--- manual/s_algorithm/text/tracer.tex 2001/11/13 15:32:28 1.9 +++ manual/s_algorithm/text/tracer.tex 2001/11/13 19:01:42 1.11 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/tracer.tex,v 1.9 2001/11/13 15:32:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_algorithm/text/tracer.tex,v 1.11 2001/11/13 19:01:42 adcroft Exp $ % $Name: $ \section{Tracer equations} @@ -43,7 +43,7 @@ everywhere else. This term is therefore referred to as the surface correction term. Global conservation is not possible using the flux-form (as here) and a linearized free-surface -(\cite{Griffies00,Campin02}). +(\cite{griffies:00,campin:02}). The continuity equation can be recovered by setting $G_{diff}=G_{forc}=0$ and $\tau=1$. @@ -200,7 +200,7 @@ For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally and to globally conserve tracer -variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}. +variance, $\tau^2$. The proof is given in \cite{adcroft:95,adcroft:97}. \fbox{ \begin{minipage}{4.75in} {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F}) @@ -387,7 +387,7 @@ r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0 \end{eqnarray} as it's argument. There are many choices of limiter function but we -only provide the Superbee limiter \cite{Roe85}: +only provide the Superbee limiter \cite{roe:85}: \begin{equation} \psi(r) = \max[0,\min[1,2r],\min[2,r]] \end{equation}