin{minipage}{12cm} |
1061 |
|
|
Parameters: {\it cost\_readparms} |
1062 |
|
|
\end{minipage} |
1063 |
|
|
} |
1064 |
|
|
\\ |
1065 |
|
|
This S/R |
1066 |
|
|
reads runtime flags and parameters from file {\it data.cost}. |
1067 |
|
|
For the present example the only relevant parameter read |
1068 |
|
|
is {\bf mult\_tracer}. This multiplier enables different |
1069 |
|
|
cost function contributions to be switched on |
1070 |
|
|
( = 1.) or off ( = 0.) at runtime. |
1071 |
|
|
For more complex cost functions which involve model vs. data |
1072 |
|
|
misfits, the corresponding data filenames and data |
1073 |
|
|
specifications (start date and time, period, ...) are read |
1074 |
|
|
in this S/R. |
1075 |
|
|
% |
1076 |
|
|
\item |
1077 |
|
|
\fbox{ |
1078 |
|
|
\begin{minipage}{12cm} |
1079 |
|
|
Variables: {\it cost\_init} |
1080 |
|
|
\end{minipage} |
1081 |
|
|
} |
1082 |
|
|
\\ |
1083 |
|
|
This S/R |
1084 |
cnh |
1.7 |
initializes the different cost function contributions. |
1085 |
|
|
The contribution for the present example is {\bf objf\_tracer} |
1086 |
adcroft |
1.1 |
which is defined on each tile (bi,bj). |
1087 |
|
|
% |
1088 |
|
|
\end{itemize} |
1089 |
|
|
% |
1090 |
heimbach |
1.4 |
\subsubsection{Accumulation} |
1091 |
adcroft |
1.1 |
% |
1092 |
|
|
\begin{itemize} |
1093 |
|
|
% |
1094 |
|
|
\item |
1095 |
|
|
\fbox{ |
1096 |
|
|
\begin{minipage}{12cm} |
1097 |
|
|
{\it cost\_tile}, {\it cost\_tracer} |
1098 |
|
|
\end{minipage} |
1099 |
|
|
} |
1100 |
|
|
\end{itemize} |
1101 |
|
|
% |
1102 |
|
|
The 'driver' routine |
1103 |
|
|
{\it cost\_tile} is called at the end of each time step. |
1104 |
|
|
Within this 'driver' routine, S/R are called for each of |
1105 |
|
|
the chosen cost function contributions. |
1106 |
|
|
In the present example ({\bf ALLOW\_COST\_TRACER}), |
1107 |
|
|
S/R {\it cost\_tracer} is called. |
1108 |
jmc |
1.24 |
It accumulates {\bf objf\_tracer} according to eqn. (ref:ask-the-author). |
1109 |
adcroft |
1.1 |
% |
1110 |
|
|
\subsubsection{Finalize all contributions} |
1111 |
|
|
% |
1112 |
|
|
\begin{itemize} |
1113 |
|
|
% |
1114 |
|
|
\item |
1115 |
|
|
\fbox{ |
1116 |
|
|
\begin{minipage}{12cm} |
1117 |
|
|
{\it cost\_final} |
1118 |
|
|
\end{minipage} |
1119 |
|
|
} |
1120 |
|
|
\end{itemize} |
1121 |
|
|
% |
1122 |
|
|
At the end of the forward integration S/R {\it cost\_final} |
1123 |
|
|
is called. It accumulates the total cost function {\bf fc} |
1124 |
|
|
from each contribution and sums over all tiles: |
1125 |
|
|
\begin{equation} |
1126 |
|
|
{\cal J} \, = \, |
1127 |
|
|
{\rm fc} \, = \, |
1128 |
heimbach |
1.15 |
{\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy} |
1129 |
adcroft |
1.1 |
{\rm objf\_tracer}(bi,bj) \, + \, ... |
1130 |
|
|
\end{equation} |
1131 |
|
|
% |
1132 |
|
|
The total cost function {\bf fc} will be the |
1133 |
heimbach |
1.21 |
'dependent' variable in the argument list for TAF, i.e. |
1134 |
adcroft |
1.1 |
\begin{verbatim} |
1135 |
heimbach |
1.21 |
taf -output 'fc' ... |
1136 |
adcroft |
1.1 |
\end{verbatim} |
1137 |
|
|
|
1138 |
cnh |
1.3 |
%%%% \end{document} |
1139 |
adcroft |
1.1 |
|
1140 |
jmc |
1.22 |
\input{s_autodiff/text/doc_ad_the_main} |
1141 |
adcroft |
1.1 |
|
1142 |
heimbach |
1.4 |
\subsection{The control variables (independent variables) |
1143 |
|
|
\label{section_ctrl}} |
