/[MITgcm]/manual/s_autodiff/text/doc_ad_2.tex
ViewVC logotype

Annotation of /manual/s_autodiff/text/doc_ad_2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (hide annotations) (download) (as text)
Wed Apr 24 11:01:46 2002 UTC (23 years, 2 months ago) by heimbach
Branch: MAIN
Changes since 1.14: +57 -30 lines
File MIME type: application/x-tex
Starting update of part 5.

1 heimbach 1.15 % $Header: /u/gcmpack/mitgcmdoc/part5/doc_ad_2.tex,v 1.14 2002/02/28 19:32:20 cnh Exp $
2 heimbach 1.2 % $Name: $
3 adcroft 1.1
4     {\sf Automatic differentiation} (AD), also referred to as algorithmic
5     (or, more loosely, computational) differentiation, involves
6     automatically deriving code to calculate
7     partial derivatives from an existing fully non-linear prognostic code.
8     (see \cite{gri:00}).
9     A software tool is used that parses and transforms source files
10     according to a set of linguistic and mathematical rules.
11     AD tools are like source-to-source translators in that
12     they parse a program code as input and produce a new program code
13     as output.
14     However, unlike a pure source-to-source translation, the output program
15     represents a new algorithm, such as the evaluation of the
16     Jacobian, the Hessian, or higher derivative operators.
17     In principle, a variety of derived algorithms
18     can be generated automatically in this way.
19    
20     The MITGCM has been adapted for use with the
21 heimbach 1.4 Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
22 adcroft 1.1 (Transformation of Algorithms in Fortran), developed
23     by Ralf Giering (\cite{gie-kam:98}, \cite{gie:99,gie:00}).
24 cnh 1.7 The first application of the adjoint of the MITGCM for sensitivity
25 adcroft 1.1 studies has been published by \cite{maro-eta:99}.
26     \cite{sta-eta:97,sta-eta:01} use the MITGCM and its adjoint
27     for ocean state estimation studies.
28 heimbach 1.4 In the following we shall refer to TAMC and TAF synonymously,
29     except were explicitly stated otherwise.
30 adcroft 1.1
31     TAMC exploits the chain rule for computing the first
32     derivative of a function with
33     respect to a set of input variables.
34     Treating a given forward code as a composition of operations --
35 heimbach 1.4 each line representing a compositional element, the chain rule is
36 adcroft 1.1 rigorously applied to the code, line by line. The resulting
37     tangent linear or adjoint code,
38     then, may be thought of as the composition in
39     forward or reverse order, respectively, of the
40 heimbach 1.4 Jacobian matrices of the forward code's compositional elements.
41 adcroft 1.1
42     %**********************************************************************
43     \section{Some basic algebra}
44     \label{sec_ad_algebra}
45     %**********************************************************************
46    
47     Let $ \cal{M} $ be a general nonlinear, model, i.e. a
48     mapping from the $m$-dimensional space
49     $U \subset I\!\!R^m$ of input variables
50     $\vec{u}=(u_1,\ldots,u_m)$
51     (model parameters, initial conditions, boundary conditions
52     such as forcing functions) to the $n$-dimensional space
53     $V \subset I\!\!R^n$ of
54     model output variable $\vec{v}=(v_1,\ldots,v_n)$
55 cnh 1.7 (model state, model diagnostics, objective function, ...)
56 adcroft 1.1 under consideration,
57     %
58     \begin{equation}
59     \begin{split}
60     {\cal M} \, : & \, U \,\, \longrightarrow \, V \\
61     ~ & \, \vec{u} \,\, \longmapsto \, \vec{v} \, = \,
62     {\cal M}(\vec{u})
63     \label{fulloperator}
64     \end{split}
65     \end{equation}
66     %
67     The vectors $ \vec{u} \in U $ and $ v \in V $ may be represented w.r.t.
68     some given basis vectors
69     $ {\rm span} (U) = \{ {\vec{e}_i} \}_{i = 1, \ldots , m} $ and
70     $ {\rm span} (V) = \{ {\vec{f}_j} \}_{j = 1, \ldots , n} $ as
71     \[
72     \vec{u} \, = \, \sum_{i=1}^{m} u_i \, {\vec{e}_i},
73     \qquad
74     \vec{v} \, = \, \sum_{j=1}^{n} v_j \, {\vec{f}_j}
75     \]
76    
77     Two routes may be followed to determine the sensitivity of the
78     output variable $\vec{v}$ to its input $\vec{u}$.
79    
80     \subsection{Forward or direct sensitivity}
81     %
82     Consider a perturbation to the input variables $\delta \vec{u}$
83     (typically a single component
84     $\delta \vec{u} = \delta u_{i} \, {\vec{e}_{i}}$).
85     Their effect on the output may be obtained via the linear
86     approximation of the model $ {\cal M}$ in terms of its Jacobian matrix
87     $ M $, evaluated in the point $u^{(0)}$ according to
88     %
89     \begin{equation}
90     \delta \vec{v} \, = \, M |_{\vec{u}^{(0)}} \, \delta \vec{u}
91     \label{tangent_linear}
92     \end{equation}
93     with resulting output perturbation $\delta \vec{v}$.
94     In components
95     $M_{j i} \, = \, \partial {\cal M}_{j} / \partial u_{i} $,
96     it reads
97     %
98     \begin{equation}
99     \delta v_{j} \, = \, \sum_{i}
100     \left. \frac{\partial {\cal M}_{j}}{\partial u_{i}} \right|_{u^{(0)}} \,
101     \delta u_{i}
102     \label{jacobi_matrix}
103     \end{equation}
104     %
105     Eq. (\ref{tangent_linear}) is the {\sf tangent linear model (TLM)}.
106     In contrast to the full nonlinear model $ {\cal M} $, the operator
107     $ M $ is just a matrix
108     which can readily be used to find the forward sensitivity of $\vec{v}$ to
109     perturbations in $u$,
110 heimbach 1.4 but if there are very many input variables $(\gg O(10^{6})$ for
111 adcroft 1.1 large-scale oceanographic application), it quickly becomes
112     prohibitive to proceed directly as in (\ref{tangent_linear}),
113     if the impact of each component $ {\bf e_{i}} $ is to be assessed.
114    
115     \subsection{Reverse or adjoint sensitivity}
116     %
117     Let us consider the special case of a
118     scalar objective function ${\cal J}(\vec{v})$ of the model output (e.g.
119     the total meridional heat transport,
120     the total uptake of $CO_{2}$ in the Southern
121     Ocean over a time interval,
122     or a measure of some model-to-data misfit)
123     %
124     \begin{eqnarray}
125     \begin{array}{cccccc}
126     {\cal J} \, : & U &
127     \longrightarrow & V &
128     \longrightarrow & I \!\! R \\
129     ~ & \vec{u} & \longmapsto & \vec{v}={\cal M}(\vec{u}) &
130     \longmapsto & {\cal J}(\vec{u}) = {\cal J}({\cal M}(\vec{u}))
131     \end{array}
132     \label{compo}
133     \end{eqnarray}
134     %
135 heimbach 1.4 The perturbation of $ {\cal J} $ around a fixed point $ {\cal J}_0 $,
136 adcroft 1.1 \[
137 heimbach 1.4 {\cal J} \, = \, {\cal J}_0 \, + \, \delta {\cal J}
138 adcroft 1.1 \]
139     can be expressed in both bases of $ \vec{u} $ and $ \vec{v} $
140     w.r.t. their corresponding inner product
141     $\left\langle \,\, , \,\, \right\rangle $
142     %
143     \begin{equation}
144     \begin{split}
145     {\cal J} & = \,
146     {\cal J} |_{\vec{u}^{(0)}} \, + \,
147     \left\langle \, \nabla _{u}{\cal J}^T |_{\vec{u}^{(0)}} \, , \, \delta \vec{u} \, \right\rangle
148     \, + \, O(\delta \vec{u}^2) \\
149     ~ & = \,
150     {\cal J} |_{\vec{v}^{(0)}} \, + \,
151     \left\langle \, \nabla _{v}{\cal J}^T |_{\vec{v}^{(0)}} \, , \, \delta \vec{v} \, \right\rangle
152     \, + \, O(\delta \vec{v}^2)
153     \end{split}
154     \label{deljidentity}
155     \end{equation}
156     %
157 heimbach 1.2 (note, that the gradient $ \nabla f $ is a co-vector, therefore
158 adcroft 1.1 its transpose is required in the above inner product).
