/[MITgcm]/manual/s_algorithm/text/tracer.tex
ViewVC logotype

Diff of /manual/s_algorithm/text/tracer.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by cnh, Thu Oct 25 18:36:53 2001 UTC revision 1.23 by jmc, Tue Jan 15 23:52:12 2008 UTC
# Line 2  Line 2 
2  % $Name$  % $Name$
3    
4  \section{Tracer equations}  \section{Tracer equations}
5  \label{sec:tracer_equations}  \label{sect:tracer_equations}
6    \begin{rawhtml}
7    <!-- CMIREDIR:tracer_equations: -->
8    \end{rawhtml}
9    
10  The basic discretization used for the tracer equations is the second  The basic discretization used for the tracer equations is the second
11  order piece-wise constant finite volume form of the forced  order piece-wise constant finite volume form of the forced
# Line 15  part of the tracer equations and the var Line 18  part of the tracer equations and the var
18  described here.  described here.
19    
20  \subsection{Time-stepping of tracers: ABII}  \subsection{Time-stepping of tracers: ABII}
21  \label{sec:tracer_equations_abII}  \label{sect:tracer_equations_abII}
22    \begin{rawhtml}
23    <!-- CMIREDIR:tracer_equations_abII: -->
24    \end{rawhtml}
25    
26  The default advection scheme is the centered second order method which  The default advection scheme is the centered second order method which
27  requires a second order or quasi-second order time-stepping scheme to  requires a second order or quasi-second order time-stepping scheme to
# Line 43  only affects the surface layer since the Line 49  only affects the surface layer since the
49  everywhere else. This term is therefore referred to as the surface  everywhere else. This term is therefore referred to as the surface
50  correction term. Global conservation is not possible using the  correction term. Global conservation is not possible using the
51  flux-form (as here) and a linearized free-surface  flux-form (as here) and a linearized free-surface
52  (\cite{Griffies00,Campin02}).  (\cite{griffies:00,campin:02}).
53    
54  The continuity equation can be recovered by setting  The continuity equation can be recovered by setting
55  $G_{diff}=G_{forc}=0$ and $\tau=1$.  $G_{diff}=G_{forc}=0$ and $\tau=1$.
# Line 123  the forward method. Line 129  the forward method.
129    
130    
131  \section{Linear advection schemes}  \section{Linear advection schemes}
132    \label{sect:tracer-advection}
133    \begin{rawhtml}
134    <!-- CMIREDIR:linear_advection_schemes: -->
135    \end{rawhtml}
136    
137  \begin{figure}  \begin{figure}
138  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}  \resizebox{5.5in}{!}{\includegraphics{part2/advect-1d-lo.eps}}
# Line 200  W & = & {\cal A}_c w Line 210  W & = & {\cal A}_c w
210    
211  For non-divergent flow, this discretization can be shown to conserve  For non-divergent flow, this discretization can be shown to conserve
212  the tracer both locally and globally and to globally conserve tracer  the tracer both locally and globally and to globally conserve tracer
213  variance, $\tau^2$. The proof is given in \cite{Adcroft95,Adcroft97}.  variance, $\tau^2$. The proof is given in \cite{adcroft:95,adcroft:97}.
214    
215  \fbox{ \begin{minipage}{4.75in}  \fbox{ \begin{minipage}{4.75in}
216  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})  {\em S/R GAD\_C2\_ADV\_X} ({\em gad\_c2\_adv\_x.F})
# Line 349  if the limiter is set to zero. Line 359  if the limiter is set to zero.
359    
360    
361  \section{Non-linear advection schemes}  \section{Non-linear advection schemes}
362    \begin{rawhtml}
363    <!-- CMIREDIR:non-linear_advection_schemes: -->
364    \end{rawhtml}
365    
366  Non-linear advection schemes invoke non-linear interpolation and are  Non-linear advection schemes invoke non-linear interpolation and are
367  widely used in computational fluid dynamics (non-linear does not refer  widely used in computational fluid dynamics (non-linear does not refer
# Line 387  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t Line 400  r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \t
400  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0  r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0
401  \end{eqnarray}  \end{eqnarray}
402  as it's argument. There are many choices of limiter function but we  as it's argument. There are many choices of limiter function but we
403  only provide the Superbee limiter \cite{Roe85}:  only provide the Superbee limiter \cite{roe:85}:
404  \begin{equation}  \begin{equation}
405  \psi(r) = \max[0,\min[1,2r],\min[2,r]]  \psi(r) = \max[0,\min[1,2r],\min[2,r]]
406  \end{equation}  \end{equation}
# Line 449  to centered second order advection in th Line 462  to centered second order advection in th
462    
463  The DST3 method described above must be used in a forward-in-time  The DST3 method described above must be used in a forward-in-time
464  manner and is stable for $0 \le |c| \le 1$. Although the scheme  manner and is stable for $0 \le |c| \le 1$. Although the scheme
465  appears to be forward-in-time, it is in fact second order in time and  appears to be forward-in-time, it is in fact third order in time and
466  the accuracy increases with the Courant number! For low Courant  the accuracy increases with the Courant number! For low Courant
467  number, DST3 produces very similar results (indistinguishable in  number, DST3 produces very similar results (indistinguishable in