1144 |
adcroft |
1.1 |
|
1145 |
|
|
The control variables are a subset of the model input |
1146 |
|
|
(initial conditions, boundary conditions, model parameters). |
1147 |
|
|
Here we identify them with the variable $ \vec{u} $. |
1148 |
|
|
All intermediate variables whose derivative w.r.t. control |
1149 |
heimbach |
1.4 |
variables do not vanish are called {\sf active variables}. |
1150 |
adcroft |
1.1 |
All subroutines whose derivative w.r.t. the control variables |
1151 |
|
|
don't vanish are called {\sf active routines}. |
1152 |
|
|
Read and write operations from and to file can be viewed |
1153 |
|
|
as variable assignments. Therefore, files to which |
1154 |
|
|
active variables are written and from which active variables |
1155 |
|
|
are read are called {\sf active files}. |
1156 |
|
|
All aspects relevant to the treatment of the control variables |
1157 |
cnh |
1.7 |
(parameter setting, initialization, perturbation) |
1158 |
|
|
are controlled by the package {\it pkg/ctrl}. |
1159 |
adcroft |
1.1 |
|
1160 |
jmc |
1.22 |
\input{s_autodiff/text/doc_ctrl_flow} |
1161 |
heimbach |
1.4 |
|
1162 |
adcroft |
1.1 |
\subsubsection{genmake and CPP options} |
1163 |
|
|
% |
1164 |
|
|
\begin{itemize} |
1165 |
|
|
% |
1166 |
|
|
\item |
1167 |
|
|
\fbox{ |
1168 |
|
|
\begin{minipage}{12cm} |
1169 |
|
|
{\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h} |
1170 |
|
|
\end{minipage} |
1171 |
|
|
} |
1172 |
|
|
\end{itemize} |
1173 |
|
|
% |
1174 |
|
|
To enable the directory to be included to the compile list, |
1175 |
|
|
{\bf ctrl} has to be added to the {\bf enable} list in |
1176 |
heimbach |
1.15 |
{\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost} |
1177 |
|
|
package, cf. previous section). |
1178 |
adcroft |
1.1 |
Each control variable is enabled via its own CPP option |
1179 |
|
|
in {\it ECCO\_CPPOPTIONS.h}. |
1180 |
|
|
|
1181 |
cnh |
1.7 |
\subsubsection{Initialization} |
1182 |
adcroft |
1.1 |
% |
1183 |
|
|
\begin{itemize} |
1184 |
|
|
% |
1185 |
|
|
\item |
1186 |
|
|
\fbox{ |
1187 |
|
|
\begin{minipage}{12cm} |
1188 |
|
|
Parameters: {\it ctrl\_readparms} |
1189 |
|
|
\end{minipage} |
1190 |
|
|
} |
1191 |
|
|
\\ |
1192 |
|
|
% |
1193 |
|
|
This S/R |
1194 |
|
|
reads runtime flags and parameters from file {\it data.ctrl}. |
1195 |
|
|
For the present example the file contains the file names |
1196 |
|
|
of each control variable that is used. |
1197 |
|
|
In addition, the number of wet points for each control |
1198 |
|
|
variable and the net dimension of the space of control |
1199 |
|
|
variables (counting wet points only) {\bf nvarlength} |
1200 |
|
|
is determined. |
1201 |
|
|
Masks for wet points for each tile {\bf (bi,\,bj)} |
1202 |
|
|
and vertical layer {\bf k} are generated for the three |
1203 |
|
|
relevant categories on the C-grid: |
1204 |
|
|
{\bf nWetCtile} for tracer fields, |
1205 |
|
|
{\bf nWetWtile} for zonal velocity fields, |
1206 |
|
|
{\bf nWetStile} for meridional velocity fields. |
1207 |
|
|
% |
1208 |
|
|
\item |
1209 |
|
|
\fbox{ |
1210 |
|
|
\begin{minipage}{12cm} |
1211 |
|
|
Control variables, control vector, |
1212 |
|
|
and their gradients: {\it ctrl\_unpack} |
1213 |
|
|
\end{minipage} |
1214 |
|
|
} |
1215 |
|
|
\\ |
1216 |
|
|
% |
1217 |
|
|
Two important issues related to the handling of the control |
1218 |
edhill |