159     Then, using the representation of
160     $ \delta {\cal J} =
161     \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle $,
162     the definition
163     of an adjoint operator $ A^{\ast} $ of a given operator $ A $,
164     \[
165     \left\langle \, A^{\ast} \vec{x} \, , \, \vec{y} \, \right\rangle =
166     \left\langle \, \vec{x} \, , \, A \vec{y} \, \right\rangle
167     \]
168     which for finite-dimensional vector spaces is just the
169     transpose of $ A $,
170     \[
171     A^{\ast} \, = \, A^T
172     \]
173 heimbach 1.4 and from eq. (\ref{tangent_linear}), (\ref{deljidentity}),
174     we note that
175 adcroft 1.1 (omitting $|$'s):
176     %
177     \begin{equation}
178     \delta {\cal J}
179     \, = \,
180     \left\langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \right\rangle
181     \, = \,
182     \left\langle \, \nabla _{v}{\cal J}^T \, , \, M \, \delta \vec{u} \, \right\rangle
183     \, = \,
184     \left\langle \, M^T \, \nabla _{v}{\cal J}^T \, , \,
185     \delta \vec{u} \, \right\rangle
186     \label{inner}
187     \end{equation}
188     %
189     With the identity (\ref{deljidentity}), we then find that
190     the gradient $ \nabla _{u}{\cal J} $ can be readily inferred by
191     invoking the adjoint $ M^{\ast } $ of the tangent linear model $ M $
192     %
193     \begin{equation}
194     \begin{split}
195     \nabla _{u}{\cal J}^T |_{\vec{u}} &
196     = \, M^T |_{\vec{u}} \cdot \nabla _{v}{\cal J}^T |_{\vec{v}} \\
197     ~ & = \, M^T |_{\vec{u}} \cdot \delta \vec{v}^{\ast} \\
198     ~ & = \, \delta \vec{u}^{\ast}
199     \end{split}
200     \label{adjoint}
201     \end{equation}
202     %
203     Eq. (\ref{adjoint}) is the {\sf adjoint model (ADM)},
204     in which $M^T$ is the adjoint (here, the transpose) of the
205     tangent linear operator $M$, $ \delta \vec{v}^{\ast} $
206     the adjoint variable of the model state $ \vec{v} $, and
207     $ \delta \vec{u}^{\ast} $ the adjoint variable of the control variable $ \vec{u} $.
208    
209     The {\sf reverse} nature of the adjoint calculation can be readily
210 heimbach 1.4 seen as follows.
211     Consider a model integration which consists of $ \Lambda $
212     consecutive operations
213     $ {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
214     ...... ( {\cal M}_{\lambda} (
215     ......
216     ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))) $,
217     where the ${\cal M}$'s could be the elementary steps, i.e. single lines
218     in the code of the model, or successive time steps of the
219     model integration,
220     starting at step 0 and moving up to step $\Lambda$, with intermediate
221     ${\cal M}_{\lambda} (\vec{u}) = \vec{v}^{(\lambda+1)}$ and final
222     ${\cal M}_{\Lambda} (\vec{u}) = \vec{v}^{(\Lambda+1)} = \vec{v}$.
223 cnh 1.7 Let ${\cal J}$ be a cost function which explicitly depends on the
224 heimbach 1.4 final state $\vec{v}$ only
225     (this restriction is for clarity reasons only).
226     %
227     ${\cal J}(u)$ may be decomposed according to:
228 adcroft 1.1 %
229     \begin{equation}
230     {\cal J}({\cal M}(\vec{u})) \, = \,
231     {\cal J} ( {\cal M}_{\Lambda} ( {\cal M}_{\Lambda-1} (
232     ...... ( {\cal M}_{\lambda} (
233     ......
234     ( {\cal M}_{1} ( {\cal M}_{0}(\vec{u}) )))))
235     \label{compos}
236     \end{equation}
237     %
238 heimbach 1.4 Then, according to the chain rule, the forward calculation reads,
239     in terms of the Jacobi matrices
240 adcroft 1.1 (we've omitted the $ | $'s which, nevertheless are important
241     to the aspect of {\it tangent} linearity;
242 heimbach 1.4 note also that by definition
243 adcroft 1.1 $ \langle \, \nabla _{v}{\cal J}^T \, , \, \delta \vec{v} \, \rangle
244     = \nabla_v {\cal J} \cdot \delta \vec{v} $ )
245     %
246     \begin{equation}
247     \begin{split}
248     \nabla_v {\cal J} (M(\delta \vec{u})) & = \,
249     \nabla_v {\cal J} \cdot M_{\Lambda}
250     \cdot ...... \cdot M_{\lambda} \cdot ...... \cdot
251     M_{1} \cdot M_{0} \cdot \delta \vec{u} \\
252     ~ & = \, \nabla_v {\cal J} \cdot \delta \vec{v} \\
253     \end{split}
254     \label{forward}
255     \end{equation}
256     %
257     whereas in reverse mode we have
258     %
259     \begin{equation}
260     \boxed{
261     \begin{split}
262     M^T ( \nabla_v {\cal J}^T) & = \,
263     M_{0}^T \cdot M_{1}^T
264     \cdot ...... \cdot M_{\lambda}^T \cdot ...... \cdot
265     M_{\Lambda}^T \cdot \nabla_v {\cal J}^T \\
266     ~ & = \, M_{0}^T \cdot M_{1}^T
267     \cdot ...... \cdot
268     \nabla_{v^{(\lambda)}} {\cal J}^T \\
269     ~ & = \, \nabla_u {\cal J}^T
270     \end{split}
271     }
272     \label{reverse}
273     \end{equation}
274     %
275     clearly expressing the reverse nature of the calculation.
276     Eq. (\ref{reverse}) is at the heart of automatic adjoint compilers.
277 heimbach 1.4 If the intermediate steps $\lambda$ in
278 adcroft 1.1 eqn. (\ref{compos}) -- (\ref{reverse})
279 heimbach 1.4 represent the model state (forward or adjoint) at each
280     intermediate time step as noted above, then correspondingly,
281     $ M^T (\delta \vec{v}^{(\lambda) \, \ast}) =
282     \delta \vec{v}^{(\lambda-1) \, \ast} $ for the adjoint variables.
283     It thus becomes evident that the adjoint calculation also
284     yields the adjoint of each model state component
285     $ \vec{v}^{(\lambda)} $ at each intermediate step $ \lambda $, namely
286 adcroft 1.1 %
287     \begin{equation}
288     \boxed{
289     \begin{split}
290     \nabla_{v^{(\lambda)}} {\cal J}^T |_{\vec{v}^{(\lambda)}}
291     & = \,
292     M_{\lambda}^T |_{\vec{v}^{(\lambda)}} \cdot ...... \cdot
293     M_{\Lambda}^T |_{\vec{v}^{(\lambda)}} \cdot \delta \vec{v}^{\ast} \\
294     ~ & = \, \delta \vec{v}^{(\lambda) \, \ast}
295     \end{split}
296     }
297     \end{equation}
298     %
299     in close analogy to eq. (\ref{adjoint})
300     We note in passing that that the $\delta \vec{v}^{(\lambda) \, \ast}$
301 heimbach 1.4 are the Lagrange multipliers of the model equations which determine
302     $ \vec{v}^{(\lambda)}$.
303 adcroft 1.1
304 cnh 1.7 In components, eq. (\ref{adjoint}) reads as follows.