468  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for  Fig.~\ref{fig:advect-1d-lo}) to the linear third order method but for
# Line 614  as if in one dimension: Line 627  as if in one dimension:
627  \tau^{n+1/3} & = & \tau^{n}  \tau^{n+1/3} & = & \tau^{n}
628  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})  - \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
629             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\             + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
630  \tau^{n+2/3} & = & \tau^{n}  \tau^{n+2/3} & = & \tau^{n+1/3}
631  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})  - \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
632             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\             + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
633  \tau^{n+3/3} & = & \tau^{n}  \tau^{n+3/3} & = & \tau^{n+2/3}
634  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})  - \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
635             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)             + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)
636  \end{eqnarray}  \end{eqnarray}
# Line 651  $W$: {\bf rTrans} (local) Line 664  $W$: {\bf rTrans} (local)
664    
665  \end{minipage} }  \end{minipage} }
666    
667    \begin{figure}
668    \resizebox{3.5in}{!}{\includegraphics{part2/multiDim_CS.eps}}
669    \caption{Muti-dimensional advection time-stepping with Cubed-Sphere topology
670    \label{fig:advect-multidim_cs}
671    }
672    \end{figure}
673    
674  \section{Comparison of advection schemes}  \section{Comparison of advection schemes}
675    \label{sect:tracer_advection_schemes}
676    \begin{rawhtml}
677    <!-- CMIREDIR:comparison_of_advection_schemes: -->
678    \end{rawhtml}
679    
680    \begin{table}[htb]
681    \centering
682     \begin{tabular}[htb]{|l|c|c|c|c|l|}
683       \hline
684       Advection Scheme & code & use  & use Multi- & Stencil & comments \\
685                        &      & A.B. & dimension & (1 dim) & \\
686       \hline \hline
687       $1^{rst}$order upwind  & 1 &  No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
688       \hline
689       centered $2^{nd}$order & 2 &  Yes & No & 3 pts & linear \\
690       \hline
691       $3^{rd}$order upwind   & 3 &  Yes & No & 5 pts & linear/$\tau$\\
692       \hline
693       centered $4^{th}$order & 4 &  Yes & No & 5 pts & linear \\
694       \hline \hline
695       $2^{nd}$order DST (Lax-Wendroff)  & 20 &
696                             No & Yes & 3 pts & linear/$\tau$, non-linear/v\\
697       \hline
698       $3^{rd}$order DST & 30 &  No & Yes & 5 pts & linear/$\tau$, non-linear/v\\
699       \hline \hline
700       $2^{nd}$order Flux Limiters & 77 &  No & Yes & 5 pts & non-linear \\
701       \hline
702       $3^{nd}$order DST Flux limiter & 33 &  No & Yes & 5 pts & non-linear \\
703       \hline
704     \end{tabular}
705     \caption{Summary of the different advection schemes available in MITgcm.
706              ``A.B.'' stands for Adams-Bashforth and ``DST'' for direct space time.
707              The code corresponds to the number used to select the corresponding
708              advection scheme in the parameter file (e.g., {\bf tempAdvScheme}=3 in
709              file {\em data} selects the $3^{rd}$ order upwind advection scheme
710              for temperature).
711       }
712     \label{tab:advectionShemes_summary}
713    \end{table}
714    
715    
716  Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and  Figs.~\ref{fig:advect-2d-lo-diag}, \ref{fig:advect-2d-mid-diag} and
717  \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal  \ref{fig:advect-2d-hi-diag} show solutions to a simple diagonal
# Line 675  Figs.~\ref{fig:advect-1d-lo} and \ref{fi Line 734  Figs.~\ref{fig:advect-1d-lo} and \ref{fi
734  phenomenon.  phenomenon.
735    
736  Finally, the bottom left and right panels use the same advection  Finally, the bottom left and right panels use the same advection
737  scheme but the right does not use the mutli-dimensional method. At low  scheme but the right does not use the multi-dimensional method. At low
738  Courant number this appears to not matter but for moderate Courant  Courant number this appears to not matter but for moderate Courant
739  number severe distortion of the feature is apparent. Moreover, the  number severe distortion of the feature is apparent. Moreover, the
740  stability of the multi-dimensional scheme is determined by the maximum  stability of the multi-dimensional scheme is determined by the maximum
# Line 704  flux limited scheme is almost essential. Line 763  flux limited scheme is almost essential.
763  non-linear schemes have the most stability (up to Courant number 1).  non-linear schemes have the most stability (up to Courant number 1).
764  \item If you need to know how much diffusion/dissipation has occurred you  \item If you need to know how much diffusion/dissipation has occurred you
765  will have a lot of trouble figuring it out with a non-linear method.  will have a lot of trouble figuring it out with a non-linear method.
766  \item The presence of false extrema is unphysical and this alone is the  \item The presence of false extrema is non-physical and this alone is the
767  strongest argument for using a positive scheme.  strongest argument for using a positive scheme.
768  \end{itemize}  \end{itemize}

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22