1.20 |
variables in MITgcm need to be addressed. |
1219 |
adcroft |
1.1 |
First, in order to save memory, the control variable arrays |
1220 |
|
|
are not kept in memory, but rather read from file and added |
1221 |
cnh |
1.7 |
to the initial fields during the model initialization phase. |
1222 |
adcroft |
1.1 |
Similarly, the corresponding adjoint fields which represent |
1223 |
|
|
the gradient of the cost function w.r.t. the control variables |
1224 |
heimbach |
1.4 |
are written to file at the end of the adjoint integration. |
1225 |
adcroft |
1.1 |
Second, in addition to the files holding the 2-dim. and 3-dim. |
1226 |
heimbach |
1.4 |
control variables and the corresponding cost gradients, |
1227 |
|
|
a 1-dim. {\sf control vector} |
1228 |
adcroft |
1.1 |
and {\sf gradient vector} are written to file. They contain |
1229 |
|
|
only the wet points of the control variables and the corresponding |
1230 |
|
|
gradient. |
1231 |
|
|
This leads to a significant data compression. |
1232 |
heimbach |
1.4 |
Furthermore, an option is available |
1233 |
|
|
({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to |
1234 |
|
|
non-dimensionalise the control and gradient vector, |
1235 |
|
|
which otherwise would contain different pieces of different |
1236 |
|
|
magnitudes and units. |
1237 |
|
|
Finally, the control and gradient vector can be passed to a |
1238 |
adcroft |
1.1 |
minimization routine if an update of the control variables |
1239 |
|
|
is sought as part of a minimization exercise. |
1240 |
|
|
|
1241 |
|
|
The files holding fields and vectors of the control variables |
1242 |
|
|
and gradient are generated and initialised in S/R {\it ctrl\_unpack}. |
1243 |
|
|
% |
1244 |
|
|
\end{itemize} |
1245 |
|
|
|
1246 |
|
|
\subsubsection{Perturbation of the independent variables} |
1247 |
|
|
% |
1248 |
heimbach |
1.4 |
The dependency flow for differentiation w.r.t. the controls |
1249 |
|
|
starts with adding a perturbation onto the input variable, |
1250 |
heimbach |
1.21 |
thus defining the independent or control variables for TAF. |
1251 |
heimbach |
1.4 |
Three types of controls may be considered: |
1252 |
adcroft |
1.1 |
% |
1253 |
|
|
\begin{itemize} |
1254 |
|
|
% |
1255 |
|
|
\item |
1256 |
|
|
\fbox{ |
1257 |
|
|
\begin{minipage}{12cm} |
1258 |
|
|
{\it ctrl\_map\_ini} (initial value sensitivity): |
1259 |
|
|
\end{minipage} |
1260 |
|
|
} |
1261 |
|
|
\\ |
1262 |
|
|
% |
1263 |
|
|
Consider as an example the initial tracer distribution |
1264 |
|
|
{\bf tr1} as control variable. |
1265 |
|
|
After {\bf tr1} has been initialised in |
1266 |
heimbach |
1.4 |
{\it ini\_tr1} (dynamical variables such as |
1267 |
adcroft |
1.1 |
temperature and salinity are initialised in {\it ini\_fields}), |
1268 |
|
|
a perturbation anomaly is added to the field in S/R |
1269 |
|
|
{\it ctrl\_map\_ini} |
1270 |
|
|
% |
1271 |
jmc |
1.23 |
%\begin{eqnarray} |
1272 |
adcroft |
1.1 |
\begin{equation} |
1273 |
jmc |
1.23 |
\begin{aligned} |
1274 |
adcroft |
1.1 |
u & = \, u_{[0]} \, + \, \Delta u \\ |
1275 |
|
|
{\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...) |
1276 |
|
|
\label{perturb} |
1277 |
jmc |
1.23 |
\end{aligned} |
1278 |
adcroft |
1.1 |
\end{equation} |
1279 |
jmc |
1.23 |
%\end{eqnarray} |
1280 |
adcroft |
1.1 |
% |
1281 |
heimbach |
1.4 |
{\bf xx\_tr1} is a 3-dim. global array |