305 adcroft 1.1 Let
306     \[
307     \begin{array}{rclcrcl}
308     \delta \vec{u} & = &
309     \left( \delta u_1,\ldots, \delta u_m \right)^T , & \qquad &
310     \delta \vec{u}^{\ast} \,\, = \,\, \nabla_u {\cal J}^T & = &
311     \left(
312     \frac{\partial {\cal J}}{\partial u_1},\ldots,
313     \frac{\partial {\cal J}}{\partial u_m}
314     \right)^T \\
315     \delta \vec{v} & = &
316     \left( \delta v_1,\ldots, \delta u_n \right)^T , & \qquad &
317     \delta \vec{v}^{\ast} \,\, = \,\, \nabla_v {\cal J}^T & = &
318     \left(
319     \frac{\partial {\cal J}}{\partial v_1},\ldots,
320     \frac{\partial {\cal J}}{\partial v_n}
321     \right)^T \\
322     \end{array}
323     \]
324     denote the perturbations in $\vec{u}$ and $\vec{v}$, respectively,
325 cnh 1.7 and their adjoint variables;
326 adcroft 1.1 further
327     \[
328     M \, = \, \left(
329     \begin{array}{ccc}
330     \frac{\partial {\cal M}_1}{\partial u_1} & \ldots &
331     \frac{\partial {\cal M}_1}{\partial u_m} \\
332     \vdots & ~ & \vdots \\
333     \frac{\partial {\cal M}_n}{\partial u_1} & \ldots &
334     \frac{\partial {\cal M}_n}{\partial u_m} \\
335     \end{array}
336     \right)
337     \]
338     is the Jacobi matrix of $ {\cal M} $
339     (an $ n \times m $ matrix)
340     such that $ \delta \vec{v} = M \cdot \delta \vec{u} $, or
341     \[
342     \delta v_{j}
343     \, = \, \sum_{i=1}^m M_{ji} \, \delta u_{i}
344     \, = \, \sum_{i=1}^m \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
345     \delta u_{i}
346     \]
347     %
348     Then eq. (\ref{adjoint}) takes the form
349     \[
350     \delta u_{i}^{\ast}
351     \, = \, \sum_{j=1}^n M_{ji} \, \delta v_{j}^{\ast}
352     \, = \, \sum_{j=1}^n \, \frac{\partial {\cal M}_{j}}{\partial u_{i}}
353     \delta v_{j}^{\ast}
354     \]
355     %
356     or
357     %
358     \[
359     \left(
360     \begin{array}{c}
361     \left. \frac{\partial}{\partial u_1} {\cal J} \right|_{\vec{u}^{(0)}} \\
362     \vdots \\
363     \left. \frac{\partial}{\partial u_m} {\cal J} \right|_{\vec{u}^{(0)}} \\
364     \end{array}
365     \right)
366     \, = \,
367     \left(
368     \begin{array}{ccc}
369     \left. \frac{\partial {\cal M}_1}{\partial u_1} \right|_{\vec{u}^{(0)}}
370     & \ldots &
371     \left. \frac{\partial {\cal M}_n}{\partial u_1} \right|_{\vec{u}^{(0)}} \\
372     \vdots & ~ & \vdots \\
373     \left. \frac{\partial {\cal M}_1}{\partial u_m} \right|_{\vec{u}^{(0)}}
374     & \ldots &
375     \left. \frac{\partial {\cal M}_n}{\partial u_m} \right|_{\vec{u}^{(0)}} \\
376     \end{array}
377     \right)
378     \cdot
379     \left(
380     \begin{array}{c}
381     \left. \frac{\partial}{\partial v_1} {\cal J} \right|_{\vec{v}} \\
382     \vdots \\
383     \left. \frac{\partial}{\partial v_n} {\cal J} \right|_{\vec{v}} \\
384     \end{array}
385     \right)
386     \]
387     %
388     Furthermore, the adjoint $ \delta v^{(\lambda) \, \ast} $
389     of any intermediate state $ v^{(\lambda)} $
390     may be obtained, using the intermediate Jacobian
391     (an $ n_{\lambda+1} \times n_{\lambda} $ matrix)
392     %
393     \[
394     M_{\lambda} \, = \,
395     \left(
396     \begin{array}{ccc}
397     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
398     & \ldots &
399     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
400     \vdots & ~ & \vdots \\
401     \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1}
402     & \ldots &
403     \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
404     \end{array}
405     \right)
406     \]
407     %
408     and the shorthand notation for the adjoint variables
409     $ \delta v^{(\lambda) \, \ast}_{j} = \frac{\partial}{\partial v^{(\lambda)}_{j}}
410     {\cal J}^T $, $ j = 1, \ldots , n_{\lambda} $,
411     for intermediate components, yielding
412 heimbach 1.4 \begin{equation}
413     \small
414     \begin{split}
415 adcroft 1.1 \left(
416     \begin{array}{c}
417     \delta v^{(\lambda) \, \ast}_1 \\
418     \vdots \\
419     \delta v^{(\lambda) \, \ast}_{n_{\lambda}} \\
420     \end{array}
421     \right)
422 heimbach 1.4 \, = &
423 adcroft 1.1 \left(
424     \begin{array}{ccc}
425     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_1}
426 heimbach 1.4 & \ldots \,\, \ldots &
427 adcroft 1.1 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_1} \\
428     \vdots & ~ & \vdots \\
429     \frac{\partial ({\cal M}_{\lambda})_1}{\partial v^{(\lambda)}_{n_{\lambda}}}
430 heimbach 1.4 & \ldots \,\, \ldots &
431 adcroft 1.1 \frac{\partial ({\cal M}_{\lambda})_{n_{\lambda+1}}}{\partial v^{(\lambda)}_{n_{\lambda}}} \\
432     \end{array}
433     \right)
434 heimbach 1.4 \cdot
435 adcroft 1.1 %
436 heimbach 1.4 \\ ~ & ~
437     \\ ~ &
438 adcroft 1.1 %
439     \left(
440     \begin{array}{ccc}
441     \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_1}
442     & \ldots &
443     \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_1} \\
444     \vdots & ~ & \vdots \\
445     \vdots & ~ & \vdots \\
446     \frac{\partial ({\cal M}_{\lambda+1})_1}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}}
447     & \ldots &
448     \frac{\partial ({\cal M}_{\lambda+1})_{n_{\lambda+2}}}{\partial v^{(\lambda+1)}_{n_{\lambda+1}}} \\
449     \end{array}
450     \right)
451 heimbach 1.4 \cdot \, \ldots \, \cdot
452 adcroft 1.1 \left(
453     \begin{array}{c}
454     \delta v^{\ast}_1 \\
455     \vdots \\
456     \delta v^{\ast}_{n} \\
457     \end{array}
458     \right)
459 heimbach 1.4 \end{split}
460     \end{equation}
461 adcroft 1.1
462     Eq. (\ref{forward}) and (\ref{reverse}) are perhaps clearest in
463     showing the advantage of the reverse over the forward mode
464     if the gradient $\nabla _{u}{\cal J}$, i.e. the sensitivity of the
465     cost function $ {\cal J} $ with respect to {\it all} input
466     variables $u$
467     (or the sensitivity of the cost function with respect to
468     {\it all} intermediate states $ \vec{v}^{(\lambda)} $) are sought.
469     In order to be able to solve for each component of the gradient
470     $ \partial {\cal J} / \partial u_{i} $ in (\ref{forward})
471 cnh 1.7 a forward calculation has to be performed for each component separately,
472 adcroft 1.1 i.e. $ \delta \vec{u} = \delta u_{i} {\vec{e}_{i}} $
473     for the $i$-th forward calculation.
474     Then, (\ref{forward}) represents the
475     projection of $ \nabla_u {\cal J} $ onto the $i$-th component.
476     The full gradient is retrieved from the $ m $ forward calculations.
477     In contrast, eq. (\ref{reverse}) yields the full
478     gradient $\nabla _{u}{\cal J}$ (and all intermediate gradients
479     $\nabla _{v^{(\lambda)}}{\cal J}$) within a single reverse calculation.
480    
481 heimbach 1.4 Note, that if $ {\cal J} $ is a vector-valued function
482 adcroft 1.1 of dimension $ l > 1 $,
483     eq. (\ref{reverse}) has to be modified according to
484     \[
485     M^T \left( \nabla_v {\cal J}^T \left(\delta \vec{J}\right) \right)
486     \, = \,
487     \nabla_u {\cal J}^T \cdot \delta \vec{J}
488     \]
489 heimbach 1.4 where now $ \delta \vec{J} \in I\!\!R^l $ is a vector of
490 cnh 1.7 dimension $ l $.
491 adcroft 1.1 In this case $ l $ reverse simulations have to be performed
492     for each $ \delta J_{k}, \,\, k = 1, \ldots, l $.
493     Then, the reverse mode is more efficient as long as
494     $ l < n $, otherwise the forward mode is preferable.
495 cnh 1.7 Strictly, the reverse mode is called adjoint mode only for
496 adcroft 1.1 $ l = 1 $.