1282 |
adcroft |
1.1 |
holding the perturbation. In the case of a simple |
1283 |
|
|
sensitivity study this array is identical to zero. |
1284 |
heimbach |
1.4 |
However, it's specification is essential in the context |
1285 |
heimbach |
1.21 |
of automatic differentiation since TAF |
1286 |
adcroft |
1.1 |
treats the corresponding line in the code symbolically |
1287 |
|
|
when determining the differentiation chain and its origin. |
1288 |
|
|
Thus, the variable names are part of the argument list |
1289 |
heimbach |
1.21 |
when calling TAF: |
1290 |
adcroft |
1.1 |
% |
1291 |
|
|
\begin{verbatim} |
1292 |
heimbach |
1.21 |
taf -input 'xx_tr1 ...' ... |
1293 |
adcroft |
1.1 |
\end{verbatim} |
1294 |
|
|
% |
1295 |
edhill |
1.20 |
Now, as mentioned above, MITgcm avoids maintaining |
1296 |
adcroft |
1.1 |
an array for each control variable by reading the |
1297 |
|
|
perturbation to a temporary array from file. |
1298 |
heimbach |
1.21 |
To ensure the symbolic link to be recognized by TAF, a scalar |
1299 |
adcroft |
1.1 |
dummy variable {\bf xx\_tr1\_dummy} is introduced |
1300 |
|
|
and an 'active read' routine of the adjoint support |
1301 |
|
|
package {\it pkg/autodiff} is invoked. |
1302 |
|
|
The read-procedure is tagged with the variable |
1303 |
heimbach |
1.21 |
{\bf xx\_tr1\_dummy} enabling TAF to recognize the |
1304 |
cnh |
1.7 |
initialization of the perturbation. |
1305 |
heimbach |
1.21 |
The modified call of TAF thus reads |
1306 |
adcroft |
1.1 |
% |
1307 |
|
|
\begin{verbatim} |
1308 |
heimbach |
1.21 |
taf -input 'xx_tr1_dummy ...' ... |
1309 |
adcroft |
1.1 |
\end{verbatim} |
1310 |
|
|
% |
1311 |
|
|
and the modified operation to (\ref{perturb}) |
1312 |
|
|
in the code takes on the form |
1313 |
|
|
% |
1314 |
|
|
\begin{verbatim} |
1315 |
|
|
call active_read_xyz( |
1316 |
|
|
& ..., tmpfld3d, ..., xx_tr1_dummy, ... ) |
1317 |
|
|
|
1318 |
|
|
tr1(...) = tr1(...) + tmpfld3d(...) |
1319 |
|
|
\end{verbatim} |
1320 |
|
|
% |
1321 |
|
|
Note, that reading an active variable corresponds |
1322 |
|
|
to a variable assignment. Its derivative corresponds |
1323 |
heimbach |
1.15 |
to a write statement of the adjoint variable, followed by |
1324 |
|
|
a reset. |
1325 |
adcroft |
1.1 |
The 'active file' routines have been designed |
1326 |
heimbach |
1.4 |
to support active read and corresponding adjoint active write |
1327 |
|
|
operations (and vice versa). |
1328 |
adcroft |
1.1 |
% |
1329 |
|
|
\item |
1330 |
|
|
\fbox{ |
1331 |
|
|
\begin{minipage}{12cm} |
1332 |
|
|
{\it ctrl\_map\_forcing} (boundary value sensitivity): |
1333 |
|
|
\end{minipage} |
1334 |
|
|
} |
1335 |
|
|
\\ |
1336 |
|
|
% |
1337 |
|
|
The handling of boundary values as control variables |
1338 |
|
|
proceeds exactly analogous to the initial values |
1339 |
|
|
with the symbolic perturbation taking place in S/R |
1340 |
|
|
{\it ctrl\_map\_forcing}. |
1341 |
|
|
Note however an important difference: |
1342 |
|
|
Since the boundary values are time dependent with a new |
1343 |
|
|
forcing field applied at each time steps, |
1344 |
heimbach |
1.4 |
the general problem may be thought of as |
1345 |
|
|
a new control variable at each time step |
1346 |
|
|
(or, if the perturbation is averaged over a certain period, |
1347 |
|
|
at each $ N $ timesteps), i.e. |
1348 |
adcroft |