497    
498     A detailed analysis of the underlying numerical operations
499     shows that the computation of $\nabla _{u}{\cal J}$ in this way
500     requires about 2 to 5 times the computation of the cost function.
501     Alternatively, the gradient vector could be approximated
502     by finite differences, requiring $m$ computations
503     of the perturbed cost function.
504    
505     To conclude we give two examples of commonly used types
506     of cost functions:
507    
508     \paragraph{Example 1:
509     $ {\cal J} = v_{j} (T) $} ~ \\
510     The cost function consists of the $j$-th component of the model state
511     $ \vec{v} $ at time $T$.
512     Then $ \nabla_v {\cal J}^T = {\vec{f}_{j}} $ is just the $j$-th
513     unit vector. The $ \nabla_u {\cal J}^T $
514     is the projection of the adjoint
515     operator onto the $j$-th component ${\bf f_{j}}$,
516     \[
517     \nabla_u {\cal J}^T
518     \, = \, M^T \cdot \nabla_v {\cal J}^T
519     \, = \, \sum_{i} M^T_{ji} \, {\vec{e}_{i}}
520     \]
521    
522     \paragraph{Example 2:
523     $ {\cal J} = \langle \, {\cal H}(\vec{v}) - \vec{d} \, ,
524     \, {\cal H}(\vec{v}) - \vec{d} \, \rangle $} ~ \\
525 heimbach 1.4 The cost function represents the quadratic model vs. data misfit.
526 adcroft 1.1 Here, $ \vec{d} $ is the data vector and $ {\cal H} $ represents the
527     operator which maps the model state space onto the data space.
528     Then, $ \nabla_v {\cal J} $ takes the form
529     %
530     \begin{equation*}
531     \begin{split}
532     \nabla_v {\cal J}^T & = \, 2 \, \, H \cdot
533     \left( \, {\cal H}(\vec{v}) - \vec{d} \, \right) \\
534     ~ & = \, 2 \sum_{j} \left\{ \sum_k
535     \frac{\partial {\cal H}_k}{\partial v_{j}}
536     \left( {\cal H}_k (\vec{v}) - d_k \right)
537     \right\} \, {\vec{f}_{j}} \\
538     \end{split}
539     \end{equation*}
540     %
541     where $H_{kj} = \partial {\cal H}_k / \partial v_{j} $ is the
542     Jacobi matrix of the data projection operator.
543     Thus, the gradient $ \nabla_u {\cal J} $ is given by the
544     adjoint operator,
545     driven by the model vs. data misfit:
546     \[
547     \nabla_u {\cal J}^T \, = \, 2 \, M^T \cdot
548     H \cdot \left( {\cal H}(\vec{v}) - \vec{d} \, \right)
549     \]
550    
551     \subsection{Storing vs. recomputation in reverse mode}
552     \label{checkpointing}
553    
554     We note an important aspect of the forward vs. reverse
555     mode calculation.
556 heimbach 1.4 Because of the local character of the derivative
557     (a derivative is defined w.r.t. a point along the trajectory),
558 adcroft 1.1 the intermediate results of the model trajectory
559     $\vec{v}^{(\lambda+1)}={\cal M}_{\lambda}(v^{(\lambda)})$
560 heimbach 1.15 may be required to evaluate the intermediate Jacobian
561 adcroft 1.1 $M_{\lambda}|_{\vec{v}^{(\lambda)}} \, \delta \vec{v}^{(\lambda)} $.
562 heimbach 1.15 This is the case e.g. for nonlinear expressions
563     (momentum advection, nonlinear equation of state), state-dependent
564     conditional statements (parameterization schemes).
565 adcroft 1.1 In the forward mode, the intermediate results are required
566     in the same order as computed by the full forward model ${\cal M}$,
567 heimbach 1.4 but in the reverse mode they are required in the reverse order.
568 adcroft 1.1 Thus, in the reverse mode the trajectory of the forward model
569     integration ${\cal M}$ has to be stored to be available in the reverse
570 heimbach 1.4 calculation. Alternatively, the complete model state up to the
571     point of evaluation has to be recomputed whenever its value is required.
572 adcroft 1.1
573     A method to balance the amount of recomputations vs.
574     storage requirements is called {\sf checkpointing}
575 heimbach 1.15 (e.g. \cite{gri:92}, \cite{res-eta:98}).
576 adcroft 1.6 It is depicted in \ref{fig:3levelcheck} for a 3-level checkpointing
577 heimbach 1.4 [as an example, we give explicit numbers for a 3-day
578 adcroft 1.1 integration with a 1-hourly timestep in square brackets].
579     \begin{itemize}
580     %
581     \item [$lev3$]
582     In a first step, the model trajectory is subdivided into
583     $ {n}^{lev3} $ subsections [$ {n}^{lev3} $=3 1-day intervals],
584     with the label $lev3$ for this outermost loop.
585 heimbach 1.4 The model is then integrated along the full trajectory,
586 heimbach 1.15 and the model state stored to disk only at every $ k_{i}^{lev3} $-th timestep
587 adcroft 1.1 [i.e. 3 times, at
588     $ i = 0,1,2 $ corresponding to $ k_{i}^{lev3} = 0, 24, 48 $].
589 heimbach 1.15 In addition, the cost function is computed, if needed.
590 adcroft 1.1 %
591     \item [$lev2$]
592 heimbach 1.4 In a second step each subsection itself is divided into
593 heimbach 1.15 $ {n}^{lev2} $ subsections
594 adcroft 1.1 [$ {n}^{lev2} $=4 6-hour intervals per subsection].
595     The model picks up at the last outermost dumped state
596 heimbach 1.4 $ v_{k_{n}^{lev3}} $ and is integrated forward in time along
597 adcroft 1.1 the last subsection, with the label $lev2$ for this
598     intermediate loop.
599 heimbach 1.15 The model state is now stored to disk at every $ k_{i}^{lev2} $-th
600 adcroft 1.1 timestep
601     [i.e. 4 times, at
602     $ i = 0,1,2,3 $ corresponding to $ k_{i}^{lev2} = 48, 54, 60, 66 $].
603     %
604     \item [$lev1$]
605 heimbach 1.4 Finally, the model picks up at the last intermediate dump state
606     $ v_{k_{n}^{lev2}} $ and is integrated forward in time along
607 heimbach 1.15 the last subsection, with the label $lev1$ for this
608 adcroft 1.1 intermediate loop.
609 heimbach 1.15 Within this sub-subsection only, parts of the model state is stored
610     to memory at every timestep
611 adcroft 1.1 [i.e. every hour $ i=0,...,5$ corresponding to
612     $ k_{i}^{lev1} = 66, 67, \ldots, 71 $].
613 heimbach 1.15 The final state $ v_n = v_{k_{n}^{lev1}} $ is reached
614     and the model state of all preceding timesteps along the last
615     innermost subsection are available, enabling integration backwards
616     in time along the last subsection.
617     The adjoint can thus be computed along this last
618     subsection $k_{n}^{lev2}$.
619 adcroft 1.1 %
620     \end{itemize}
621     %
622     This procedure is repeated consecutively for each previous
623 heimbach 1.15 subsection $k_{n-1}^{lev2}, \ldots, k_{1}^{lev2} $
624 adcroft 1.1 carrying the adjoint computation to the initial time
625     of the subsection $k_{n}^{lev3}$.
626     Then, the procedure is repeated for the previous subsection
627     $k_{n-1}^{lev3}$
628     carrying the adjoint computation to the initial time
629     $k_{1}^{lev3}$.
630    
631     For the full model trajectory of
632     $ n^{lev3} \cdot n^{lev2} \cdot n^{lev1} $ timesteps
633     the required storing of the model state was significantly reduced to
634 heimbach 1.15 $ n^{lev2} + n^{lev3} $ to disk and roughly $ n^{lev1} $ to memory
635 adcroft 1.1 [i.e. for the 3-day integration with a total oof 72 timesteps
636 heimbach 1.15 the model state was stored 7 times to disk and roughly 6 times
637     to memory].
638 adcroft 1.1 This saving in memory comes at a cost of a required
639     3 full forward integrations of the model (one for each
640     checkpointing level).
641 heimbach 1.15 The optimal balance of storage vs. recomputation certainly depends
642     on the computing resources available and may be adjusted by
643     adjusting the partitioning among the
644     $ n^{lev3}, \,\, n^{lev2}, \,\, n^{lev1} $.
645 adcroft 1.1
646     \begin{figure}[t!]
647 adcroft 1.6 \begin{center}
648 adcroft 1.1 %\psdraft
649 adcroft 1.6 %\psfrag{v_k1^lev3}{\mathinfigure{v_{k_{1}^{lev3}}}}
650     %\psfrag{v_kn-1^lev3}{\mathinfigure{v_{k_{n-1}^{lev3}}}}
651     %\psfrag{v_kn^lev3}{\mathinfigure{v_{k_{n}^{lev3}}}}
652     %\psfrag{v_k1^lev2}{\mathinfigure{v_{k_{1}^{lev2}}}}
653     %\psfrag{v_kn-1^lev2}{\mathinfigure{v_{k_{n-1}^{lev2}}}}
654     %\psfrag{v_kn^lev2}{\mathinfigure{v_{k_{n}^{lev2}}}}
655     %\psfrag{v_k1^lev1}{\mathinfigure{v_{k_{1}^{lev1}}}}
656     %\psfrag{v_kn^lev1}{\mathinfigure{v_{k_{n}^{lev1}}}}
657     %\mbox{\epsfig{file=part5/checkpointing.eps, width=0.8\textwidth}}
658     \resizebox{5.5in}{!}{\includegraphics{part5/checkpointing.eps}}
659 adcroft 1.1 %\psfull
660 adcroft 1.6 \end{center}
661     \caption{
662     Schematic view of intermediate dump and restart for
663 adcroft 1.1 3-level checkpointing.}
664 heimbach 1.4 \label{fig:3levelcheck}
665 adcroft 1.1 \end{figure}
666    
667 heimbach 1.4 % \subsection{Optimal perturbations}
668     % \label{sec_optpert}
669 adcroft 1.1
670    
671 heimbach 1.4 % \subsection{Error covariance estimate and Hessian matrix}
672     % \label{sec_hessian}
673 adcroft 1.1
674     \newpage
675    
676     %**********************************************************************
677 heimbach 1.4 \section{TLM and ADM generation in general}
678 adcroft 1.1 \label{sec_ad_setup_gen}
679     %**********************************************************************
680    
681     In this section we describe in a general fashion
682     the parts of the code that are relevant for automatic
683     differentiation using the software tool TAMC.
684    
685 heimbach 1.4 \input{part5/doc_ad_the_model}
686    
687 adcroft 1.6 The basic flow is depicted in \ref{fig:adthemodel}.
688 heimbach 1.4 If the option {\tt ALLOW\_AUTODIFF\_TAMC} is defined, the driver routine
689     {\it the\_model\_main}, instead of calling {\it the\_main\_loop},
690     invokes the adjoint of this routine, {\it adthe\_main\_loop},
691     which is the toplevel routine in terms of reverse mode computation.
692 heimbach 1.15 The routine {\it adthe\_main\_loop} has been generated by TAMC.
693 heimbach 1.4 It contains both the forward integration of the full model,
694     any additional storing that is required for efficient checkpointing,
695     and the reverse integration of the adjoint model.
696     The structure of {\it adthe\_main\_loop} has been strongly
697     simplified for clarification; in particular, no checkpointing
698     procedures are shown here.
699     Prior to the call of {\it adthe\_main\_loop}, the routine
700 heimbach 1.15 {\it ctrl\_unpack} is invoked to unpack the control vector
701     or initialise the control variables.
702     Following the call of {\it adthe\_main\_loop},
703     the routine {\it ctrl\_pack}
704 heimbach 1.4 is invoked to pack the control vector
705     (cf. Section \ref{section_ctrl}).
706     If gradient checks are to be performed, the option
707     {\tt ALLOW\_GRADIENT\_CHECK} is defined. In this case
708     the driver routine {\it grdchk\_main} is called after
709     the gradient has been computed via the adjoint
710     (cf. Section \ref{section_grdchk}).
711    
712     \subsection{The cost function (dependent variable)
713     \label{section_cost}}
714 adcroft 1.1
715     The cost function $ {\cal J} $ is referred to as the {\sf dependent variable}.
716     It is a function of the input variables $ \vec{u} $ via the composition
717     $ {\cal J}(\vec{u}) \, = \, {\cal J}(M(\vec{u})) $.
718 heimbach 1.15 The input are referred to as the
719 adcroft 1.1 {\sf independent variables} or {\sf control variables}.
720     All aspects relevant to the treatment of the cost function $ {\cal J} $
721 cnh 1.7 (parameter setting, initialization, accumulation,
722 heimbach 1.4 final evaluation), are controlled by the package {\it pkg/cost}.
723 heimbach 1.15 The aspects relevant to the treatment of the independent variables
724     are controlled by the package {\it pkg/ctrl} and will be treated
725     in the next section.
726 heimbach 1.4
727     \input{part5/doc_cost_flow}
728 adcroft 1.1
729     \subsubsection{genmake and CPP options}
730     %
731     \begin{itemize}
732     %
733     \item
734     \fbox{
735     \begin{minipage}{12cm}
736     {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
737     \end{minipage}
738     }
739     \end{itemize}
740     %
741     The directory {\it pkg/cost} can be included to the
742     compile list in 3 different ways (cf. Section \ref{???}):
743     %
744     \begin{enumerate}
745     %
746     \item {\it genmake}: \\
747 heimbach 1.4 Change the default settings in the file {\it genmake} by adding
748 adcroft 1.1 {\bf cost} to the {\bf enable} list (not recommended).
749     %
750     \item {\it .genmakerc}: \\
751     Customize the settings of {\bf enable}, {\bf disable} which are
752     appropriate for your experiment in the file {\it .genmakerc}
753     and add the file to your compile directory.
754     %
755     \item genmake-options: \\
756     Call {\it genmake} with the option
757     {\tt genmake -enable=cost}.
758     %
759     \end{enumerate}
760 heimbach 1.15 N.B.: In general the following packages ought to be enabled
761     simultaneously: {\it autodiff, cost, ctrl}.
762 heimbach 1.4 The basic CPP option to enable the cost function is {\bf ALLOW\_COST}.
763     Each specific cost function contribution has its own option.
764     For the present example the option is {\bf ALLOW\_COST\_TRACER}.
765     All cost-specific options are set in {\it ECCO\_CPPOPTIONS.h}
766 adcroft 1.1 Since the cost function is usually used in conjunction with
767     automatic differentiation, the CPP option
768 heimbach 1.15 {\bf ALLOW\_ADJOINT\_RUN} (file {\it CPP\_OPTIONS.h}) and
769     {\bf ALLOW\_AUTODIFF\_TAMC} (file {\it ECCO\_CPPOPTIONS.h})
770     should be defined.
771 adcroft 1.1
772 cnh 1.7 \subsubsection{Initialization}
773 adcroft 1.1 %
774 cnh 1.7 The initialization of the {\it cost} package is readily enabled
775 heimbach 1.15 as soon as the CPP option {\bf ALLOW\_COST} is defined.
776 adcroft 1.1 %
777     \begin{itemize}
778     %
779     \item
780     \fbox{
781     \begin{minipage}{12cm}
782     Parameters: {\it cost\_readparms}
783     \end{minipage}
784     }
785     \\
786     This S/R
787     reads runtime flags and parameters from file {\it data.cost}.
788     For the present example the only relevant parameter read
789     is {\bf mult\_tracer}. This multiplier enables different
790     cost function contributions to be switched on
791     ( = 1.) or off ( = 0.) at runtime.
792     For more complex cost functions which involve model vs. data
793     misfits, the corresponding data filenames and data
794     specifications (start date and time, period, ...) are read
795     in this S/R.
796     %
797     \item
798     \fbox{
799     \begin{minipage}{12cm}
800     Variables: {\it cost\_init}
801     \end{minipage}
802     }
803     \\
804     This S/R
805 cnh 1.7 initializes the different cost function contributions.
806     The contribution for the present example is {\bf objf\_tracer}
807 adcroft 1.1 which is defined on each tile (bi,bj).