1.1 |
\[ |
1349 |
|
|
u_{\rm forcing} \, = \, |
1350 |
|
|
\{ \, u_{\rm forcing} ( t_n ) \, \}_{ |
1351 |
|
|
n \, = \, 1, \ldots , {\rm nTimeSteps} } |
1352 |
|
|
\] |
1353 |
|
|
% |
1354 |
|
|
In the current example an equilibrium state is considered, |
1355 |
|
|
and only an initial perturbation to |
1356 |
|
|
surface forcing is applied with respect to the |
1357 |
|
|
equilibrium state. |
1358 |
|
|
A time dependent treatment of the surface forcing is |
1359 |
|
|
implemented in the ECCO environment, involving the |
1360 |
|
|
calendar ({\it cal}~) and external forcing ({\it exf}~) packages. |
1361 |
|
|
% |
1362 |
|
|
\item |
1363 |
|
|
\fbox{ |
1364 |
|
|
\begin{minipage}{12cm} |
1365 |
|
|
{\it ctrl\_map\_params} (parameter sensitivity): |
1366 |
|
|
\end{minipage} |
1367 |
|
|
} |
1368 |
|
|
\\ |
1369 |
|
|
% |
1370 |
|
|
This routine is not yet implemented, but would proceed |
1371 |
|
|
proceed along the same lines as the initial value sensitivity. |
1372 |
heimbach |
1.4 |
The mixing parameters {\bf diffkr} and {\bf kapgm} |
1373 |
|
|
are currently added as controls in {\it ctrl\_map\_ini.F}. |
1374 |
adcroft |
1.1 |
% |
1375 |
|
|
\end{itemize} |
1376 |
|
|
% |
1377 |
|
|
|
1378 |
|
|
\subsubsection{Output of adjoint variables and gradient} |
1379 |
|
|
% |
1380 |
heimbach |
1.4 |
Several ways exist to generate output of adjoint fields. |
1381 |
adcroft |
1.1 |
% |
1382 |
|
|
\begin{itemize} |
1383 |
|
|
% |
1384 |
|
|
\item |
1385 |
|
|
\fbox{ |
1386 |
|
|
\begin{minipage}{12cm} |
1387 |
heimbach |
1.4 |
{\it ctrl\_map\_ini, ctrl\_map\_forcing}: |
1388 |
adcroft |
1.1 |
\end{minipage} |
1389 |
|
|
} |
1390 |
|
|
\\ |
1391 |
|
|
\begin{itemize} |
1392 |
|
|
% |
1393 |
heimbach |
1.4 |
\item {\bf xx\_...}: the control variable fields \\ |
1394 |
|
|
Before the forward integration, the control |
1395 |
|
|
variables are read from file {\bf xx\_ ...} and added to |
1396 |
|
|
the model field. |
1397 |
adcroft |
1.1 |
% |
1398 |
|
|
\item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient |
1399 |
heimbach |
1.4 |
$ \nabla _{u}{\cal J} $ for each control variable \\ |
1400 |
|
|
After the adjoint integration the corresponding adjoint |
1401 |
|
|
variables are written to {\bf adxx\_ ...}. |
1402 |
adcroft |
1.1 |
% |
1403 |
heimbach |
1.4 |
\end{itemize} |
1404 |
adcroft |
1.1 |
% |
1405 |
heimbach |
1.4 |
\item |
1406 |
|
|
\fbox{ |
1407 |
|
|
\begin{minipage}{12cm} |
1408 |
|
|
{\it ctrl\_unpack, ctrl\_pack}: |
1409 |
|
|
\end{minipage} |
1410 |
|
|
} |
1411 |
|
|
\\ |
1412 |
|
|
% |
1413 |
|
|
\begin{itemize} |
1414 |
|
|
% |
1415 |
|
|
\item {\bf vector\_ctrl}: the control vector \\ |
1416 |
cnh |
1.7 |
At the very beginning of the model initialization, |
1417 |
heimbach |
1.4 |
the updated compressed control vector is read (or initialised) |
1418 |
|
|
and distributed to 2-dim. and 3-dim. control variable fields. |
1419 |
|
|
% |
1420 |
|
|
\item {\bf vector\_grad}: the gradient vector \\ |
1421 |
|
|
At the very end of the adjoint integration, |
1422 |
|
|
the 2-dim. and 3-dim. adjoint variables are read, |
1423 |
|
|
compressed to a single vector and written to file. |
1424 |
adcroft |
1.1 |
% |
1425 |
|
|
\end{itemize} |
1426 |
|
|
% |
1427 |
|
|
\item |
1428 |
|
|
\fbox{ |
1429 |
|
|
\begin{minipage}{12cm} |
1430 |
|
|
{\it addummy\_in\_stepping}: |
1431 |