808     %
809     \end{itemize}
810     %
811 heimbach 1.4 \subsubsection{Accumulation}
812 adcroft 1.1 %
813     \begin{itemize}
814     %
815     \item
816     \fbox{
817     \begin{minipage}{12cm}
818     {\it cost\_tile}, {\it cost\_tracer}
819     \end{minipage}
820     }
821     \end{itemize}
822     %
823     The 'driver' routine
824     {\it cost\_tile} is called at the end of each time step.
825     Within this 'driver' routine, S/R are called for each of
826     the chosen cost function contributions.
827     In the present example ({\bf ALLOW\_COST\_TRACER}),
828     S/R {\it cost\_tracer} is called.
829     It accumulates {\bf objf\_tracer} according to eqn. (\ref{???}).
830     %
831     \subsubsection{Finalize all contributions}
832     %
833     \begin{itemize}
834     %
835     \item
836     \fbox{
837     \begin{minipage}{12cm}
838     {\it cost\_final}
839     \end{minipage}
840     }
841     \end{itemize}
842     %
843     At the end of the forward integration S/R {\it cost\_final}
844     is called. It accumulates the total cost function {\bf fc}
845     from each contribution and sums over all tiles:
846     \begin{equation}
847     {\cal J} \, = \,
848     {\rm fc} \, = \,
849 heimbach 1.15 {\rm mult\_tracer} \sum_{\text{global sum}} \sum_{bi,\,bj}^{nSx,\,nSy}
850 adcroft 1.1 {\rm objf\_tracer}(bi,bj) \, + \, ...
851     \end{equation}
852     %
853     The total cost function {\bf fc} will be the
854     'dependent' variable in the argument list for TAMC, i.e.
855     \begin{verbatim}
856     tamc -output 'fc' ...
857     \end{verbatim}
858    
859 cnh 1.3 %%%% \end{document}
860 adcroft 1.1
861     \input{part5/doc_ad_the_main}
862    
863 heimbach 1.4 \subsection{The control variables (independent variables)
864     \label{section_ctrl}}
865 adcroft 1.1
866     The control variables are a subset of the model input
867     (initial conditions, boundary conditions, model parameters).
868     Here we identify them with the variable $ \vec{u} $.
869     All intermediate variables whose derivative w.r.t. control
870 heimbach 1.4 variables do not vanish are called {\sf active variables}.
871 adcroft 1.1 All subroutines whose derivative w.r.t. the control variables
872     don't vanish are called {\sf active routines}.
873     Read and write operations from and to file can be viewed
874     as variable assignments. Therefore, files to which
875     active variables are written and from which active variables
876     are read are called {\sf active files}.
877     All aspects relevant to the treatment of the control variables
878 cnh 1.7 (parameter setting, initialization, perturbation)
879     are controlled by the package {\it pkg/ctrl}.
880 adcroft 1.1
881 heimbach 1.4 \input{part5/doc_ctrl_flow}
882    
883 adcroft 1.1 \subsubsection{genmake and CPP options}
884     %
885     \begin{itemize}
886     %
887     \item
888     \fbox{
889     \begin{minipage}{12cm}
890     {\it genmake}, {\it CPP\_OPTIONS.h}, {\it ECCO\_CPPOPTIONS.h}
891     \end{minipage}
892     }
893     \end{itemize}
894     %
895     To enable the directory to be included to the compile list,
896     {\bf ctrl} has to be added to the {\bf enable} list in
897 heimbach 1.15 {\it .genmakerc} or in {\it genmake} itself (analogous to {\it cost}
898     package, cf. previous section).
899 adcroft 1.1 Each control variable is enabled via its own CPP option
900     in {\it ECCO\_CPPOPTIONS.h}.
901    
902 cnh 1.7 \subsubsection{Initialization}
903 adcroft 1.1 %
904     \begin{itemize}
905     %
906     \item
907     \fbox{
908     \begin{minipage}{12cm}
909     Parameters: {\it ctrl\_readparms}
910     \end{minipage}
911     }
912     \\
913     %
914     This S/R
915     reads runtime flags and parameters from file {\it data.ctrl}.
916     For the present example the file contains the file names
917     of each control variable that is used.
918     In addition, the number of wet points for each control
919     variable and the net dimension of the space of control
920     variables (counting wet points only) {\bf nvarlength}
921     is determined.
922     Masks for wet points for each tile {\bf (bi,\,bj)}
923     and vertical layer {\bf k} are generated for the three
924     relevant categories on the C-grid:
925     {\bf nWetCtile} for tracer fields,
926     {\bf nWetWtile} for zonal velocity fields,
927     {\bf nWetStile} for meridional velocity fields.
928     %
929     \item
930     \fbox{
931     \begin{minipage}{12cm}
932     Control variables, control vector,
933     and their gradients: {\it ctrl\_unpack}
934     \end{minipage}
935     }
936     \\
937     %
938     Two important issues related to the handling of the control
939     variables in the MITGCM need to be addressed.
940     First, in order to save memory, the control variable arrays
941     are not kept in memory, but rather read from file and added
942 cnh 1.7 to the initial fields during the model initialization phase.
943 adcroft 1.1 Similarly, the corresponding adjoint fields which represent
944     the gradient of the cost function w.r.t. the control variables
945 heimbach 1.4 are written to file at the end of the adjoint integration.
946 adcroft 1.1 Second, in addition to the files holding the 2-dim. and 3-dim.
947 heimbach 1.4 control variables and the corresponding cost gradients,
948     a 1-dim. {\sf control vector}
949 adcroft 1.1 and {\sf gradient vector} are written to file. They contain
950     only the wet points of the control variables and the corresponding
951     gradient.
952     This leads to a significant data compression.
953 heimbach 1.4 Furthermore, an option is available
954     ({\tt ALLOW\_NONDIMENSIONAL\_CONTROL\_IO}) to
955     non-dimensionalise the control and gradient vector,
956     which otherwise would contain different pieces of different
957     magnitudes and units.
958     Finally, the control and gradient vector can be passed to a
959 adcroft 1.1 minimization routine if an update of the control variables
960     is sought as part of a minimization exercise.
961    
962     The files holding fields and vectors of the control variables
963     and gradient are generated and initialised in S/R {\it ctrl\_unpack}.
964     %
965     \end{itemize}
966    
967     \subsubsection{Perturbation of the independent variables}
968     %
969 heimbach 1.4 The dependency flow for differentiation w.r.t. the controls
970     starts with adding a perturbation onto the input variable,
971 adcroft 1.1 thus defining the independent or control variables for TAMC.
972 heimbach 1.4 Three types of controls may be considered:
973 adcroft 1.1 %
974     \begin{itemize}
975     %
976     \item
977     \fbox{
978     \begin{minipage}{12cm}
979     {\it ctrl\_map\_ini} (initial value sensitivity):
980     \end{minipage}
981     }
982     \\
983     %
984     Consider as an example the initial tracer distribution
985     {\bf tr1} as control variable.
986     After {\bf tr1} has been initialised in
987 heimbach 1.4 {\it ini\_tr1} (dynamical variables such as
988 adcroft 1.1 temperature and salinity are initialised in {\it ini\_fields}),
989     a perturbation anomaly is added to the field in S/R
990     {\it ctrl\_map\_ini}
991     %
992     \begin{equation}
993     \begin{split}
994     u & = \, u_{[0]} \, + \, \Delta u \\
995     {\bf tr1}(...) & = \, {\bf tr1_{ini}}(...) \, + \, {\bf xx\_tr1}(...)
996     \label{perturb}
997     \end{split}
998     \end{equation}
999     %
1000 heimbach 1.4 {\bf xx\_tr1} is a 3-dim. global array
1001 adcroft 1.1 holding the perturbation. In the case of a simple
1002     sensitivity study this array is identical to zero.
1003 heimbach 1.4 However, it's specification is essential in the context
1004     of automatic differentiation since TAMC
1005 adcroft 1.1 treats the corresponding line in the code symbolically
1006     when determining the differentiation chain and its origin.
1007     Thus, the variable names are part of the argument list
1008     when calling TAMC:
1009     %
1010     \begin{verbatim}
1011     tamc -input 'xx_tr1 ...' ...
1012     \end{verbatim}
1013     %
1014     Now, as mentioned above, the MITGCM avoids maintaining
1015     an array for each control variable by reading the
1016     perturbation to a temporary array from file.