|
|
\end{minipage} |
1432 |
|
|
} |
1433 |
|
|
\\ |
1434 |
|
|
In addition to writing the gradient at the end of the |
1435 |
heimbach |
1.4 |
forward/adjoint integration, many more adjoint variables |
1436 |
|
|
of the model state |
1437 |
|
|
at intermediate times can be written using S/R |
1438 |
adcroft |
1.1 |
{\it addummy\_in\_stepping}. |
1439 |
|
|
This routine is part of the adjoint support package |
1440 |
|
|
{\it pkg/autodiff} (cf.f. below). |
1441 |
heimbach |
1.15 |
The procedure is enabled using via the CPP-option |
1442 |
|
|
{\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}). |
1443 |
adcroft |
1.1 |
To be part of the adjoint code, the corresponding S/R |
1444 |
|
|
{\it dummy\_in\_stepping} has to be called in the forward |
1445 |
|
|
model (S/R {\it the\_main\_loop}) at the appropriate place. |
1446 |
heimbach |
1.15 |
The adjoint common blocks are extracted from the adjoint code |
1447 |
|
|
via the header file {\it adcommon.h}. |
1448 |
adcroft |
1.1 |
|
1449 |
|
|
{\it dummy\_in\_stepping} is essentially empty, |
1450 |
|
|
the corresponding adjoint routine is hand-written rather |
1451 |
|
|
than generated automatically. |
1452 |
|
|
Appropriate flow directives ({\it dummy\_in\_stepping.flow}) |
1453 |
|
|
ensure that TAMC does not automatically |
1454 |
|
|
generate {\it addummy\_in\_stepping} by trying to differentiate |
1455 |
heimbach |
1.4 |
{\it dummy\_in\_stepping}, but instead refers to |
1456 |
|
|
the hand-written routine. |
1457 |
adcroft |
1.1 |
|
1458 |
|
|
{\it dummy\_in\_stepping} is called in the forward code |
1459 |
|
|
at the beginning of each |
1460 |
|
|
timestep, before the call to {\it dynamics}, thus ensuring |
1461 |
|
|
that {\it addummy\_in\_stepping} is called at the end of |
1462 |
|
|
each timestep in the adjoint calculation, after the call to |
1463 |
|
|
{\it addynamics}. |
1464 |
|
|
|
1465 |
|
|
{\it addummy\_in\_stepping} includes the header files |
1466 |
heimbach |
1.4 |
{\it adcommon.h}. |
1467 |
|
|
This header file is also hand-written. It contains |
1468 |
|
|
the common blocks |
1469 |
|
|
{\bf /addynvars\_r/}, {\bf /addynvars\_cd/}, |
1470 |
|
|
{\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/}, |
1471 |
adcroft |
1.1 |
{\bf /adtr1\_r/}, {\bf /adffields/}, |
1472 |
|
|
which have been extracted from the adjoint code to enable |
1473 |
|
|
access to the adjoint variables. |
1474 |
heimbach |
1.15 |
|
1475 |
|
|
{\bf WARNING:} If the structure of the common blocks |
1476 |
|
|
{\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes |
1477 |
|
|
similar changes will occur in the adjoint common blocks. |
1478 |
|
|
Therefore, consistency between the TAMC-generated common blocks |
1479 |
|
|
and those in {\it adcommon.h} have to be checked. |
1480 |
adcroft |
1.1 |
% |
1481 |
|
|
\end{itemize} |
1482 |
|
|
|
1483 |
|
|
|
1484 |
|
|
\subsubsection{Control variable handling for |
1485 |
|
|
optimization applications} |
1486 |
|
|
|
1487 |
|
|
In optimization mode the cost function $ {\cal J}(u) $ is sought |
1488 |
|
|
to be minimized with respect to a set of control variables |
1489 |
|
|
$ \delta {\cal J} \, = \, 0 $, in an iterative manner. |
1490 |
|
|
The gradient $ \nabla _{u}{\cal J} |_{u_{[k]}} $ together |
1491 |
|
|
with the value of the cost function itself $ {\cal J}(u_{[k]}) $ |
1492 |
|
|