1017     To ensure the symbolic link to be recognized by TAMC, a scalar
1018     dummy variable {\bf xx\_tr1\_dummy} is introduced
1019     and an 'active read' routine of the adjoint support
1020     package {\it pkg/autodiff} is invoked.
1021     The read-procedure is tagged with the variable
1022 cnh 1.7 {\bf xx\_tr1\_dummy} enabling TAMC to recognize the
1023     initialization of the perturbation.
1024 adcroft 1.1 The modified call of TAMC thus reads
1025     %
1026     \begin{verbatim}
1027     tamc -input 'xx_tr1_dummy ...' ...
1028     \end{verbatim}
1029     %
1030     and the modified operation to (\ref{perturb})
1031     in the code takes on the form
1032     %
1033     \begin{verbatim}
1034     call active_read_xyz(
1035     & ..., tmpfld3d, ..., xx_tr1_dummy, ... )
1036    
1037     tr1(...) = tr1(...) + tmpfld3d(...)
1038     \end{verbatim}
1039     %
1040     Note, that reading an active variable corresponds
1041     to a variable assignment. Its derivative corresponds
1042 heimbach 1.15 to a write statement of the adjoint variable, followed by
1043     a reset.
1044 adcroft 1.1 The 'active file' routines have been designed
1045 heimbach 1.4 to support active read and corresponding adjoint active write
1046     operations (and vice versa).
1047 adcroft 1.1 %
1048     \item
1049     \fbox{
1050     \begin{minipage}{12cm}
1051     {\it ctrl\_map\_forcing} (boundary value sensitivity):
1052     \end{minipage}
1053     }
1054     \\
1055     %
1056     The handling of boundary values as control variables
1057     proceeds exactly analogous to the initial values
1058     with the symbolic perturbation taking place in S/R
1059     {\it ctrl\_map\_forcing}.
1060     Note however an important difference:
1061     Since the boundary values are time dependent with a new
1062     forcing field applied at each time steps,
1063 heimbach 1.4 the general problem may be thought of as
1064     a new control variable at each time step
1065     (or, if the perturbation is averaged over a certain period,
1066     at each $ N $ timesteps), i.e.
1067 adcroft 1.1 \[
1068     u_{\rm forcing} \, = \,
1069     \{ \, u_{\rm forcing} ( t_n ) \, \}_{
1070     n \, = \, 1, \ldots , {\rm nTimeSteps} }
1071     \]
1072     %
1073     In the current example an equilibrium state is considered,
1074     and only an initial perturbation to
1075     surface forcing is applied with respect to the
1076     equilibrium state.
1077     A time dependent treatment of the surface forcing is
1078     implemented in the ECCO environment, involving the
1079     calendar ({\it cal}~) and external forcing ({\it exf}~) packages.
1080     %
1081     \item
1082     \fbox{
1083     \begin{minipage}{12cm}
1084     {\it ctrl\_map\_params} (parameter sensitivity):
1085     \end{minipage}
1086     }
1087     \\
1088     %
1089     This routine is not yet implemented, but would proceed
1090     proceed along the same lines as the initial value sensitivity.
1091 heimbach 1.4 The mixing parameters {\bf diffkr} and {\bf kapgm}
1092     are currently added as controls in {\it ctrl\_map\_ini.F}.
1093 adcroft 1.1 %
1094     \end{itemize}
1095     %
1096    
1097     \subsubsection{Output of adjoint variables and gradient}
1098     %
1099 heimbach 1.4 Several ways exist to generate output of adjoint fields.
1100 adcroft 1.1 %
1101     \begin{itemize}
1102     %
1103     \item
1104     \fbox{
1105     \begin{minipage}{12cm}
1106 heimbach 1.4 {\it ctrl\_map\_ini, ctrl\_map\_forcing}:
1107 adcroft 1.1 \end{minipage}
1108     }
1109     \\
1110     \begin{itemize}
1111     %
1112 heimbach 1.4 \item {\bf xx\_...}: the control variable fields \\
1113     Before the forward integration, the control
1114     variables are read from file {\bf xx\_ ...} and added to
1115     the model field.
1116 adcroft 1.1 %
1117     \item {\bf adxx\_...}: the adjoint variable fields, i.e. the gradient
1118 heimbach 1.4 $ \nabla _{u}{\cal J} $ for each control variable \\
1119     After the adjoint integration the corresponding adjoint
1120     variables are written to {\bf adxx\_ ...}.
1121 adcroft 1.1 %
1122 heimbach 1.4 \end{itemize}
1123 adcroft 1.1 %
1124 heimbach 1.4 \item
1125     \fbox{
1126     \begin{minipage}{12cm}
1127     {\it ctrl\_unpack, ctrl\_pack}:
1128     \end{minipage}
1129     }
1130     \\
1131     %
1132     \begin{itemize}
1133     %
1134     \item {\bf vector\_ctrl}: the control vector \\
1135 cnh 1.7 At the very beginning of the model initialization,
1136 heimbach 1.4 the updated compressed control vector is read (or initialised)
1137     and distributed to 2-dim. and 3-dim. control variable fields.
1138     %
1139     \item {\bf vector\_grad}: the gradient vector \\
1140     At the very end of the adjoint integration,
1141     the 2-dim. and 3-dim. adjoint variables are read,
1142     compressed to a single vector and written to file.
1143 adcroft 1.1 %
1144     \end{itemize}
1145     %
1146     \item
1147     \fbox{
1148     \begin{minipage}{12cm}
1149     {\it addummy\_in\_stepping}:
1150     \end{minipage}
1151     }
1152     \\
1153     In addition to writing the gradient at the end of the
1154 heimbach 1.4 forward/adjoint integration, many more adjoint variables
1155     of the model state
1156     at intermediate times can be written using S/R
1157 adcroft 1.1 {\it addummy\_in\_stepping}.
1158     This routine is part of the adjoint support package
1159     {\it pkg/autodiff} (cf.f. below).
1160 heimbach 1.15 The procedure is enabled using via the CPP-option
1161     {\bf ALLOW\_AUTODIFF\_MONITOR} (file {\it ECCO\_CPPOPTIONS.h}).
1162 adcroft 1.1 To be part of the adjoint code, the corresponding S/R
1163     {\it dummy\_in\_stepping} has to be called in the forward
1164     model (S/R {\it the\_main\_loop}) at the appropriate place.
1165 heimbach 1.15 The adjoint common blocks are extracted from the adjoint code
1166     via the header file {\it adcommon.h}.
1167 adcroft 1.1
1168     {\it dummy\_in\_stepping} is essentially empty,
1169     the corresponding adjoint routine is hand-written rather
1170     than generated automatically.
1171     Appropriate flow directives ({\it dummy\_in\_stepping.flow})
1172     ensure that TAMC does not automatically
1173     generate {\it addummy\_in\_stepping} by trying to differentiate
1174 heimbach 1.4 {\it dummy\_in\_stepping}, but instead refers to
1175     the hand-written routine.
1176 adcroft 1.1
1177     {\it dummy\_in\_stepping} is called in the forward code
1178     at the beginning of each
1179     timestep, before the call to {\it dynamics}, thus ensuring
1180     that {\it addummy\_in\_stepping} is called at the end of
1181     each timestep in the adjoint calculation, after the call to
1182     {\it addynamics}.
1183    
1184     {\it addummy\_in\_stepping} includes the header files
1185 heimbach 1.4 {\it adcommon.h}.
1186     This header file is also hand-written. It contains
1187     the common blocks
1188     {\bf /addynvars\_r/}, {\bf /addynvars\_cd/},
1189     {\bf /addynvars\_diffkr/}, {\bf /addynvars\_kapgm/},
1190 adcroft 1.1 {\bf /adtr1\_r/}, {\bf /adffields/},
1191     which have been extracted from the adjoint code to enable
1192     access to the adjoint variables.
1193 heimbach 1.15
1194     {\bf WARNING:} If the structure of the common blocks
1195     {\bf /dynvars\_r/}, {\bf /dynvars\_cd/}, etc., changes
1196     similar changes will occur in the adjoint common blocks.
1197     Therefore, consistency between the TAMC-generated common blocks
1198     and those in {\it adcommon.h} have to be checked.
1199 adcroft 1.1 %
1200     \end{itemize}
1201    
1202    
1203     \subsubsection{Control variable handling for
1204     optimization applications}
1205    
1206     In optimization mode the cost function $ {\cal J}(u) $ is sought
1207     to be minimized with respect to a set of control variables
1208     $ \delta {\cal J} \, = \, 0 $, in an iterative manner.