at iteration step $ k $ serve |
1493 |
|
|
as input to a minimization routine (e.g. quasi-Newton method, |
1494 |
heimbach |
1.9 |
conjugate gradient, ... \cite{gil-lem:89}) |
1495 |
heimbach |
1.4 |
to compute an update in the |
1496 |
adcroft |
1.1 |
control variable for iteration step $k+1$ |
1497 |
|
|
\[ |
1498 |
|
|
u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]} |
1499 |
|
|
\quad \mbox{satisfying} \quad |
1500 |
|
|
{\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right) |
1501 |
|
|
\] |
1502 |
|
|
$ u_{[k+1]} $ then serves as input for a forward/adjoint run |
1503 |
|
|
to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step |
1504 |
|
|
$ k+1 $. |
1505 |
jmc |
1.24 |
Tab. ref:ask-the-author sketches the flow between forward/adjoint model |
1506 |
adcroft |
1.1 |
and the minimization routine. |
1507 |
|
|
|
1508 |
jmc |
1.23 |
{\scriptsize |
1509 |
adcroft |
1.1 |
\begin{eqnarray*} |
1510 |
|
|
\begin{array}{ccccc} |
1511 |
|
|
u_{[0]} \,\, , \,\, \Delta u_{[k]} & ~ & ~ & ~ & ~ \\ |
1512 |
|
|
{\Big\downarrow} |
1513 |
|
|
& ~ & ~ & ~ & ~ \\ |
1514 |
|
|
~ & ~ & ~ & ~ & ~ \\ |
1515 |
|
|
\hline |
1516 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1517 |
|
|
\multicolumn{1}{|c}{ |
1518 |
|
|
u_{[k]} = u_{[0]} + \Delta u_{[k]}} & |
1519 |
|
|
\stackrel{\bf forward}{\bf \longrightarrow} & |
1520 |
|
|
v_{[k]} = M \left( u_{[k]} \right) & |
1521 |
|
|
\stackrel{\bf forward}{\bf \longrightarrow} & |
1522 |
|
|
\multicolumn{1}{c|}{ |
1523 |
|
|
{\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\ |
1524 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1525 |
|
|
\hline |
1526 |
heimbach |
1.4 |
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1527 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\ |
1528 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1529 |
adcroft |
1.1 |
\hline |
1530 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1531 |
|
|
\multicolumn{1}{|c}{ |
1532 |
|
|
\nabla_u {\cal J}_{[k]} (\delta {\cal J}) = |
1533 |
heimbach |
1.4 |
T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} & |
1534 |
adcroft |
1.1 |
\stackrel{\bf adjoint}{\mathbf \longleftarrow} & |
1535 |
|
|
ad \, v_{[k]} (\delta {\cal J}) = |
1536 |
|
|
\nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) & |
1537 |
|
|
\stackrel{\bf adjoint}{\mathbf \longleftarrow} & |
1538 |
|
|
\multicolumn{1}{c|}{ ad \, {\cal J} = \delta {\cal J}} \\ |
1539 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1540 |
|
|
\hline |
1541 |
|
|
~ & ~ & ~ & ~ & ~ \\ |
1542 |
heimbach |
1.4 |
\hspace*{15ex}{\Bigg\downarrow} |
1543 |
|
|
\quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]} |
1544 |
|
|
& ~ & ~ & ~ & ~ \\ |
1545 |
adcroft |
1.1 |
~ & ~ & ~ & ~ & ~ \\ |
1546 |
|
|
\hline |
1547 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1548 |
|
|
\multicolumn{1}{|c}{ |
1549 |
|
|
{\cal J}_{[k]} \,\, , \,\, \nabla_u {\cal J}_{[k]}} & |
1550 |
|
|
{\mathbf \longrightarrow} & \text{\bf minimisation} & |
1551 |
|
|
{\mathbf \longrightarrow} & |
1552 |
|
|
\multicolumn{1}{c|}{ \Delta u_{[k+1]}} \\ |
1553 |
|
|
\multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\ |
1554 |
|
|
\hline |
1555 |
|
|
~ & ~ & ~ & ~ & ~ \\ |
1556 |
|
|
~ & ~ & ~ & ~ & \Big\downarrow \\ |
1557 |
|
|
~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\ |
1558 |
|
|