1209     The gradient $ \nabla _{u}{\cal J} |_{u_{[k]}} $ together
1210     with the value of the cost function itself $ {\cal J}(u_{[k]}) $
1211     at iteration step $ k $ serve
1212     as input to a minimization routine (e.g. quasi-Newton method,
1213 heimbach 1.9 conjugate gradient, ... \cite{gil-lem:89})
1214 heimbach 1.4 to compute an update in the
1215 adcroft 1.1 control variable for iteration step $k+1$
1216     \[
1217     u_{[k+1]} \, = \, u_{[0]} \, + \, \Delta u_{[k+1]}
1218     \quad \mbox{satisfying} \quad
1219     {\cal J} \left( u_{[k+1]} \right) \, < \, {\cal J} \left( u_{[k]} \right)
1220     \]
1221     $ u_{[k+1]} $ then serves as input for a forward/adjoint run
1222     to determine $ {\cal J} $ and $ \nabla _{u}{\cal J} $ at iteration step
1223     $ k+1 $.
1224     Tab. \ref{???} sketches the flow between forward/adjoint model
1225     and the minimization routine.
1226    
1227     \begin{eqnarray*}
1228 heimbach 1.4 \scriptsize
1229 adcroft 1.1 \begin{array}{ccccc}
1230     u_{[0]} \,\, , \,\, \Delta u_{[k]} & ~ & ~ & ~ & ~ \\
1231     {\Big\downarrow}
1232     & ~ & ~ & ~ & ~ \\
1233     ~ & ~ & ~ & ~ & ~ \\
1234     \hline
1235     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1236     \multicolumn{1}{|c}{
1237     u_{[k]} = u_{[0]} + \Delta u_{[k]}} &
1238     \stackrel{\bf forward}{\bf \longrightarrow} &
1239     v_{[k]} = M \left( u_{[k]} \right) &
1240     \stackrel{\bf forward}{\bf \longrightarrow} &
1241     \multicolumn{1}{c|}{
1242     {\cal J}_{[k]} = {\cal J} \left( M \left( u_{[k]} \right) \right)} \\
1243     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1244     \hline
1245 heimbach 1.4 \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1246     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{{\Big\downarrow}} \\
1247     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1248 adcroft 1.1 \hline
1249     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1250     \multicolumn{1}{|c}{
1251     \nabla_u {\cal J}_{[k]} (\delta {\cal J}) =
1252 heimbach 1.4 T^{\ast} \cdot \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J})} &
1253 adcroft 1.1 \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1254     ad \, v_{[k]} (\delta {\cal J}) =
1255     \nabla_v {\cal J} |_{v_{[k]}} (\delta {\cal J}) &
1256     \stackrel{\bf adjoint}{\mathbf \longleftarrow} &
1257     \multicolumn{1}{c|}{ ad \, {\cal J} = \delta {\cal J}} \\
1258     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1259     \hline
1260     ~ & ~ & ~ & ~ & ~ \\
1261 heimbach 1.4 \hspace*{15ex}{\Bigg\downarrow}
1262     \quad {\cal J}_{[k]}, \quad \nabla_u {\cal J}_{[k]}
1263     & ~ & ~ & ~ & ~ \\
1264 adcroft 1.1 ~ & ~ & ~ & ~ & ~ \\
1265     \hline
1266     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1267     \multicolumn{1}{|c}{
1268     {\cal J}_{[k]} \,\, , \,\, \nabla_u {\cal J}_{[k]}} &
1269     {\mathbf \longrightarrow} & \text{\bf minimisation} &
1270     {\mathbf \longrightarrow} &
1271     \multicolumn{1}{c|}{ \Delta u_{[k+1]}} \\
1272     \multicolumn{1}{|c}{~} & ~ & ~ & ~ & \multicolumn{1}{c|}{~} \\
1273     \hline
1274     ~ & ~ & ~ & ~ & ~ \\
1275     ~ & ~ & ~ & ~ & \Big\downarrow \\
1276     ~ & ~ & ~ & ~ & \Delta u_{[k+1]} \\
1277     \end{array}
1278     \end{eqnarray*}
1279    
1280     The routines {\it ctrl\_unpack} and {\it ctrl\_pack} provide
1281     the link between the model and the minimization routine.
1282     As described in Section \ref{???}
1283     the {\it unpack} and {\it pack} routines read and write
1284     control and gradient {\it vectors} which are compressed
1285     to contain only wet points, in addition to the full
1286     2-dim. and 3-dim. fields.
1287     The corresponding I/O flow looks as follows:
1288    
1289     \vspace*{0.5cm}
1290    
1291 heimbach 1.4 {\scriptsize
1292 adcroft 1.1 \begin{tabular}{ccccc}
1293     {\bf vector\_ctrl\_$<$k$>$ } & ~ & ~ & ~ & ~ \\
1294     {\big\downarrow} & ~ & ~ & ~ & ~ \\
1295     \cline{1-1}
1296     \multicolumn{1}{|c|}{\it ctrl\_unpack} & ~ & ~ & ~ & ~ \\
1297     \cline{1-1}
1298     {\big\downarrow} & ~ & ~ & ~ & ~ \\
1299     \cline{3-3}
1300     \multicolumn{1}{l}{\bf xx\_theta0...$<$k$>$} & ~ &
1301     \multicolumn{1}{|c|}{~} & ~ & ~ \\
1302 heimbach 1.4 \multicolumn{1}{l}{\bf xx\_salt0...$<$k$>$} &
1303     $\stackrel{\mbox{read}}{\longrightarrow}$ &
1304 adcroft 1.1 \multicolumn{1}{|c|}{forward integration} & ~ & ~ \\
1305     \multicolumn{1}{l}{\bf \vdots} & ~ & \multicolumn{1}{|c|}{~}
1306     & ~ & ~ \\
1307     \cline{3-3}
1308 heimbach 1.4 ~ & ~ & $\downarrow$ & ~ & ~ \\
1309 adcroft 1.1 \cline{3-3}
1310     ~ & ~ &
1311     \multicolumn{1}{|c|}{~} & ~ &
1312     \multicolumn{1}{l}{\bf adxx\_theta0...$<$k$>$} \\
1313     ~ & ~ & \multicolumn{1}{|c|}{adjoint integration} &
1314 heimbach 1.4 $\stackrel{\mbox{write}}{\longrightarrow}$ &
1315 adcroft 1.1 \multicolumn{1}{l}{\bf adxx\_salt0...$<$k$>$} \\
1316     ~ & ~ & \multicolumn{1}{|c|}{~}
1317     & ~ & \multicolumn{1}{l}{\bf \vdots} \\
1318     \cline{3-3}
1319     ~ & ~ & ~ & ~ & {\big\downarrow} \\
1320     \cline{5-5}
1321     ~ & ~ & ~ & ~ & \multicolumn{1}{|c|}{\it ctrl\_pack} \\
1322     \cline{5-5}
1323     ~ & ~ & ~ & ~ & {\big\downarrow} \\
1324     ~ & ~ & ~ & ~ & {\bf vector\_grad\_$<$k$>$ } \\
1325     \end{tabular}
1326 heimbach 1.4 }
1327 adcroft 1.1
1328     \vspace*{0.5cm}
1329    
1330    
1331 heimbach 1.4 {\it ctrl\_unpack} reads the updated control vector
1332 adcroft 1.1 {\bf vector\_ctrl\_$<$k$>$}.
1333     It distributes the different control variables to
1334     2-dim. and 3-dim. files {\it xx\_...$<$k$>$}.
1335 heimbach 1.4 At the start of the forward integration the control variables
1336     are read from {\it xx\_...$<$k$>$} and added to the
1337     field.
1338     Correspondingly, at the end of the adjoint integration
1339     the adjoint fields are written
1340 adcroft 1.1 to {\it adxx\_...$<$k$>$}, again via the active file routines.
1341 heimbach 1.4 Finally, {\it ctrl\_pack} collects all adjoint files
1342 adcroft 1.1 and writes them to the compressed vector file
1343     {\bf vector\_grad\_$<$k$>$}.

  ViewVC Help
Powered by ViewVC 1.1.22