\end{array} |
1559 |
|
|
\end{eqnarray*} |
1560 |
jmc |
1.23 |
} |
1561 |
adcroft |
1.1 |
|
1562 |
|
|
The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide |
1563 |
|
|
the link between the model and the minimization routine. |
1564 |
jmc |
1.24 |
As described in Section ref:ask-the-author |
1565 |
adcroft |
1.1 |
the {\it unpack} and {\it pack} routines read and write |
1566 |
|
|
control and gradient {\it vectors} which are compressed |
1567 |
|
|
to contain only wet points, in addition to the full |
1568 |
|
|
2-dim. and 3-dim. fields. |
1569 |
|
|
The corresponding I/O flow looks as follows: |
1570 |
|
|
|
1571 |
|
|
\vspace*{0.5cm} |
1572 |
|
|
|
1573 |
heimbach |
1.4 |
{\scriptsize |
1574 |
adcroft |
1.1 |
\begin{tabular}{ccccc} |
1575 |
|
|
{\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\ |
1576 |
|
|
{\big\downarrow} & ~ & ~ & ~ & ~ \\ |
1577 |
|
|
\cline{1-1} |
1578 |
|
|
\multicolumn{1}{|c|}{\it ctrl\_unpack} & ~ & ~ & ~ & ~ \\ |
1579 |
|
|
\cline{1-1} |
1580 |
|
|
{\big\downarrow} & ~ & ~ & ~ & ~ \\ |
1581 |
|
|
\cline{3-3} |
1582 |
|
|
\multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ & |
1583 |
|
|
\multicolumn{1}{|c|}{~} & ~ & ~ \\ |
1584 |
heimbach |
1.4 |
\multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} & |
1585 |
|
|
$\stackrel{\mbox{read}}{\longrightarrow}$ & |
1586 |
adcroft |
1.1 |
\multicolumn{1}{|c|}{forward integration} & ~ & ~ \\ |
1587 |
|
|
\multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~} |
1588 |
|
|
& ~ & ~ \\ |
1589 |
|
|
\cline{3-3} |
1590 |
heimbach |
1.4 |
~ & ~ & $\downarrow$ & ~ & ~ \\ |
1591 |
adcroft |
1.1 |
\cline{3-3} |
1592 |
|
|
~ & ~ & |
1593 |
|
|
\multicolumn{1}{|c|}{~} & ~ & |
1594 |
|
|
\multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$} \\ |
1595 |
|
|
~ & ~ & \multicolumn{1}{|c|}{adjoint integration} & |
1596 |
heimbach |
1.4 |
$\stackrel{\mbox{write}}{\longrightarrow}$ & |
1597 |
adcroft |
1.1 |
\multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\ |
1598 |
|
|
~ & ~ & \multicolumn{1}{|c|}{~} |
1599 |
|
|
& ~ & \multicolumn{1}{l}{\bf \vdots} \\ |
1600 |
|
|
\cline{3-3} |
1601 |
|
|
~ & ~ & ~ & ~ & {\big\downarrow} \\ |
1602 |
|
|
\cline{5-5} |
1603 |
|
|
~ & ~ & ~ & ~ & \multicolumn{1}{|c|}{\it ctrl\_pack} \\ |
1604 |
|
|
\cline{5-5} |
1605 |
|
|
~ & ~ & ~ & ~ & {\big\downarrow} \\ |
1606 |
|
|
~ & ~ & ~ & ~ & {\bf vector\_grad\_$<$k$>$ } \\ |
1607 |
|
|
\end{tabular} |
1608 |
heimbach |
1.4 |
} |
1609 |
adcroft |
1.1 |
|
1610 |
|
|
\vspace*{0.5cm} |
1611 |
|
|
|
1612 |
|
|
|
1613 |
heimbach |
1.4 |
{\it ctrl\_unpack} reads the updated control vector |
1614 |
adcroft |
1.1 |
{\bf vector\_ctrl\_$<$k$>$}. |
1615 |
|
|
It distributes the different control variables to |
1616 |
|
|
2-dim. and 3-dim. files {\it xx\_...$<$k$>$}. |
1617 |
heimbach |
1.4 |
At the start of the forward integration the control variables |
1618 |
|
|
are read from {\it xx\_...$<$k$>$} and added to the |
1619 |
|
|
field. |
1620 |
|
|
Correspondingly, at the end of the adjoint integration |
1621 |
|
|
the adjoint fields are written |
1622 |
adcroft |
1.1 |
to {\it adxx\_...$<$k$>$}, again via the active file routines. |
1623 |
heimbach |
1.4 |
Finally, {\it ctrl\_pack} collects all adjoint files |
1624 |
adcroft |
1.1 |
and writes them to the compressed vector file |
1625 |
|
|
{\bf vector\_grad\_$<$k$>$}. |